Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Design study of a thermocouple power sensor as a monolithic fin-line

      Jones, Mark Hedley; Scott, Jonathan B.
      Thumbnail
      Files
      ThermocouplePowerSensorInFinline-JonesScott2011.pdf
      453.2Kb
      DOI
       10.1109/ARFTG77.2011.6034554
      Link
       www.arftg.org
      Find in your library  
      Citation
      Export citation
      Jones, M.H. & Scott, J. (2011). Design study of a thermocouple power sensor as a monolithic fin-line. Paper presented at the 77th ARFTG Microwave Measurement Conference. Baltimore, Maryland; June 10 2011.
      Permanent Research Commons link: https://hdl.handle.net/10289/5442
      Abstract
      Making traceable power measurements above 110 GHz using current measurement technologies is challenging. We investigate a design of power sensor consisting of a thermocouple-based integrated circuit (IC) mounted as a finline component in WR-6 waveguide. The design is original in that it contains an antenna, terminating resistor and thermocouples on-chip. We detail the design and report results from simulations and measurements made on a two-port 16:1 scale model. Our design of scale model provides both insertion and reflection loss measurements. Electromagnetic simulation and easily-calibrated model measurements confirm that the short antenna fins feasible on a monolithic microwave integrated circuit (MMIC) can achieve acceptable specifications. The design proves to be relatively insensitive to the value of the terminating resistance or the size of the antenna fins.
      Date
      2011
      Type
      Conference Contribution
      Rights
      © 2011 The authors.
      Collections
      • Science and Engineering Papers [3019]
      Show full item record  

      Usage

      Downloads, last 12 months
      72
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement