Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Nitrogen and phosphorus limitation of phytoplankton growth in New Zealand lakes: Implications for eutrophication control

      Abell, Jonathan Michael; Özkundakci, Deniz; Hamilton, David P.
      Thumbnail
      Files
      Accepted manuscript_Abell et al_2010.pdf
      1.095Mb
      DOI
       10.1007/s10021-010-9367-9
      Link
       www.springerlink.com
      Find in your library  
      Citation
      Export citation
      Abell, J.M., Ozkundakci, D. & Hamilton, D.P. (2010). Nitrogen and phosphorus limitation of phytoplankton growth in New Zealand lakes: Implications for eutrophication control. Ecosystems, 13(7), 966-977.
      Permanent Research Commons link: https://hdl.handle.net/10289/4743
      Abstract
      We examine macronutrient limitation in New Zealand (NZ) lakes where, contrary to the phosphorus (P) only control paradigm, nitrogen (N) control is widely adopted to alleviate eutrophication. A review of published results of nutrient enrichment experiments showed that N more frequently limited lake productivity than P; however, stoichiometric analysis of a sample of 121 NZ lakes indicates that the majority (52.9%) of lakes have a mean ratio of total nitrogen (TN) to total phosphorus (TP) (by mass) indicative of potential P-limitation (>15:1), whereas only 14.0% of lakes have mean TN:TP indicative of potential N-limitation (<7:1). Comparison of TN, TP, and chlorophyll a data between 121 NZ lakes and 689 lakes in 15 European Union (EU) countries suggests that at the national scale, N has a greater role in determining lake productivity in NZ than in the EU. TN:TP is significantly lower in NZ lakes across all trophic states, a difference that is driven primarily by significantly lower in-lake TN concentrations at low trophic states and significantly higher TP concentrations at higher trophic states. The form of the TN:TP relationship differs between NZ and the EU countries, suggesting that lake nutrient sources and/or loss mechanisms differ between the two regions. Dual control of N and P should be the status quo for lacustrine eutrophication control in New Zealand and more effort is needed to reduce P inputs.
      Date
      2010
      Type
      Journal Article
      Publisher
      Springer
      Rights
      This is an author's accepted version of an article published in the journal: Ecosystems. The original publication is available at www.springerlink.com.
      Collections
      • Science and Engineering Papers [3122]
      Show full item record  

      Usage

      Downloads, last 12 months
      204
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement