Show simple item record  

dc.contributor.advisorKularatna, Nihal
dc.contributor.authorZhang, Xu
dc.date.accessioned2013-01-13T23:15:58Z
dc.date.available2013-01-13T23:15:58Z
dc.date.issued2012
dc.identifier.citationZhang, X. (2012). Development of a Power Factor Corrected High Current Supercapacitor Charger for a Surge Resistant UPS (Thesis, Master of Science (MSc)). University of Waikato, Hamilton, New Zealand. Retrieved from https://hdl.handle.net/10289/7048en
dc.identifier.urihttps://hdl.handle.net/10289/7048
dc.description.abstractThe Uninterrupted Power Supplies (UPSs) provide short term power back up to electrical loads when the mains power fail. Usually UPSs employ battery packs as the energy storage device. However the limitations of battery packs can affect the UPS performance. As an alternative energy storage device, the supercapacitor (SC) technology is well developed over the past 30 years. Due to recent developments, single cell commercial supercapacitors are available up to about 5000 farads. Over the past 10 years, supercapacitor direct current (DC) voltage ratings have gradually increased to about 2.7 V/cell. New lithium based supercapacitor families have DC ratings up to 3.5 V/cell. For the high current applications, the supercapacitors have some advantages over batteries, which are the low effective series resistance (ESR), high power densities and high surge withstand capability. This thesis is a continuation of the work begun by Kozhiparambil, P. K. on Surge Resistant Uninterrupted Power Supply (SRUPS). The reason for this continual research is due to identify weaknesses in original of SRUPS work with regard to the design of the charger. To reduce the components contain, also achieve common mode transient rejection capability, a flayback mode high current charger with power factor correction has been developed for charging the SC banks. The prototype circuit includes multiple SC banks to transfer the energy from the 240 V, 50 Hz power line to the load maintaining high isolation level. The loads receive continuous and surge free power from the SC banks, and has electrical isolation from the main power line. An IGBT is used as a switch for the flyback charger, which has the advantage of high current capability. The experimental results show the design was valid for the SRUPS and it demonstrated the capability to transfer the energy through a flyback charger with power factor correction.
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.publisherUniversity of Waikato
dc.rightsAll items in Research Commons are provided for private study and research purposes and are protected by copyright with all rights reserved unless otherwise indicated.
dc.subjectHigh Current Charger Development
dc.subjectSupercapacitors
dc.titleDevelopment of a Power Factor Corrected High Current Supercapacitor Charger for a Surge Resistant UPSen
dc.typeThesis
thesis.degree.grantorUniversity of Waikato
thesis.degree.levelMasters
thesis.degree.nameMaster of Science (MSc)
dc.date.updated2012-08-08T23:09:54Z
pubs.place-of-publicationHamilton, New Zealanden_NZ


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record