Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Light attenuation characteristics of glacially-fed lakes

      Rose, Kevin; Hamilton, David P.; Williamson, CE; McBride, Chris G.; Fischer, JM; Olson, MH; Saros, JE; Allan, Mathew Grant; Cabrol, N
      Thumbnail
      Files
      2014 rose hamilton williamson mcbride fischer olson saros allan cabrol Journal of Geophysical Research.pdf
      Published version, 700.9Kb
      DOI
       10.1002/2014JG002674
      Find in your library  
      Citation
      Export citation
      Rose, K., Hamilton, D. P., Williamson, C., McBride, C. G., Fischer, J., Olson, M., … Cabrol, N. (2014). Light attenuation characteristics of glacially-fed lakes. Journal of Geophysical Research: Biogeosciences, 119(7), 1446–1457. http://doi.org/10.1002/2014JG002674
      Permanent Research Commons link: https://hdl.handle.net/10289/8942
      Abstract
      Transparency is a fundamental characteristic of aquatic ecosystems and is highly responsive to changes in climate and land use. The transparency of glacially-fed lakes may be a particularly sensitive sentinel characteristic of these changes. However, little is known about the relative contributions of glacial flour versus other factors affecting light attenuation in these lakes. We sampled 18 glacially-fed lakes in Chile, New Zealand, and the U.S. and Canadian Rocky Mountains to characterize how dissolved absorption, algal biomass (approximated by chlorophyll a), water, and glacial flour contributed to attenuation of ultraviolet radiation (UVR) and photosynthetically active radiation (PAR, 400–700 nm). Variation in attenuation across lakes was related to turbidity, which we used as a proxy for the concentration of glacial flour. Turbidity-specific diffuse attenuation coefficients increased with decreasing wavelength and distance from glaciers. Regional differences in turbidity-specific diffuse attenuation coefficients were observed in short UVR wavelengths (305 and 320 nm) but not at longer UVR wavelengths (380 nm) or PAR. Dissolved absorption coefficients, which are closely correlated with diffuse attenuation coefficients in most non-glacially-fed lakes, represented only about one quarter of diffuse attenuation coefficients in study lakes here, whereas glacial flour contributed about two thirds across UVR and PAR. Understanding the optical characteristics of substances that regulate light attenuation in glacially-fed lakes will help elucidate the signals that these systems provide of broader environmental changes and forecast the effects of climate change on these aquatic ecosystems.
      Date
      2014
      Type
      Journal Article
      Publisher
      American Geophysical Union
      Rights
      This article is published in the Journal of Geophysical Research: Biogeosciences. © 2014 American Geophysical Union.
      Collections
      • Science and Engineering Papers [3122]
      Show full item record  

      Usage

      Downloads, last 12 months
      85
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement