Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Subsidence Rates of Drained Agricultural Peatlands in New Zealand and the Relationship with Time since Drainage

      Pronger, Jack.; Schipper, Louis A.; Hill, Reece B.; Campbell, David I.; McLeod, Malcolm
      DOI
       10.2134/jeq2013.12.0505
      Find in your library  
      Citation
      Export citation
      Pronger, J., Schipper, L. A., Hill, R. B., Campbell, D. I., & McLeod, M. (2014). Subsidence Rates of Drained Agricultural Peatlands in New Zealand and the Relationship with Time since Drainage. Journal of Environment Quality, 43(4), 1442–1449. http://doi.org/10.2134/jeq2013.12.0505
      Permanent Research Commons link: https://hdl.handle.net/10289/8970
      Abstract
      The drainage and conversion of peatlands to productive agro-ecosystems leads to ongoing surface subsidence because of densification (shrinkage and consolidation) and oxidation of the peat substrate. Knowing the ra0te of this surface subsidence is important for future land-use planning, carbon accounting, and economic analysis of drainage and pumping costs. We measured subsidence rates over the past decade at 119 sites across three large, agriculturally managed peatlands in the Waikato region, New Zealand. The average contemporary (2000s–2012) subsidence rate for Waikato peatlands was 19 ± 2 mm yr−1 (± SE) and was significantly less (p = 0.01) than the historic rate of 26 ± 1 mm yr−1 between the 1920s and 2000s. A reduction in the rate of subsidence through time was attributed to the transition from rapid initial consolidation and shrinkage to slower, long-term, ongoing oxidation. These subsidence rates agree well with a literature synthesis of temperate zone subsidence rates reported for similar lengths of time since drainage. A strong nonlinear relationship was found between temperate zone subsidence rates and time since initial peatland drainage: Subsidence (mm yr−1) = 226 × (years since drained)−0.59 (R2 = 0.88). This relationship suggests that time since drainage exerts strong control over the rate of peatland subsidence and that ongoing peatland subsidence rates can be predicted to gradually decline with time in the absence of major land disturbance.
      Date
      2014
      Type
      Journal Article
      Publisher
      American Society of Agronomy, Crop Science Society of America, Soil Science Society of America
      Collections
      • Science and Engineering Papers [3069]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement