Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Evolutionary data selection for enhancing models of intraday forex time series

      Mayo, Michael
      Thumbnail
      Files
      Mayo evofin12.pdf
      210.3Kb
      DOI
       10.1007/978-3-642-29178-4_19
      Link
       evostar.dei.uc.pt
      Find in your library  
      Citation
      Export citation
      Mayo, M. (2012). Evolutionary data selection for enhancing models of intraday forex time series. In C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp.184--193. Springer, Heidelberg.
      Permanent Research Commons link: https://hdl.handle.net/10289/6048
      Abstract
      The hypothesis in this paper is that a significant amount of intraday market data is either noise or redundant, and that if it is eliminated, then predictive models built using the remaining intraday data will be more accurate. To test this hypothesis, we use an evolutionary method (called Evolutionary Data Selection, EDS) to selectively remove out portions of training data that is to be made available to an intraday market predictor. After performing experiments in which data-selected and non-data-selected versions of the same predictive models are compared, it is shown that EDS is effective and does indeed boost predictor accuracy. It is also shown in the paper that building multiple models using EDS and placing them into an ensemble further increases performance. The datasets for evaluation are large intraday forex time series, specifically series from the EUR/USD, the USD/JPY and the EUR/JPY markets, and predictive models for two primary tasks per market are built: intraday return prediction and intraday volatility prediction.
      Date
      2012
      Type
      Conference Contribution
      Publisher
      Springer
      Rights
      © 2012 The Author
      Collections
      • Computing and Mathematical Sciences Papers [1455]
      Show full item record  

      Usage

      Downloads, last 12 months
      75
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement