Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Interactions of calcium and other metal ions with caldolysin, the thermostable proteinase from Thermus aquaticus strain T351.

      Khoo, T.C.; Cowan, Don A.; Daniel, Roy M.; Morgan, Hugh W.
      Link
       www.biochemj.org
      Citation
      Export citation
      Khoo, T.C., Cowan, D.A., Daniel, R.M. & Morgan, H.W. (1984). Interactions of calcium and other metal ions with caldolysin, the thermostable proteinase from Thermus aquaticus strain T351. Biochemical Journal, 221(2), 407-413.
      Permanent Research Commons link: https://hdl.handle.net/10289/4525
      Abstract
      Caldolysin, the extracellular proteinase from the extreme thermophile Thermus aquaticus strain T351, is stabilized by Ca2+. A variety of metal ions were able to substitute for Ca2+. Most were unable to confer as much stability as Ca2+, with the exception of the lanthanide ions, which increased the half-life at 95 degrees C from 1 h to more than 4 h. Results from a variety of separation methods indicated that caldolysin binds 6 Ca2+ ions/molecule of enzyme. The presence of non-linear Ca2+ titration plots, and the removal of 4 Ca2+ ions/molecule by treatment with a cationic ion-exchange gel suggested that caldolysin possesses at least two different types of Ca2+-binding sites, with different affinities. Average binding constants of the two types of binding sites were 2.8 X 10(4)M-1 (for the low-affinity sites) and 7.5 X 10(5) M-1 (for the high-affinity sites). The total Ca2+-binding free energy for caldolysin was shown to be greater than for either thermolysin or Bacillus subtilis neutral proteinase. It appears that the higher thermostability of caldolysin is due to the presence of 6 Ca2+ ions rather than 4 Ca2+ ions/molecule.
      Date
      1984
      Type
      Journal Article
      Collections
      • Science and Engineering Papers [3073]
      Show full item record  

      Usage

       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement