Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Modeling focused acceleration of cosmic-ray particles by stochastic methods

      Armstrong, Craig Keith; Litvinenko, Yuri E.; Craig, Ian J.D.
      DOI
       10.1088/0004-637X/757/2/165
      Find in your library  
      Citation
      Export citation
      Armstrong, C. K., Litvinenko, Y. E., & Craig, I. J. D. (2012). Modeling focused acceleration of cosmic-ray particles by stochastic methods. The Astrophysical Journal, 757(2), Published online.
      Permanent Research Commons link: https://hdl.handle.net/10289/6724
      Abstract
      Schlickeiser & Shalchi suggested that a first-order Fermi mechanism of focused particle acceleration could be important in several astrophysical applications. In order to investigate focused acceleration, we express the Fokker-Planck equation as an equivalent system of stochastic differential equations. We simplify the system for a set of physically motivated parameters, extend the analytical theory, and determine the evolving particle distribution numerically. While our numerical results agree with the focused acceleration rate of Schlickeiser & Shalchi for a weakly anisotropic particle distribution, we establish significant limitations of the analytical approach. Momentum diffusion is found to be more significant than focused acceleration at early times. Most critically, the particle distribution rapidly becomes anisotropic, leading to a much slower momentum gain rate. We discuss the consequences of our results for the role of focused acceleration in astrophysics.
      Date
      2012
      Type
      Journal Article
      Publisher
      Institute of Physics -IOP
      Collections
      • Computing and Mathematical Sciences Papers [1454]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement