Compressed metal powders that remain superhydrophobic after abrasion
Citation
Export citationLarmour, I.A., Saunders, G.C. & Bell, S.E.J. (2010). Compressed metal powders that remain superhydrophobic after abrasion. Applied Materials & Interfaces, 2(10), 2703-2706.
Permanent Research Commons link: https://hdl.handle.net/10289/5073
Abstract
Superhydrophobic “lotus effect” materials are typically not sufficiently robust for most real world applications because their small surface features are both easily damaged and vulnerable to fouling. Here, a method for preparing a new type of superhydrophobic (θ > 162°) composite material by compression of superhydrophobic metal particles is reported. This material, which has no natural analogue, has low-surface-energy microstructures extending throughout its whole volume. Removing its outer layer by abrasion or cutting deep into it does not result in loss of superhydrophobicity because it merely exposes a fresh portion of the underlying superhydrophobic material. The high contact angle is therefore retained even after accidental damage, and vigorous abrasion can be used to restore hydrophobicity after fouling.
Date
2010Type
Publisher
ACS Publications