Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Human-competitive tagging using automatic keyphrase extraction

      Medelyan, Olena; Frank, Eibe; Witten, Ian H.
      Thumbnail
      Files
      Human-competitive.pdf
      471.7Kb
      Link
       www.aclweb.org
      Citation
      Export citation
      Medelyan, O., Frank, E. & Witten, I.H. (2009). Human-competitive tagging using automatic keyphrase extraction. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing (pp. 1318-1327), Singapore, 6-7 August 2009 (pp. 1318-1327).
      Permanent Research Commons link: https://hdl.handle.net/10289/4886
      Abstract
      This paper connects two research areas: automatic tagging on the web and statistical keyphrase extraction. First, we analyze the quality of tags in a collaboratively created folksonomy using traditional evaluation techniques. Next, we demonstrate how documents can be tagged automatically with a state-of-the-art keyphrase extraction algorithm, and further improve performance in this new domain using a new algorithm, “Maui”, that utilizes semantic information extracted from Wikipedia. Maui outperforms existing approaches and extracts tags that are competitive with those assigned by the best performing human taggers.
      Date
      2009
      Type
      Conference Contribution
      Publisher
      Association for Computational Linguistics
      Rights
      ACL materials are Copyright (C) 1963-2009 ACL; other materials are copyrighted by their respective copyright holders. All materials here are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License. Permission is granted to make copies for the purposes of teaching and research.
      Collections
      • Computing and Mathematical Sciences Papers [1455]
      Show full item record  

      Usage

      Downloads, last 12 months
      116
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement