Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Tools for verifying classical and quantum superintegrability

      Kalnins, Ernie G.; Kress, Jonathan M.; Miller, W., Jr.
      Thumbnail
      Files
      Tools.pdf
      300.8Kb
      DOI
       10.3842/SIGMA.2010.066
      Link
       www.emis.de
      Find in your library  
      Citation
      Export citation
      Kalnins, E.G., Kress, J. & Miller, W. Jr. (2010). Tools for verifying classical and quantum superintegrability. Symmetry, Integrability and Geometry: Methods and Applications, 6, 066.
      Permanent Research Commons link: https://hdl.handle.net/10289/4752
      Abstract
      Recently many new classes of integrable systems in n dimensions occurring in classical and quantum mechanics have been shown to admit a functionally independent set of 2n−1 symmetries polynomial in the canonical momenta, so that they are in fact superintegrable. These newly discovered systems are all separable in some coordinate system and, typically, they depend on one or more parameters in such a way that the system is superintegrable exactly when some of the parameters are rational numbers. Most of the constructions to date are for n=2 but cases where n>2 are multiplying rapidly. In this article we organize a large class of such systems, many new, and emphasize the underlying mechanisms which enable this phenomena to occur and to prove superintegrability. In addition to proofs of classical superintegrability we show that the 2D caged anisotropic oscillator and a Stäckel transformed version on the 2-sheet hyperboloid are quantum superintegrable for all rational relative frequencies, and that a deformed 2D Kepler-Coulomb system is quantum superintegrable for all rational values of a parameter k in the potential.
      Date
      2010
      Type
      Journal Article
      Publisher
      Kiev
      Rights
      This article has been published in the journal: Symmetry, Integrability and Geometry: Methods and Applications. © 2010 the authors.
      Collections
      • Computing and Mathematical Sciences Papers [1455]
      Show full item record  

      Usage

      Downloads, last 12 months
      45
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement