Show simple item record  

dc.contributor.authorBroughan, Kevin A.
dc.contributor.authorZhou, Qizhi
dc.date.accessioned2010-11-09T20:27:13Z
dc.date.available2010-11-09T20:27:13Z
dc.date.issued2010
dc.identifier.citationBroughan, K. A. & Zhou, Q. (2010). Flat primes and thin primes. Bulletin of the Australian Mathematical Society, 82(2), 282-292.en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/4780
dc.description.abstractA number is called upper (lower) flat if its shift by +1 ( −1) is a power of 2 times a squarefree number. If the squarefree number is 1 or a single odd prime then the original number is called upper (lower) thin. Upper flat numbers which are primes arise in the study of multi-perfect numbers. Here we show that the lower or upper flat primes have asymptotic density relative to that of the full set of primes given by twice Artin’s constant, that more than 53% of the primes are both lower and upper flat, and that the series of reciprocals of the lower or the upper thin primes converges.en_NZ
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.publisherCambridge University Pressen_NZ
dc.relation.urihttp://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=7881542en_NZ
dc.rightsThis article was published in the Bulletin of the Australian Mathematical Society. Copyright 2010 Australian Mathematical Publishing Association Inc.
dc.subjectflat primeen_NZ
dc.subjectthin primeen_NZ
dc.subjectsieveen_NZ
dc.titleFlat primes and thin primesen_NZ
dc.typeJournal Articleen_NZ
dc.identifier.doi10.1017/S0004972710000067en_NZ
dc.relation.isPartOfBulletin of the Australian Mathematical Societyen_NZ
pubs.begin-page282en_NZ
pubs.elements-id18841
pubs.end-page292en_NZ
pubs.issue2en_NZ
pubs.volume82en_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record