Show simple item record  

dc.contributor.authorKnox, Matthew Andrew
dc.contributor.authorHogg, Ian D.
dc.contributor.authorPilditch, Conrad A.
dc.date.accessioned2011-07-26T22:09:04Z
dc.date.available2011-07-26T22:09:04Z
dc.date.issued2011
dc.identifier.citationKnox, M.A., Hogg, I.D. & Pilditch, C.A. (2011). The role of vicariance and dispersal on New Zealand's estuarine biodiversity: the case of Paracorophium (Crustacea: Amphipoda). Biological Journal of the Linnean Society, 103(4), 863-874.en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/5515
dc.description.abstractTo investigate the role of vicariance and dispersal on New Zealand's estuarine biodiversity, we examined variability in mitochondrial cytochrome c oxidase subunit I (COI) gene sequences for the amphipod genus Paracorophium. Individuals from the two nominate endemic species (Paracorophium excavatum and Paracorophium lucasi) were collected from sites throughout the North and South Islands. Sequence divergences of 12.8% were detected among the species. However, divergences of up to 11.7% were also observed between well supported clades, suggesting the possibility of cryptic species. Nested clade analyses identified four distinct lineages from within both P. excavatum and P. lucasi, with boundaries between clades corresponding to topographical features (e.g. Cook Straight, North and East Cape). Sequence divergences of 3.7–4.9% were also observed within geographic regions (e.g. east and west coasts of the upper North Island). Genetic structure in Paracorophium appears to represent prolonged isolation and allopatric evolutionary processes dating back to the Upper Miocene and continuing through the Pliocene and early Pleistocene. On the basis of molecular clock estimates from sequence divergences and reconstructions of New Zealand's geological past, we suggest that sea level and landmass changes during the early Pleistocene (2 Mya) resulted in the isolation of previously contiguous populations leading to the present-day patterns. COI genetic structure was largely congruent with previously observed allozyme patterns and highlights the utility of COI as an appropriate marker for phylogeographic studies of the New Zealand estuarine fauna.en_NZ
dc.language.isoen
dc.publisherWileyen_NZ
dc.relation.urihttp://onlinelibrary.wiley.com/doi/10.1111/j.1095-8312.2011.01675.x/abstracten_NZ
dc.subjectallopatric isolationen_NZ
dc.subjectArthropodaen_NZ
dc.subjectbiodiversityen_NZ
dc.subjectcrypticen_NZ
dc.subjectdispersalen_NZ
dc.subjectPleistoceneen_NZ
dc.subjectvicarianceen_NZ
dc.titleThe role of vicariance and dispersal on New Zealand's estuarine biodiversity: the case of Paracorophium (Crustacea: Amphipoda)en_NZ
dc.typeJournal Articleen_NZ
dc.identifier.doi10.1111/j.1095-8312.2011.01675.xen_NZ
dc.relation.isPartOfBiological Journal of the Linnean Societyen_NZ
pubs.begin-page863en_NZ
pubs.elements-id36096
pubs.end-page874en_NZ
pubs.issue4en_NZ
pubs.volume103en_NZ


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record