Loading...

Second-order superintegrable systems in conformally flat spaces. I. Two-dimensional classical structure theory

Second-order superintegrable systems in conformally flat spaces. I. Two-dimensional classical structure theory

##### Abstract

This paper is the first in a series that lays the groundwork for a structure and classification theory of second-order superintegrable systems, both classical and quantum, in conformally flat spaces. Many examples of such systems are known, and lists of possible systems have been determined for constant curvature spaces in two and three dimensions, as well as few other spaces. Observed features of these systems are multiseparability, closure of the quadratic algebra of second-order symmetries at order 6, use of representation theory of the quadratic algebra to derive spectral properties of the quantum SchrÃ¶dinger operator, and a close relationship with exactly solvable and quasi-exactly solvable systems. Our approach is, rather than focus on particular spaces and systems, to use a general theoretical method based on integrability conditions to derive structure common to all systems. In this first paper we consider classical superintegrable systems on a general two-dimensional Riemannian manifold and uncover their common structure. We show that for superintegrable systems with nondegenerate potentials there exists a standard structure based on the algebra of 2Ã—2 symmetric matrices, that such systems are necessarily multiseparable and that the quadratic algebra closes at level 6. Superintegrable systems with degenerate potentials are also analyzed. This is all done without making use of lists of systems, so that generalization to higher dimensions, where relatively few examples are known, is much easier.

##### Type

Journal Article

##### Type of thesis

##### Series

##### Citation

Kalnins, E.G., Kress, J.M. & Miller, W., Jr. (2005). Second-order superintegrable systems in conformally flat spaces. I. Two-dimensional classical structure theory. Journal of Mathematical Physics, 46, 053509.

##### Date

2005-04

##### Publisher

##### Degree

##### Supervisors

##### Rights

Copyright 2005 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in the Journal of Mathematical Physics and may be found at http://jmp.aip.org/jmp/top.jsp