Show simple item record  

dc.contributor.authorRose, Kevin
dc.contributor.authorHamilton, David P.
dc.contributor.authorWilliamson, CE
dc.contributor.authorMcBride, Chris G.
dc.contributor.authorFischer, JM
dc.contributor.authorOlson, MH
dc.contributor.authorSaros, JE
dc.contributor.authorAllan, Mathew Grant
dc.contributor.authorCabrol, N
dc.date.accessioned2014-12-10T01:20:04Z
dc.date.available2014-07
dc.date.available2014-12-10T01:20:04Z
dc.date.issued2014
dc.identifier.citationRose, K., Hamilton, D. P., Williamson, C., McBride, C. G., Fischer, J., Olson, M., … Cabrol, N. (2014). Light attenuation characteristics of glacially-fed lakes. Journal of Geophysical Research: Biogeosciences, 119(7), 1446–1457. http://doi.org/10.1002/2014JG002674en
dc.identifier.issn2169-8953
dc.identifier.urihttps://hdl.handle.net/10289/8942
dc.description.abstractTransparency is a fundamental characteristic of aquatic ecosystems and is highly responsive to changes in climate and land use. The transparency of glacially-fed lakes may be a particularly sensitive sentinel characteristic of these changes. However, little is known about the relative contributions of glacial flour versus other factors affecting light attenuation in these lakes. We sampled 18 glacially-fed lakes in Chile, New Zealand, and the U.S. and Canadian Rocky Mountains to characterize how dissolved absorption, algal biomass (approximated by chlorophyll a), water, and glacial flour contributed to attenuation of ultraviolet radiation (UVR) and photosynthetically active radiation (PAR, 400–700 nm). Variation in attenuation across lakes was related to turbidity, which we used as a proxy for the concentration of glacial flour. Turbidity-specific diffuse attenuation coefficients increased with decreasing wavelength and distance from glaciers. Regional differences in turbidity-specific diffuse attenuation coefficients were observed in short UVR wavelengths (305 and 320 nm) but not at longer UVR wavelengths (380 nm) or PAR. Dissolved absorption coefficients, which are closely correlated with diffuse attenuation coefficients in most non-glacially-fed lakes, represented only about one quarter of diffuse attenuation coefficients in study lakes here, whereas glacial flour contributed about two thirds across UVR and PAR. Understanding the optical characteristics of substances that regulate light attenuation in glacially-fed lakes will help elucidate the signals that these systems provide of broader environmental changes and forecast the effects of climate change on these aquatic ecosystems.
dc.format.mimetypeapplication/pdf
dc.languageaa
dc.language.isoen
dc.publisherAmerican Geophysical Union
dc.rightsThis article is published in the Journal of Geophysical Research: Biogeosciences. © 2014 American Geophysical Union.
dc.titleLight attenuation characteristics of glacially-fed lakes
dc.typeJournal Article
dc.identifier.doi10.1002/2014JG002674
dc.relation.isPartOfJournal of Geophysical Research: Biogeosciences
pubs.begin-page1446
pubs.elements-id84682
pubs.end-page1457
pubs.issue7
pubs.volume119


Files in this item

This item appears in the following Collection(s)

Show simple item record