Loading...
Thumbnail Image
Item

A Decision tree-based attribute weighting filter for naive Bayes

Abstract
The naive Bayes classifier continues to be a popular learning algorithm for data mining applications due to its simplicity and linear run-time. Many enhancements to the basic algorithm have been proposed to help mitigate its primary weakness--the assumption that attributes are independent given the class. All of them improve the performance of naïve Bayes at the expense (to a greater or lesser degree) of execution time and/or simplicity of the final model. In this paper we present a simple filter method for setting attribute weights for use with naive Bayes. Experimental results show that naive Bayes with attribute weights rarely degrades the quality of the model compared to standard naive Bayes and, in many cases, improves it dramatically. The main advantages of this method compared to other approaches for improving naive Bayes is its run-time complexity and the fact that it maintains the simplicity of the final model.
Type
Working Paper
Type of thesis
Series
Citation
Hall, M. (2006). A Decision tree-based attribute weighting filter for naive Bayes. (Working paper series. University of Waikato, Department of Computer Science. No. 05/2006). Hamilton, New Zealand: University of Waikato.
Date
2006-05-01
Publisher
Degree
Supervisors
Rights