Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Coronal heating by magnetohydrodynamic turbulence driven by reflected low-frequency waves

      Matthaeus, William H.; Zank, Gary P.; Oughton, Sean; Mullan, D. J.; Dmitruk, Pablo
      Thumbnail
      Files
      Coronal heating by magnetohydrodynamic.pdf
      82.60Kb
      DOI
       10.1086/312259
      Find in your library  
      Citation
      Export citation
      Matthaeus, W. H., Zank, G. P., Oughton, S., Mullan, D. J., & Dmitruk, P. (1999). Coronal heating by magnetohydrodynamic turbulence driven by reflected low-frequency waves. The Astrophysical Journal, 523(1), L93-L96.
      Permanent Research Commons link: https://hdl.handle.net/10289/8610
      Abstract
      A candidate mechanism for the heating of the solar corona in open field line regions is described. The interaction of Alfvén waves, generated in the photosphere or chromosphere, with their reflections and the subsequent driving of quasi-two-dimensional MHD turbulence is considered. A nonlinear cascade drives fluctuations toward short wavelengths which are transverse to the mean field, thereby heating at rates insensitive to restrictive Alfvén timescales. A phenomenology is presented, providing estimates of achievable heating efficiency that are most favorable.
      Date
      1999
      Type
      Journal Article
      Publisher
      IOP PUBLISHING LTD
      Rights
      ©1999 the American Astronomical Society
      Collections
      • Computing and Mathematical Sciences Papers [1455]
      Show full item record  

      Usage

      Downloads, last 12 months
      89
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement