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Abstract. Interaction sequences can be used as an abstraction of an
interactive system. We can use such models to consider or verify prop-
erties of a system for testing purposes. However, interaction sequences
have the potential to become unfeasibly long, leading to models which
are intractable. We propose a method of reducing the state space of
such sequences using the self-containment property. This allows us to
hide (and subsequently expand) some of the model describing parts of
the system not currently under consideration. Interaction sequences and
their models can therefore be used to control the state space size of the
models we create as an abstraction of an interactive system.

Keywords: Interaction Sequences · Interactive System Testing · Formal
Methods.

1 Introduction

As part of a sound software engineering development process, interactive systems
should be tested thoroughly to ensure behaviour is as expected. In the process of
developing and maintaining safety-critical interactive systems (systems in which
failure can lead to serious injury or even fatalities [15, 12]) this is particularly
important. Models and model-based testing are useful techniques to employ when
testing interactive systems as they focus on different aspects of the system, the
functionality or the usability, which provides flexibility when designing tests.

In order to model the system behaviour, interaction sequences can be used
as a simple abstraction. An interaction sequence is the series of steps a user
can take to perform a certain task or arbitrarily explore an interactive system.
We can derive these sequences at different points in the development life-cycle,
for example from formal specifications, system prototypes or from implemen-
tations. Interaction sequences can take many different forms depending on the
specific technique being used and the required level of abstraction. In our work
we describe the sequences in terms of system states, widgets of the user interface
(UI), user tasks, or combinations of these. We formalise these sequences using
Presentation Models (PM) (see [4]) and Finite State Automata (FSA).

Regardless of how the sequences are formalised, conceptually we can think of
them as never-ending and they can also be combined in an inexhaustible number
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of ways. This is reflected in the models of sequences as an increased number of
states which can lead to intractably large models — the state explosion problem.
The main contribution of this paper is an approach using abstraction of parts of
a sequence to address this problem. We define the property of self-containment
and use this to abstract parts of the model into an abstract state, consequently
reducing the state space. By abstracting sequences using this property we are
able to hide certain parts of the model, however we can also retrieve this infor-
mation if required by expanding the abstract state without loss of information.
Therefore, we may be able to reduce and expand the state space using the self-
containment property, providing the ability to constrain the size of the model.

2 Background and Related Work

In this research, our focus is on modelling interaction sequences, specifically
task-widget based sequences (we will discuss different types of sequences in more
depth later). Several approaches to modelling interaction sequences in the do-
main of interactive system testing exist. A common theme between different ap-
proaches is how to constrain or limit the models so that they remain tractable.
We discuss the most relevant techniques to our work here.

The use of directed graphs is a popular visualisation for many of the tech-
niques we will discuss here, such as Event Flow Graphs (EFG) [10], FSA (used
here interchangeably with Finite State Machines (FSM)) [18, 8, 19, 13, 7, 16, 1],
and hierarchical Task Models [11, 2, 5]. Directed graphs establish specific paths
through a graph which allow us to traverse specific orderings. They allow us to
view and easily understand how we can generate sequences of varying lengths.

There are different ways in which state explosion in directed graphs can
be managed. One approach is to limit by sequence length, which is utilised by
Nguyen et al. in the creation of their testing tool GUITAR [10]. They utilise
interaction sequences to describe systems using EFGs. All sequences of a given
length (such as two) are then generated and they systematically explore these
sequences. Constraining sequences to a defined length gives control over the
state space size, however, it does also potentially hide behaviours that could be
exposed by longer sequences, or combinations of longer sequences.

Finite state automata, or more specifically Mealy machines, are used to model
systems for testing purposes by making certain assumptions about the System
Under Test (SUT), and modelling the system based on input/output pairs [18].
To address the state explosion problem an extended finite state machine (EFSM)
is used which has variables to store important information. For example, a time-
out counter variable can be used instead of three duplicated timeout states. This
reduces the number of states required to model the SUT and restricts the length
of the sequences. It is possible to have lengthy sequences with no duplication
and using an EFSM does not guarantee constraining models to a tractable size.

Interaction sequences are also used in some testing approaches where well-
known traversal algorithms, or variations of these, are used to explore their mod-
els. This is another approach which focuses on restricting the sequence length
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to those generated by specific traversal algorithms. For example, Salem presents
an approach where an FSA is converted so they can be explored using the UP-
PAAL model checker, this method allows them to avoid direct state-explosion
[13]. In [7] Huang et al. use weight based methods to calculate paths of a spec-
ified length to traverse through the models. Essentially these approaches, and
others like them, allow the traversal algorithm to “trim” the model. For exam-
ple, a weighted strategy only traverses sequences which are more likely to occur
based on probability metrics. This type of strategy only works under certain
conditions for specific types of software (such as GUI-based applications as in
[7]) and further abstraction is often required to reduce the model’s complexity.

The symmetry property is introduced in [8] by Ip and Dill, which can be ap-
plied to directed graphs to simplify them. They argue if a series of states results
in the same output, it does not matter which path is taken, as the result is the
same. This use of symmetry could, “help to reduce even infinitely long graphs”,
and as a consequence reduce the overall sequence length. However, we found
that symmetry is not common in interaction sequences. Complete Interaction
Sequences (CIS) are a way to model the responsibilities (what the system should
allow the user to perform) of an interface rather than the user actions [19]. Using
FSA to model these responsibilities still results in the state explosion problem.
In order to reduce the number of states, strongly connected components, or sym-
metric components, are identified and abstracted into a ‘super’ state. This gives
a significant reduction in the number of sequences, as well as their length. While
these interaction sequences differ from those we present (they consider sequences
at a higher level of abstraction) the identification of specific components as the
basis for abstraction is relevant to our work and has informed our approach.

Another way of constraining interaction sequences is to focus on specific
tasks. This allows us to consider only sequences aimed at satisfying specific
goals (although many different sequences may satisfy the same task). Since the
sequences used are based on tasks and widgets, the extensive literature on task
modelling is relevant. Particularly those based around tools for modelling inter-
active systems such as CTT [11] and HAMSTERS [2]. These task models focus
on the set of steps a user takes to complete a certain task, and in this respect
form the basis for own approach. The main point of difference from the modelling
perspective is that while task models typically view the system relationships at
a higher level and hierarchically decompose tasks into smaller and smaller steps,
we use the task as a mechanism for composing user actions into specific group-
ings, which enables us to limit interaction sequence length (combining the two
methods of length and tasks). We link these task definitions to system actions
specifically via the widget descriptions.

3 Interaction Sequences

We have identified three perspectives which can be used as the basis for interac-
tion sequences, these are state-based; task-based; and widget-based. We can use
these individually, or in combination with each other to build sequences.
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State-based sequences are created by identifying the different states (which
may relate to composite states, windows, dialogs or modes) available in a system
and how the user is able to transition between these states. Task-based sequences
are created by taking a goal (as a task description) the user wishes to achieve, and
then listing the interactions (or set of interactions) it takes to achieve that goal.
Lastly, widget-based sequences are created by identifying the different widgets
that are available in the system and the actions associated with those widgets.

Our larger goal for modelling interaction sequences is to adapt them for
interactive system testing purposes. This leads to the following requirements for
our sequences (we discuss each of these requirements next):

1. We must be able to automatically generate sequences of varying lengths so
that the testing process is faster.

2. We must be able to constrain the sequence length in order to avoid the state
explosion problem.

3. The sequences must allow us to clearly identify why the system did not
behave as expected, for example by producing counter-examples.

3.1 Automatic generation

We can already automatically generate interaction sequences of varying lengths
using the Presentation Models (PM) of the SUT. PMs provide us with an ab-
stract view of the interactive component of an interactive system with widgets de-
scribed as triples of the form: “((WidgetName,WidgetCategory, (Behaviour(s)
)”. To build sequences we begin by modelling the PMs of the SUT, taking into
account the widgets and their related actions, for example “Button1” has the
action “Press”. In order to be able to build these models and their respective
sequences, we must have a thorough understanding of the system. It is expected
in a good engineering design process this knowledge is readily available from task
models, user-centred design artefacts, specifications etc. We make assumptions
about the sequence based on internal values of the system (for example, we may
want to generate a sequence where a counter variable is 10) and generate steps
of the form: “< action >< widget >< number of interactions >”. Once we
have a generated sequence we can then model this as an FSA.

We use FSA to model the sequences due to their simplicity and the advantage
of being able to draw on existing, well-defined, theory (other approaches have
used FSA to model interaction systems see [16, 1, 5] for similar advantages). This
enables us to manipulate FSA using standard techniques, such as removal of non-
determinism or minimisation. We can easily combine multiple FSA by making
use of task ordering knowledge and techniques, such as union or concatenation.

We can generate subsequences of any given sequence by traversing its FSA
via different traversal algorithms. When sequences are adapted for testing this is
a useful characteristic of the sequence models, as it allows us to explore variations
of particular tasks and exploring such variations is more likely to expose errors.
This also mimics users’ behaviour, in that they typically do not always follow a
pre-defined sequence for a particular task if there are several alternatives.
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It is typical in interaction sequences to focus mainly on either direct (see
[3, 17]) or response (see [9, 14]) actions. Direct actions are the literal actions
performed by the user, for example “Press Ok 1”. Response actions are the
actions that the user will perform in response to a change in the system, for
example “Observe Display”. In this work we use both direct and response actions
to create a complete set of actions for our sequences.

3.2 Constraining Sequence Length

The focus of this paper is to address this second requirement, that is to lessen the
state explosion problem by constraining sequence length. When we first began
using interaction sequences for larger and more complex interactive systems
we found that using existing theory, such as removal of non-determinism and
minimisation, was not enough alone to ensure tractability. Using these techniques
resulted in a loss of information in the models, and thus the meaning of the
behaviour of the sequence changed. Therefore, we needed a technique which
would allow us to hide information, or rather abstract it.

Our first attempt to solve this was to focus solely on task-widget based
sequences. Widgets allow us to divide the sequence into steps based on the
interactions with those widgets, this allow us to describe sequences consistently.
The simplest way to constrain a sequence which “never ends” is to limit the
length of that sequence, tasks allow us to do this as every task has a defined
“end point” or “goal”. From experimentation with different types of models and
sequences we found this did not provide a solution. The reason for this being
that it resulted in a loss of information about the interaction sequence and its
behaviour. The use of FSA to model task-widget based sequences reduces the
sequence length further, as it constrains us to subsets of sequences for specific
tasks, but it is still not enough to fully solve the state explosion problem. The
contribution of this paper is, therefore, a method to address this.

3.3 Using Interaction Sequences for Testing

This requirement further influenced the choice of sequences to task-widget based.
The task-based sequences on their own were too “restrictive” in the sense that
they did not allow for easy generation while the widget-based sequences were too
“free” (allowing for never ending sequences), hence the need for the combination.
The state-based sequences have the potential to unintentionally hide widgets of
the system which do not have an observable effect on state, resulting in poor
coverage of the system behaviour, and for this reason would not be appropriate
to use either alone or in combination with the other types. Requirement three
will be addressed in future work and we do not discuss this further beyond the
implications it has for the work we describe.
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4 Definitions

In this research FSA are used to model interaction sequences. Our purpose
is to make these models more tractable and therefore we introduce ‘the self-
containment property’. In what follows we define: the machines as a variation
of traditional FSA (def. 1); the self-containment property (def. 4); abstraction
(def. 7); and expansion of these machines (def. 8) also supporting definitions for:
paths (def. 2); connectedness (def. 3); alphabet function (def. 5); override func-
tion (def. 6). We follow this in the next section with lemmas (and their proofs)
to show that these definitions have the useful properties we expect and that they
have captured the properties necessary to address the state explosion problem.

Definition 1. A finite state automaton (FSA) is of the form M
def
= (Q,Σ, δ, S,

F ) where:

1. Q is a finite set of states,
2. Σ is a finite set of symbols, the alphabet accepted by M ,
3. δ is a finite set of triples which defines the transitions of machine M , i.e.

given states q, q′ ∈ Q, input x ∈ Σ, we can denote each transition as (q, x, q′),
4. S is the set of start states and S ⊆ Q,
5. F is the set of final (accepting) states and F ⊆ Q.

Definition 2. Given a finite state automaton M = (Q,Σ, δ, S, F ), a path ρ
from q ∈ Q to q′ ∈ Q is a sequence of transitions from δ such that ρ is the empty
sequence < >, or ρ has first element (q, x, q′′) ∈ δ and the remainder of ρ is a
path from q′′ to q′.

If a path exists between two states q, q′ ∈ Q we say that q′ is reachable from
q.

Definition 3. A FSA is connected iff every state is reachable from a start state.

Definition 4. Given machine M = (Q,Σ, δ, S, F ) we define a machine Ms
def
=

(Qs, Σs, δs, Ss, Fs) which is self-contained with respect to M iff:

1. Qs ⊆ Q, Σs ⊆ Σ, δs ⊆ δ,
2. Ms is closed with respect to M , which means that if any transition in δ starts

and ends in Qs then it is in δs too: δs = {(qs, x, q′s)|(qs, x, q′s) ∈ δ ∧ qs, q′s ∈
Qs},

3. The only transitions of M that start outside Ms and end inside Ms are those
that end in start states of Ms: for all (q, x, q′) ∈ δ, if q ∈ Q \Qs and q′ ∈ Qs

then q′ ∈ Ss,
4. The only transitions of M that start inside Ms and end outside Ms are those

that start in final states of Ms: for all (q, x, q′) ∈ δ, if q ∈ Qs and q′ ∈ Q\Qs

then q ∈ Fs.

Definition 5. There is an alphabet function such that, for any machine M =

(Q,Σ, δ, S, F ) we have α(δ)
def
= {x|(q, x, q′) ∈ δ}.
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Definition 6. For any machine M = (Q,Σ, δ, S, F ) we can override its set of
transitions δ as follows with the override function:

P
p′δ

Q
q′

def
=

{
(p′x, r′), if r ∈ P
(r, x, r′), otherwise

| (r, x, r′) ∈ δ′
}

where

δ′
def
=

{
(r, x, q′), if r′ ∈ Q
(r, x, r′), otherwise

| (r, x, r′) ∈ δ
}

Note: In what follows, we are dealing specifically with interaction sequences,
thus a FSA will always be connected, however, the proofs do not rely on this.
We also assume that a FSA’s alphabet is exactly the set of symbols that label

its transitions, i.e. for all FSAs (Q,Σ, δ, S, F ) we have α(δ)
def
= Σ. End note.

Definition 7. Given machine M = (Q,Σ, δ, S, F ) where S 6= ∅ and F 6= ∅ (we
call M the machine abstracted on), machine Ms = (Qs, Σs, δs, Ss, Fs) where Ms

is self-contained with respect to M , and an abstract state x where x /∈ Q,Qs

then an abstract machine Ma
def
= (Qa, Σa, δa, Sa, Fa) where:

1. Qa = (Q\Qs) ∪ {x},
2. Σa ⊆ Σ,
3. δa = F

x (δ \ δs)Sx ,
4. (S ∩Qs = ∅ =⇒ Sa = S) ∧ (S ∩Qs 6= ∅ =⇒ Sa = {x}),
5. (F ∩Qs = ∅ =⇒ Fa = F ) ∧ (F ∩Qs 6= ∅ =⇒ Fa = {x}).

The abstract machine is essentially the original machine we started with ex-
cept with the removal of the self-contained machine. However, this would result
in a machine which is not connected, indicating a non-connected interaction se-
quence. This would be a confusing model of a sequence as it would be unclear
how to process a path through the states which were originally connected to
the self-contained machine. Therefore, we introduce the abstract state to indi-
cate that an abstraction has taken place and at which point this occurred. The
transitions that originally finished and started in the the self-contained machine
start and final states are then overridden to reflect this change.

Definition 8. Given abstract machine Ma = (Qa, Σa, δa, Sa, Fa) with abstract
state x ∈ Qa and any machine M = (Q,Σ, δ, S, F ) with x /∈ Q, there is a

machine Mb, which we call the expansion of Ma with respect to M , and Mb
def
=

(Qb, Σb, δb, Sb, Fb) where:

1. Σb = Σa ∪Σ,
2. Qb = (Qa\{x}) ∪Q,

3. δb = δ
⋃

s∈S,f∈F (
{x}
f (δa)

{x}
s ), which is to say x as a “from” state in a tran-

sition is replaced by the final states of M , and x as the “to” state in any
transition is replaced by the start states of M ,

4. If Sa contains only x then Sb contains only s. Otherwise Sb = Sa,
5. If Fa contains only x then Fb contains only f . Otherwise Fb = Fa.
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At some point we may wish to explore the sequence in the self-contained
machine, therefore we needed a way to expand the abstract state. Definition 8
shows how we can correctly expand this state, allowing us to reconstruct our
original machine. As a result we can reduce and expand the state space.

