Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Structural analysis of the GH43 enzyme Xsa43E from Butyrivibrio proteoclasticus

      Till, Marisa; Goldstone, D.; Card, G.; Attwood, Graeme T.; Moon, Christina D.; Arcus, Vickery L.
      Thumbnail
      Files
      2014 till goldstone card attwood moon arcus Acta Crystallographica Section F.pdf
      Published version, 556.5Kb
      DOI
       10.1107/S2053230X14014745
      Find in your library  
      Citation
      Export citation
      Till, M., Goldstone, D., Card, G., Attwood, G. T., Moon, C. D., & Arcus, V. L. (2014). Structural analysis of the GH43 enzyme Xsa43E from Butyrivibrio proteoclasticus. Acta Crystallographica Section F: Structural Biology Communications, 70(9), 1193–1198. http://doi.org/10.1107/S2053230X14014745
      Permanent Research Commons link: https://hdl.handle.net/10289/8949
      Abstract
      The rumen of dairy cattle can be thought of as a large, stable fermentation vat and as such it houses a large and diverse community of microorganisms. The bacterium Butyrivibrio proteoclasticus is a representative of a significant component of this microbial community. It is a xylan-degrading organism whose genome encodes a large number of open reading frames annotated as fibre-degrading enzymes. This suite of enzymes is essential for the organism to utilize the plant material within the rumen as a fuel source, facilitating its survival in this competitive environment. Xsa43E, a GH43 enzyme from B. proteoclasticus, has been structurally and functionally characterized. Here, the structure of selenomethionine-derived Xsa43E determined to 1.3 Å resolution using single-wavelength anomalous diffraction is reported. Xsa43E possesses the characteristic five-bladed β-propeller domain seen in all GH43 enzymes. GH43 enzymes can have a range of functions, and the functional characterization of Xsa43E shows it to be an arabinofuranosidase capable of cleaving arabinose side chains from short segments of xylan. Full functional and structural characterization of xylan-degrading enzymes will aid in creating an enzyme cocktail that can be used to completely degrade plant material into simple sugars. These molecules have a range of applications as starting materials for many industrial processes, including renewable alternatives to fossil fuels.
      Date
      2014-08-29
      Type
      Journal Article
      Publisher
      Wiley-Blackwell
      Rights
      © International Union of Crystallography.
      Collections
      • Science and Engineering Papers [3124]
      Show full item record  

      Usage

      Downloads, last 12 months
      51
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement