Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Microbial community composition of transiently wetted Antarctic Dry Valley soils

      Niederberger, Thomas D.; Sohm, Jill A.; Gunderson, Troy E.; Parker, Alexander E.; Tirindelli, Joëlle; Capone, Douglas G.; Carpenter, Edward J.; Cary, S. Craig
      Thumbnail
      Files
      Microbial community composition of transiently wetted Antarctic Dry Valley soils..pdf
      Published version, 1.520Mb
      DOI
       10.3389/fmicb.2015.00009
      Find in your library  
      Citation
      Export citation
      Niederberger, T. D., Sohm, J. A., Gunderson, T. E., Parker, A. E., Tirindelli, J., Capone, D. G., … Cary, S. C. (2015). Microbial community composition of transiently wetted Antarctic Dry Valley soils. Frontiers in Microbiology, 6, article no. 9. http://doi.org/10.3389/fmicb.2015.00009
      Permanent Research Commons link: https://hdl.handle.net/10289/9342
      Abstract
      During the summer months, wet (hyporheic) soils associated with ephemeral streams and lake edges in the Antarctic Dry Valleys (DVs) become hotspots of biological activity and are hypothesized to be an important source of carbon and nitrogen for arid DV soils. Recent research in the DV has focused on the geochemistry and microbial ecology of lakes and arid soils, with substantially less information being available on hyporheic soils. Here, we determined the unique properties of hyporheic microbial communities, resolved their relationship to environmental parameters and compared them to archetypal arid DV soils. Generally, pH increased and chlorophyll a concentrations decreased along transects from wet to arid soils (9.0 to ~7.0 for pH and ~0.8 to ~5 μg/cm3 for chlorophyll a, respectively). Soil water content decreased to below ~3% in the arid soils. Community fingerprinting-based principle component analyses revealed that bacterial communities formed distinct clusters specific to arid and wet soils; however, eukaryotic communities that clustered together did not have similar soil moisture content nor did they group together based on sampling location. Collectively, rRNA pyrosequencing indicated a considerably higher abundance of Cyanobacteria in wet soils and a higher abundance of Acidobacterial, Actinobacterial, Deinococcus/Thermus, Bacteroidetes, Firmicutes, Gemmatimonadetes, Nitrospira, and Planctomycetes in arid soils. The two most significant differences at the genus level were Gillisia signatures present in arid soils and chloroplast signatures related to Streptophyta that were common in wet soils. Fungal dominance was observed in arid soils and Viridiplantae were more common in wet soils. This research represents an in-depth characterization of microbial communities inhabiting wet DV soils. Results indicate that the repeated wetting of hyporheic zones has a profound impact on the bacterial and eukaryotic communities inhabiting in these areas.
      Date
      2015-01-28
      Type
      Journal Article
      Publisher
      FRONTIERS RESEARCH FOUNDATION
      Rights
      ©2015 the authors.This is an open-access article distributed under Creative Commons Attribution License(CCBY).
      Collections
      • Science and Engineering Papers [3122]
      Show full item record  

      Usage

      Downloads, last 12 months
      58
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement