Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate

      Carey, Cayelan C.; Ibelings, Bas W.; Hoffmann, Emily P.; Hamilton, David P.; Brookes, Justin D.
      DOI
       10.1016/j.watres.2011.12.016
      Link
       www.sciencedirect.com
      Find in your library  
      Citation
      Export citation
      Carey, C.C., Ibelings, B.W., Hoffmann, E.P., Hamilton, D.P. & Brookes, J.D. (2012). Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Research, 46(5), 1394-1407.
      Permanent Research Commons link: https://hdl.handle.net/10289/6395
      Abstract
      Climate change scenarios predict that rivers, lakes, and reservoirs will experience increased temperatures, more intense and longer periods of thermal stratification, modified hydrology, and altered nutrient loading. These environmental drivers will have substantial effects on freshwater phytoplankton species composition and biomass, potentially favouring cyanobacteria over other phytoplankton. In this Review, we examine how several cyanobacterial eco-physiological traits, specifically, the ability to grow in warmer temperatures; buoyancy; high affinity for, and ability to store, phosphorus; nitrogen-fixation; akinete production; and efficient light harvesting, vary amongst cyanobacteria genera and may enable them to dominate in future climate scenarios. We predict that spatial variation in climate change will interact with physiological variation in cyanobacteria to create differences in the dominant cyanobacterial taxa among regions. Finally, we suggest that physiological traits specific to different cyanobacterial taxa may favour certain taxa over others in different regions, but overall, cyanobacteria as a group are likely to increase in most regions in the future.
      Date
      2012-04
      Type
      Journal Article
      Publisher
      Elsevier
      Collections
      • Science and Engineering Papers [3124]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement