Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Modelling single cell electroporation with bipolar pulse: Simulating dependance of electroporated fractional pore area on the bipolar field frequency

      Talele, Sadhana; Gaynor, Paul; van Ekeran, Jethro; Cree, Michael J.
      DOI
       10.1007/978-90-481-3656-8_65
      Link
       www.springerlink.com
      Find in your library  
      Citation
      Export citation
      Talele, S., Gaynor, P., van Ekeran, J. & Cree, M.J. (2010). Modelling single cell electroporation with bipolar pulse: Simulating dependance of electroporated fractional pore area on the bipolar field frequency. In M. Iskander et al. (eds.), Technological developments in education and automation (pp. 355-359). Springer.
      Permanent Research Commons link: https://hdl.handle.net/10289/4625
      Abstract
      Electroporation EP, in which external electric field pulses create transient pores in a cell membrane, is an important technique for delivery of DNA and drugs into the cell. To enable entry of DNA into cells, the pores should have sufficiently large radii, remain open long enough for the DNA chain to enter the cell, and should not cause membrane rupture. A numerical model for a single spherical cell electroporated by application of direct and/or alternating external electric field pulses has been developed. The model is used to calculate the transmembrane potential, the number of pores and the the fraction of area occupied by the pores (fractional pore area FPA) in response to the various electric field pulses. Presented here are simulation results used to compare the extent of electroporation (fractional pore area FPA) in response to eletric field pulses of different frequencies in a range of extracellular conductivity for two cell raii. It is also observed that a 1 MHz bipolar sinusoidal applied electric field pulse reduces the relative difference in fractional pore area between the two cell sizes compared to a 100 kHz pulse.
      Date
      2010
      Type
      Chapter in Book
      Publisher
      SpringerLink
      Collections
      • Science and Engineering Papers [3073]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement