Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Acigöl rhyolite field, central Anatolia (part II): geochemical and isotopic (Sr–Nd–Pb, δ¹⁸O) constraints on volcanism involving two high-silica rhyolite suites

      Siebel, Wolfgang; Schmitt, Axel K.; Kiemele, Elena; Danišík, Martin; Aydin, Faruk
      DOI
       10.1007/s00410-011-0651-2
      Link
       www.springerlink.com
      Find in your library  
      Citation
      Export citation
      Siebel, W., Schmitt, A.K., Kiemele, E., Danišík, M. & Aydin, F. (2011). Acigöl rhyolite field, central Anatolia (part II): geochemical and isotopic (Sr–Nd–Pb, δ¹⁸O) constraints on volcanism involving two high-silica rhyolite suites. Contributions to Mineralogy and Petrology, available online on 07 June 2011.
      Permanent Research Commons link: https://hdl.handle.net/10289/5566
      Abstract
      The Acigöl rhyolite field erupted the most recent high-silica rhyolites within the Cappadocian Volcanic Province of central Anatolia, Turkey. It comprises two sequences of domes and pyroclastic rocks with eruption ages of ∼150–200 ka (eastern group) and ∼20–25 ka (western group). Compositionally, the eastern rhyolite group lavas are less evolved (SiO₂ = 74–76 wt%), whereas the western group has higher silica abundance (SiO₂ = ∼77 wt%) with extremely depleted feldspar-compatible trace elements. Within each group, compositional variability is small and ¹⁴³Nd/¹⁴⁴Nd (0.51257–0.51265) and Pb isotope compositions (²⁰⁶Pb/²⁰⁴Pb = 18.87–18.88, ²⁰⁷Pb/²⁰⁴Pb = 15.65–15.67 and ²⁰⁸Pb/²⁰⁴Pb = 38.94–38.98) are homogeneous. The western group rhyolites have δ¹⁸O(zircon) overlapping mantle values (5.7 ± 0.2%), whereas eastern group rhyolites are enriched in d18O by ∼ 0.5%, consistent with a tendency to lower εNd values. By contrast, western group rhyolites have markedly more radiogenic ⁸⁷Sr/⁸⁶Sr ratios (0.7065–0.7091) compared to those of the eastern group (0.7059–0.7065). The presence of angular granitic xenoliths and a correlation between hydration (based on loss on ignition data) and ⁸⁷Sr/⁸⁶Sr in the western lavas, however, indicates that Sr was added during the eruption or posteruption alteration. Isotope constraints preclude the possibility that the rhyolite magmas formed by partial melting of any known regional crystalline basement rocks. Basalts and andesites erupted in the periphery of the Acigöl field are characterised by ⁸⁷Sr/⁸⁶Sr ratios between 0.7040 and 0.7053, ¹⁴³Nd/¹⁴⁴Nd = 0.51259–0.51300, ²⁰⁶Pb/²⁰⁴Pb = 18.85– 18.87, ²⁰⁷Pb/²⁰⁴Pb = 15.646–15.655, ²⁰⁸Pb/²⁰⁴Pb =38.90–38.97. The isotopic and trace element data favour an origin of the rhyolites by mixing of basaltic/andesitic magmas with minor amounts of crustal melts and followed by extensive fractional crystallization.
      Date
      2011
      Type
      Journal Article
      Publisher
      Springer
      Collections
      • Science and Engineering Papers [3124]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement