Show simple item record  

dc.contributor.authorSmith, Benjamin R.
dc.contributor.authorCavenagh, Nicholas J.
dc.date.accessioned2010-11-09T20:45:05Z
dc.date.available2010-11-09T20:45:05Z
dc.date.issued2010
dc.identifier.citationSmith, B.R. & Cavenagh, N.J. (2010). Decomposing complete equipartite graphs into short odd cycles. The Electronic Journal of Combinatorics, 17(1), #R130.en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/4781
dc.description.abstractIn this paper we examine the problem of decomposing the lexicographic product of a cycle with an empty graph into cycles of uniform length. We determine necessary and sufficient conditions for a solution to this problem when the cycles are of odd length. We apply this result to find necessary and sufficient conditions to decompose a complete equipartite graph into cycles of uniform length, in the case that the length is both odd and short relative to the number of parts.en_NZ
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.relation.urihttp://www.combinatorics.org/en_NZ
dc.rightsFirst published in The Electronic Journal of Combinatorics in Volume 17 number 1, 2010, published by the American Mathematical Society.en_NZ
dc.subjectmathematicsen_NZ
dc.titleDecomposing complete equipartite graphs into short odd cyclesen_NZ
dc.typeJournal Articleen_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record