Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Moisture sorption and plasticization of bloodmeal-based thermoplastics

      Verbeek, Casparus Johan R.; Koppel, Nicolas J.
      DOI
       10.1007/s10853-011-5770-7
      Link
       www.springerlink.com
      Find in your library  
      Citation
      Export citation
      Verbeek, C.J.R. & Koppel, N.J. (2011). Moisture sorption and plasticization of bloodmeal-based thermoplastics. Journal of Materials Science, published online 20 July 2011.
      Permanent Research Commons link: https://hdl.handle.net/10289/5723
      Abstract
      Sorption characteristics, thermo-mechanical and mechanical properties of bloodmeal-based thermoplastics have been investigated between water activities (aw) of 0.2 and 0.8, using water and tri-ethylene glycol (TEG) as plasticizers. Three different mass ratios of TEG to water were used, 1:1, 1:2 and 5:6 with a total plasticizer content of 60 parts per hundred parts bloodmeal. It was found that the equilibrium moisture content and mechanical properties were highly dependent on relative humidity suggesting that material properties may vary during use. The BET and Flory–Huggins equations gave the best fit for desorption and adsorption, respectively, but a significant difference was observed between adsorption and desorption behaviour below a water activity of 0.6, which was thought to be due to changes in intermolecular interactions. The monolayer adsorption capacity (0.05 g/g) was unaffected by the TEG content, using the BET sorption isotherm. The water activity required to form a monolayer (awl) was also independent of the amount of TEG, but was different for adsorption and desorption (about 0.5 and 0.2, respectively). Increasing TEG did not have a strong influence on the equilibrium moisture content, especially at low water activity. Dynamic mechanical analysis revealed that the glass transition temperature decreased almost linearly with increasing water activity, ranging between 3 and 85 ℃, however, above a water activity of 0.6 a second transition was observed, most likely due to phase separation. Depending of TEG content, tensile strength increased from about 10 to 15 MPa at a water activity of 0.4, where after a drastic decrease was observed. A similar trend was observed for elongation at break. At low water activity (below 0.4) elongation was less than 3%, increasing between 30 and 50% at higher water activities. It was concluded that 10–15 wt% represented a critical point above which mechanical properties becomes very sensitive to the relative humidity of the environment.
      Date
      2011
      Type
      Journal Article
      Publisher
      Springer
      Collections
      • Science and Engineering Papers [3124]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement