Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      The use of video imagery to analyse groundwater and shoreline dynamics on a dissipative beach

      Huisman, Christien E.; Bryan, Karin R.; Coco, Giovanni; Ruessink, B.G.
      Thumbnail
      Files
      The use of video imagery.pdf
      851.6Kb
      DOI
       10.1016/j.csr.2011.07.013
      Link
       www.sciencedirect.com
      Find in your library  
      Citation
      Export citation
      Huisman, C.E., Bryan, K.R., Coco, G. & Ruessink, B.G. (2011). The use of video imagery to analyse groundwater and shoreline dynamics on a dissipative beach. Continental Shelf Research, available online 3 August 2011.
      Permanent Research Commons link: https://hdl.handle.net/10289/5654
      Abstract
      Groundwater seepage is known to influence beach erosion and accretion processes. However, field measurements of the variation of the groundwater seepage line (GWSL) and the vertical elevation difference between the GWSL and the shoreline are limited. We developed a methodology to extract the temporal variability of the shoreline and the wet-dry boundary using video imagery, with the overarching aim to examine elevation differences between the wet-dry boundary and the shoreline position in relation to rainfall and wave characteristics, during a tidal cycle. The wet-dry boundary was detected from 10-minute time-averaged images collected at Ngaranui Beach, Raglan, New Zealand. An algorithm discriminated between the dry and wet cells using a threshold related to the maximum of the red, green and blue intensities in Hue-Saturation-Value. Field measurements showed this corresponded to the location where the watertable was within 2 cm of the beachface surface. Timestacks, time series of pixels extracted from cross-shore transects in the video imagery, were used to determine the location of the shoreline by manually digitizing the maximum run-up and minimum run-down location for each swash cycle, and averaging the result. In our test data set of 14 days covering a range of wave and rainfall conditions, we found 6 days when the elevation difference between the wet-dry boundary and the shoreline remained approximately constant during the tidal cycle. For these days, the wet-dry boundary corresponded to the upper limit of the swash zone. On the other 8 days, the wet-dry boundary and the shoreline decoupled with falling tide, leading to elevation differences of up to 2.5 m at low tide. Elevation differences between the GWSL and the shoreline at low-tide were particularly large when the cumulative rainfall in the preceding month was greater than 200 mm. This research shows that the wet-dry boundary (such as often used in video shoreline-finding algorithms) is related to groundwater seepage on low-sloped, medium to fine sand beaches such as Ngaranui Beach (mean grain size~0.27 mm, beach slope ~1:70) and may not be a good indicator of the position of the shoreline.
      Date
      2011
      Type
      Journal Article
      Publisher
      Elsevier
      Rights
      This is an author’s accepted version of an article published in the journal: Continental Shelf Research. © 2011 Elsevier. Used with permission.
      Collections
      • Science and Engineering Papers [3124]
      Show full item record  

      Usage

      Downloads, last 12 months
      73
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement