Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Three dimensional extension of Bresenham’s algorithm with Voronoi diagram

      Au, Chi Kit; Woo, Tony
      Thumbnail
      Files
      Three dimensional.pdf
      472.4Kb
      DOI
       10.1016/j.cad.2010.11.006
      Find in your library  
      Citation
      Export citation
      Au, C.K. & Woo, T. (2010). Three dimensional extension of Bresenham’s algorithm with Voronoi diagram. Computer-Aided Design, available online 3 December 2010.
      Permanent Research Commons link: https://hdl.handle.net/10289/4852
      Abstract
      Bresenham’s algorithm for plotting a two-dimensional line segment is elegant and efficient in its deployment of mid-point comparison and integer arithmetic. It is natural to investigate its three-dimensional extensions. In so doing, this paper uncovers the reason for little prior work. The concept of the mid-point in a unit interval generalizes to that of nearest neighbours involving a Voronoi diagram. Algorithmically, there are challenges. While a unit interval in two-dimension becomes a unit square in three-dimension, “squaring” the number of choices in Bresenham’s algorithm is shown to have difficulties. In this paper, the three-dimensional extension is based on the main idea of Bresenham’s algorithm of minimum distance between the line and the grid points. The structure of the Voronoi diagram is presented for grid points to which the line may be approximated. The deployment of integer arithmetic and symmetry for the three-dimensional extension of the algorithm to raise the computation efficiency are also investigated.
      Date
      2010
      Type
      Journal Article
      Publisher
      Elsevier
      Rights
      This is an author’s accepted version of an article published in the journal: Computer-Aided Design. © 2010 Elsevier.
      Collections
      • Science and Engineering Papers [3124]
      Show full item record  

      Usage

      Downloads, last 12 months
      58
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement