Show simple item record  

dc.contributor.authorLee, Charles Kai-Wu
dc.contributor.authorCary, S. Craig
dc.contributor.authorMurray, Alison E.
dc.contributor.authorDaniel, Roy M.
dc.coverage.spatialUnited Statesen_NZ
dc.date.accessioned2010-08-26T04:30:48Z
dc.date.available2010-08-26T04:30:48Z
dc.date.issued2007
dc.identifier.citationLee, C.K., Cary, S.C., Murray, A.E. & Daniel, R.M. (2007). Enzymic approach to eurythermalism of Alvinella pompejana and its Episymbionts. Applied and Environmental Microbiology, 74(3), 774-782.en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/4436
dc.description.abstractThe equilibrium model, which describes the influence of temperature on enzyme activity, has been established as a valid and useful tool for characterizing enzyme eurythermalism and thermophily. By introducing Keq, a temperature-dependent equilibrium constant for the interconversion between Eact, the active form of enzyme, and Einact, a reversibly inactive form of enzyme, the equilibrium model currently provides the most complete description of the enzyme-temperature relationship; its derived parameters are intrinsic and apparently universal and, being derived under reaction conditions, potentially have physiological significance. One of these parameters, Teq, correlates with host growth temperature better than enzyme stability does. The vent-dwelling annelid Alvinella pompejana has been reported as an extremely eurythermal organism, and the symbiotic complex microbial community associated with its dorsal surface is likely to experience similar environmental thermal conditions. The A. pompejana episymbiont community, predominantly composed of epsilonproteobacteria, has been analyzed metagenomically, enabling direct retrieval of genes coding for enzymes suitable for equilibrium model applications. Two such genes, coding for isopropylmalate dehydrogenase and glutamate dehydrogenase, have been isolated from the A. pompejana episymbionts, heterologously expressed, and shown by reverse transcription-quantitative PCR to be actively expressed. The equilibrium model parameters of characterized expression products suggested that enzyme eurythermalism constitutes part of the thermal adaptation strategy employed by the episymbionts. Moreover, the enzymes' thermal characteristics correspond to their predicted physiological roles and the abundance and expression of the corresponding genes. This paper demonstrates the use of the equilibrium model as part of a top-down metagenomic approach to studying temperature adaptation of uncultured organisms.en_NZ
dc.language.isoen
dc.publisherAmerican Society for Microbiologyen_NZ
dc.relation.urihttp://aem.asm.org/cgi/content/short/74/3/774en_NZ
dc.subjectbiologyen_NZ
dc.subjectEquilibrium Modelen_NZ
dc.titleEnzymic approach to eurythermalism of Alvinella pompejana and its Episymbiontsen_NZ
dc.typeJournal Articleen_NZ
dc.identifier.doi10.1128/AEM.01960-07en_NZ
dc.relation.isPartOfApplied and Environmental Microbiologyen_NZ
pubs.begin-page774en_NZ
pubs.elements-id33138
pubs.end-page782en_NZ
pubs.issue3en_NZ
pubs.volume74en_NZ


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record