Show simple item record  

dc.contributor.authorChen, Wenyu
dc.contributor.authorYu, Rongdong
dc.contributor.authorZheng, Jianmin
dc.contributor.authorCai, Yiyu
dc.contributor.authorAu, Chi Kit
dc.date.accessioned2011-05-12T23:48:05Z
dc.date.available2011-05-12T23:48:05Z
dc.date.issued2011
dc.identifier.citationChen, W., Yu, R., Zheng, J., Cai, Y. & Au, C.K. (2011). Triangular Bézier sub-surfaces on a triangular Bézier surface. Journal of Computational and Applied Mathematics, available online 4 May 2011.en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/5330
dc.description.abstractThis paper considers the problem of computing the Bézier representation for a triangular sub-patch on a triangular Bézier surface. The triangular sub-patch is defined as a composition of the triangular surface and a domain surface that is also a triangular Bézier patch. Based on de Casteljau recursions and shifting operators, previous methods express the control points of the triangular sub-patch as linear combinations of the construction points that are constructed from the control points of the triangular Bézier surface. The construction points contain too many redundancies. This paper derives a simple explicit formula that computes the composite triangular sub-patch in terms of the blossoming points that correspond to distinct construction points and then an efficient algorithm is presented to calculate the control points of the sub-patch.en_NZ
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.publisherElsevieren_NZ
dc.rightsThis is an author’s accepted version of an article published in the journal: Journal of Computational and Applied Mathematics. © 2011 Elsevier.en_NZ
dc.subjectcompositionen_NZ
dc.subjectsub-patchesen_NZ
dc.subjectBézier representationen_NZ
dc.subjecttriangular surfacesen_NZ
dc.subjectde Casteljau algorithmen_NZ
dc.subjectblossomingen_NZ
dc.titleTriangular Bézier sub-surfaces on a triangular Bézier surfaceen_NZ
dc.typeJournal Articleen_NZ
dc.identifier.doi10.1016/j.cam.2011.04.030en_NZ
dc.relation.isPartOfJournal of Computational and Applied Mathematicsen_NZ
pubs.begin-page5001en_NZ
pubs.elements-id35934
pubs.end-page5016en_NZ
pubs.issue17en_NZ
pubs.volume235en_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record