Show simple item record  

dc.contributor.authorJung, Yoonsuh
dc.contributor.authorHuang, Jianhua
dc.contributor.authorHu, Jianhua
dc.date.accessioned2014-12-04T22:19:32Z
dc.date.available2014-06-12
dc.date.available2014-12-04T22:19:32Z
dc.date.issued2014-06-12
dc.identifier.citationJung, Y., Huang, J., & Hu, J. (2014). Biomarker Detection in Association Studies: Modeling SNPs Simultaneously via Logistic ANOVA. Journal of the American Statistical Association, 109(508), 1355–1367. http://doi.org/10.1080/01621459.2014.928217en
dc.identifier.issn1537-274X
dc.identifier.urihttps://hdl.handle.net/10289/8899
dc.description.abstractIn genome-wide association studies, the primary task is to detect biomarkers in the form of Single Nucleotide Polymorphisms (SNPs) that have nontrivial associations with a disease phenotype and some other important clinical/environmental factors. However, the extremely large number of SNPs comparing to the sample size inhibits application of classical methods such as the multiple logistic regression. Currently the most commonly used approach is still to analyze one SNP at a time. In this pa- per, we propose to consider the genotypes of the SNPs simultaneously via a logistic analysis of variance (ANOVA) model, which expresses the logit transformed mean of SNP genotypes as the summation of the SNP effects, effects of the disease phenotype and/or other clinical variables, and the interaction effects. We use a reduced-rank representation of the interaction-effect matrix for dimensionality reduction, and employ the L1-penalty in a penalized likelihood framework to filter out the SNPs that have no associations. We develop a Majorization-Minimization algorithm for computational implementation. In addition, we propose a modified BIC criterion to select the penalty parameters and determine the rank number. The proposed method is applied to a Multiple Sclerosis data set and simulated data sets and shows promise in biomarker detection.en_NZ
dc.format.mimetypeapplication/pdf
dc.language.isoenen_NZ
dc.publisherTaylor & Francisen_NZ
dc.rightsThis is an author’s accepted version of an article published in the journal: Journal of the American Statistical Association. © 2014 Taylor & Francis.en_NZ
dc.subjectBICen_NZ
dc.subjectGWASen_NZ
dc.subjectMM Algorithmen_NZ
dc.subjectL1-penaltyen_NZ
dc.subjectPenalized Bernoulli Likelihooden_NZ
dc.subjectSimultaneous Modeling of SNPsen_NZ
dc.titleBiomarker Detection in Association Studies: Modeling SNPs Simultaneously via Logistic ANOVAen_NZ
dc.typeJournal Articleen_NZ
dc.identifier.doi10.1080/01621459.2014.928217en_NZ
dc.relation.isPartOfJournal of the American Statistical Association
pubs.begin-page1355
pubs.elements-id117000
pubs.end-page1367
pubs.issue508
pubs.volume109


Files in this item

This item appears in the following Collection(s)

Show simple item record