Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Enzymic approach to eurythermalism of Alvinella pompejana and its Episymbionts

      Lee, Charles Kai-Wu; Cary, S. Craig; Murray, Alison E.; Daniel, Roy M.
      DOI
       10.1128/AEM.01960-07
      Link
       aem.asm.org
      Find in your library  
      Citation
      Export citation
      Lee, C.K., Cary, S.C., Murray, A.E. & Daniel, R.M. (2007). Enzymic approach to eurythermalism of Alvinella pompejana and its Episymbionts. Applied and Environmental Microbiology, 74(3), 774-782.
      Permanent Research Commons link: https://hdl.handle.net/10289/4436
      Abstract
      The equilibrium model, which describes the influence of temperature on enzyme activity, has been established as a valid and useful tool for characterizing enzyme eurythermalism and thermophily. By introducing Keq, a temperature-dependent equilibrium constant for the interconversion between Eact, the active form of enzyme, and Einact, a reversibly inactive form of enzyme, the equilibrium model currently provides the most complete description of the enzyme-temperature relationship; its derived parameters are intrinsic and apparently universal and, being derived under reaction conditions, potentially have physiological significance. One of these parameters, Teq, correlates with host growth temperature better than enzyme stability does. The vent-dwelling annelid Alvinella pompejana has been reported as an extremely eurythermal organism, and the symbiotic complex microbial community associated with its dorsal surface is likely to experience similar environmental thermal conditions. The A. pompejana episymbiont community, predominantly composed of epsilonproteobacteria, has been analyzed metagenomically, enabling direct retrieval of genes coding for enzymes suitable for equilibrium model applications. Two such genes, coding for isopropylmalate dehydrogenase and glutamate dehydrogenase, have been isolated from the A. pompejana episymbionts, heterologously expressed, and shown by reverse transcription-quantitative PCR to be actively expressed. The equilibrium model parameters of characterized expression products suggested that enzyme eurythermalism constitutes part of the thermal adaptation strategy employed by the episymbionts. Moreover, the enzymes' thermal characteristics correspond to their predicted physiological roles and the abundance and expression of the corresponding genes. This paper demonstrates the use of the equilibrium model as part of a top-down metagenomic approach to studying temperature adaptation of uncultured organisms.
      Date
      2007
      Type
      Journal Article
      Publisher
      American Society for Microbiology
      Collections
      • Science and Engineering Papers [3124]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement