Loading...
Thumbnail Image
Item

Current singularities at Quasi-separatrix layers and three-dimensional magnetic nulls

Abstract
The open problem of how singular current structures form in line-tied, three-dimensional magnetic fields is addressed. A Lagrangian magneto-frictional relaxation method is employed to model the field evolution toward the final near-singular state. Our starting point is an exact force-free solution of the governing magnetohydrodynamic equations that is sufficiently general to allow for topological features like magnetic nulls to be inside or outside the computational domain, depending on a simple set of parameters. Quasi-separatrix layers (QSLs) are present in these structures and, together with the magnetic nulls, they significantly influence the accumulation of current. It is shown that perturbations affecting the lateral boundaries of the configuration lead not only to collapse around the magnetic null but also to significant QSL currents. Our results show that once a magnetic null is present, the developing currents are always attracted to that specific location and show a much stronger scaling with resolution than the currents that form along the QSL. In particular, the null-point scalings can be consistent with models of "fast" reconnection. The QSL currents also appear to be unbounded but give rise to weaker singularities, independent of the perturbation amplitude.
Type
Journal Article
Type of thesis
Series
Citation
Craig, I. J. D., & Effenberger, F. (2014). Current singularities at Quasi-separatrix layers and three-dimensional magnetic nulls. Astrophysical Journal, 795(2). http://doi.org/10.1088/0004-637X/795/2/129
Date
2014-11-10
Publisher
IOP PUBLISHING LTD
Degree
Supervisors
Rights
© 2014 The American Astronomical Society.