Loading...
Thumbnail Image
Item

Locally weighted naive Bayes

Abstract
Despite its simplicity, the naive Bayes classifier has surprised machine learning researchers by exhibiting good performance on a variety of learning problems. Encouraged by these results, researchers have looked to overcome naive Bayes' primary weakness—attribute independence—and improve the performance of the algorithm. This paper presents a locally weighted version of naive Bayes that relaxes the independence assumption by learning local models at prediction time. Experimental results show that locally weighted naive Bayes rarely degrades accuracy compared to standard naive Bayes and, in many cases, improves accuracy dramatically. The main advantage of this method compared to other techniques for enhancing naive Bayes is its conceptual and computational simplicity.
Type
Working Paper
Type of thesis
Series
Computer Science Working Papers
Citation
Frank, E., Hall, M. & Pfahringer, B. (2003). Locally weighted naive Bayes. (Working paper 04/03). Hamilton, New Zealand: University of Waikato, Department of Computer Science.
Date
2003-04
Publisher
University of Waikato, Department of Computer Science
Degree
Supervisors
Rights