Thumbnail Image

On the solution of the continuity equation for precipitating electrons in solar flares

Electrons accelerated in solar flares are injected into the surrounding plasma, where they are subjected to the influence of collisional (Coulomb) energy losses. Their evolution is modeled by a partial differential equation describing continuity of electron number. In a recent paper, Dobranskis & Zharkova claim to have found an "updated exact analytical solution" to this continuity equation. Their solution contains an additional term that drives an exponential decrease in electron density with depth, leading them to assert that the well-known solution derived by Brown, Syrovatskii & Shmeleva, and many others is invalid. We show that the solution of Dobranskis & Zharkova results from a fundamental error in the application of the method of characteristics and is hence incorrect. Further, their comparison of the "new" analytical solution with numerical solutions of the Fokker-Planck equation fails to lend support to their result. We conclude that Dobranskis & Zharkova's solution of the universally accepted and well-established continuity equation is incorrect, and that their criticism of the correct solution is unfounded. We also demonstrate the formal equivalence of the approaches of Syrovatskii & Shmeleva and Brown, with particular reference to the evolution of the electron flux and number density (both differential in energy) in a collisional thick target. We strongly urge use of these long-established, correct solutions in future works. © 2014. The American Astronomical Society. All rights reserved.
Journal Article
Type of thesis
Emslie, A. G., Holman, G. D., & Litvinenko, Y. E. (2014). On the solution of the continuity equation for precipitating electrons in solar flares. Astrophysical Journal, 792(1):5. http://doi.org/10.1088/0004-637X/792/1/5
Institute of Physics Publishing
This article is published in Astrophysical Journal. © 2014 The American Astronomical Society.