Show simple item record  

dc.contributor.authorBifet, Albert
dc.contributor.authorHolmes, Geoffrey
dc.contributor.authorPfahringer, Bernhard
dc.coverage.spatialConference held at Barcelona, Spainen_NZ
dc.date.accessioned2010-10-01T00:28:15Z
dc.date.available2010-10-01T00:28:15Z
dc.date.issued2010
dc.identifier.citationBifet, A., Holmes, G. & Pfahringer, B. (2010). Leveraging bagging for evolving data streams. In J.L. alcazer et al. (Eds.): ECML PKDD 2010, Part I, LNZI 6321 (pp. 135-150). Heidelberg: Springer-Verlag.en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/4638
dc.description.abstractBagging, boosting and Random Forests are classical ensemble methods used to improve the performance of single classifiers. They obtain superior performance by increasing the accuracy and diversity of the single classifiers. Attempts have been made to reproduce these methods in the more challenging context of evolving data streams. In this paper, we propose a new variant of bagging, called leveraging bagging. This method combines the simplicity of bagging with adding more randomization to the input, and output of the classifiers. We test our method by performing an evaluation study on synthetic and real-world datasets comprising up to ten million examples.en_NZ
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.publisherSpringer-Verlagen_NZ
dc.relation.urihttp://www.springerlink.com/content/04656721q4485837/en_NZ
dc.rights© 2010 Springer-Verlag Berlin Heidelberg. This is the author's accepted version. The final publication is available at Springer via dx.doi.org/10.1007/978-3-642-15880-3_15
dc.sourceEuropean Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD)en_NZ
dc.subjectcomputer scienceen_NZ
dc.subjectdata streamen_NZ
dc.subjectbaggingen_NZ
dc.subjectboostingen_NZ
dc.subjectRandom Foresten_NZ
dc.subjectMachine learning
dc.titleLeveraging bagging for evolving data streamsen_NZ
dc.typeConference Contributionen_NZ
dc.identifier.doi10.1007/978-3-642-15880-3_15en_NZ
dc.relation.isPartOfProc European Conference on Machine Learning and Knowledge Discovery in Databases 2010 (ECML PKDD 2010)en_NZ
pubs.begin-page135en_NZ
pubs.elements-id19934
pubs.end-page150en_NZ
pubs.finish-date2010-09-24en_NZ
pubs.issuePART 1en_NZ
pubs.place-of-publicationBerlinen_NZ
pubs.start-date2010-09-20en_NZ
pubs.volumeLNAI 6321, Lecture Notes in Artificial Intelligenceen_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record