Loading...
Abstract
The aim of this research was to formulate, characterise and assess the feasibility of a novel drug delivery system known as the in situ gelling matrix (ISGM) where a hydrophilic polymer is suspended in a non-aqueous solvent that converts into a gel when injected subcutaneously or intramuscularly thus giving a controlled release matrix for a drug. Although the concept has been patented with claims that this kind of drug delivery is achievable in theory for a wide variety of candidate substances, actual formulation studies for making a commercially viable product for this technology are completely lacking in practice. The research embodied in this thesis addresses this lack. Initial studies involved conducting a biocompatibility study using the HET-CAM (hens egg test - chorioallantoic membrane) test on a range of possible ingredients for the delivery system. The materials deemed biocompatible were then carried through to a screening process where the physical stability of the hydrophilic polymers in non-aqueous solvents was monitored. It was found that the hydrophilic polymers tested sedimented rapidly in the non-aqueous solvents indicating such a system was not physically stable. Consequently, density-inducing or viscosity-inducing agents were added to the non-aqueous solvents to retard the sedimentation rate. The addition of polycarbophil, a viscosity-inducing agent, clearly increased the viscosity of the system. However, undesirable formation of polycarbophil globules occurred during the manufacturing process, which caused batch-to-batch variations in the viscosity of the continuous phase. Various manufacturing methods were tested before arriving at the optimum procedure to prevent globule formation using a high speed dispersion tool. A final physical sedimentation analysis of candidate continuous phases and hydrophilic polymers was conducted for determining the ideal combination of ingredients to use in the system. These investigations finally led to the adoption of an optimum mix of components consisting of 10% (w/w) hydroxypropyl methylcellulose (HPMC) (the hydrophilic polymer) suspended in a continuous phase of propylene glycol (the non-aqueous solvent) containing 0.67% (w/w) polycarbophil (the viscosity inducing agent).
Using this mix of components, the in situ gelling matrix system was then subjected to various characterisation studies including infrared (IR), differential scanning calorimetry (DSC), ultraviolet-visible (UV-Vis) spectrophotometry and redispersion studies. The chemical stability of the hydrophilic polymer and the continuous phase (the non-aqueous solvent and polycarbophil) was monitored and were found to be chemically stable over a 9 month period.
The feasibility of the in situ gelling matrix technology as a controlled release device was assessed using the drug propranolol. In vitro drug release studies were conducted using a custom-built dissolution apparatus. The effect of various parameters such as the concentration of the hydrophilic gelling agent on the drug release rate was investigated. Increasing the concentration of the gelling agent in the formulation resulted in a slower rate of release. The drug release data were modelled using the Higuchi relationship and a power law relationship to compare the effects of the various parameters on the release rate
Stability studies on the drug in the in situ gelling matrix system were carried out by storing samples in accelerated ageing conditions of 40 C / 75% relative humidity for 4 weeks. During this time, the samples were analysed each week by high performance liquid chromatography (HPLC). These demonstrated that no apparent drug degradation had occurred over the 4-week period. This indicates that the drug propranolol in the in situ gelling matrix system is stable under ambient conditions for at least 4 weeks.
The results of this study demonstrated that the in situ gelling matrix technology is potentially viable as a drug delivery system and provide a practical methodology for the commercial development of such systems.
Type
Thesis
Type of thesis
Series
Citation
Babu, K. M. V. (2007). The Development of a Novel Controlled Release Drug Delivery System (Thesis, Doctor of Philosophy (PhD)). The University of Waikato, Hamilton, New Zealand. Retrieved from https://hdl.handle.net/10289/2590
Date
2007
Publisher
The University of Waikato
Supervisors
Rights
All items in Research Commons are provided for private study and research purposes and are protected by copyright with all rights reserved unless otherwise indicated.