5 Results

In this section we will prove some results that give some evidence that our
definitions correctly capture our intuitions.

Lemma 1. For any machine M = (Q,Σ, δ, S, F ) with s, f /∈ Q, there is an

equivalent machine Mc
def
= (Qc, Σc, δc, Sc, Fc) where:

1. S is not a singleton set and
(a) Qc = Q ∪ {s},
(b) Σc = Σ ∪ {ε} where ε is the blank symbol,
(c) δc = δ and for all (q, x, q′) ∈ δc, if q ∈ S then δc = δc ∪ (s, ε, q),
(d) Sc = {s},
(e) Fc = F .

2. F is not a singleton set and
(a) Qc = Q ∪ {f},
(b) Σc = Σ ∪ {ε},
(c) δc = δ and for all (q, x, q′) ∈ δc, if q′ ∈ F then δc = δc ∪ (q′, ε, f),
(d) Sc = S,
(e) Fc = {f}.

Proof: Section 2.2 [6, p. 26] states that a string w with εs (ε representing the
blank symbol) in is equivalent to w. Therefore, by theorem 3.8 from [6, p. 65]
the new machine is equivalent to M as it accepts the same language.
�

Task-widget based interaction sequences have a defined single start and end
point to the sequence due to the nature of tasks, and thus have singleton start
and final state sets. However, we could have machines which do not. Lemma 1
shows that for any machine there is an equivalent machine with singleton start
and final state sets, thus we do not have to include this as a restriction.

Lemma 2. Given a machine M = (Q,Σ, δ, S, F ), M is self-contained with re-
spect to itself.

Proof:

1. Immediate.
2. Immediate.
3. There are no states of M outside M, therefore implication is true (since false

implies anything, ex falso quod libet).
4. Similarly to 3.
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�
Lemma 2 proves that for any given machine it is self-contained with respect

to itself. This addresses the state explosion problem in the most extreme case as
we can now take any machine and reduce the state space to exactly one state,
the abstract state. However, this also results in loss of all information for that
machine as it is hidden inside this abstract state. While this solves the state
explosion problem, it is not particularly useful or interesting, especially not in
consideration of adapting the sequences and their consequent models for testing.

Our main result is that, under certain circumstances, we can take a machine
M , abstract it with respect to machine Ms (where Ms is self-contained with
respect to M) to get abstract machine Ma, and then expand Ma with respect
to Ms to get machine M again. While we have all of the component parts in
the definitions above, there is still a crucial relationship amongst the various
machines that we are missing, and this is that we have, of course, to be able
to re-connect the start and final states as originally intended when expanding
the abstract machine. The definitions so far, while allowing re-connection, lose
crucial information about start and final states. The property that we require
for our main result ensures that this information can be recovered. The property
is that if any state of the self-contained machine Ms is also a start state of the
machine M it is self-contained with respect to, then the start states of the self-
contained machine must be the start states of the original machine. Essentially
we need this as we use the start and final states as “markers” to show how the
various machines fit together properly when we do the expansion. It turns out
that this also requires that all the machines involved have singleton start and
final state sets, but we already know (by lemma 1) that this is not a restriction.

All this leads to needing the following:

Definition 9. Given machine M = (Q,Σ, δ, S, F ) and machine Ms =
(Qs, Σs, δs, Ss, Fs) which is self-contained with respect to M , then M and Ms

have the SF property iff: if any state of Ms is also a start state M , then the
start states of Ms must be the start states of M , i.e.

Qs ∩ S 6= ∅ =⇒ Ss = S

and similarly for final states

Qs ∩ F 6= ∅ =⇒ Fs = F

Note that in our case where we can assume all machines have singleton start
and final state sets, these conditions simplify to

s ∈ Qs =⇒ ss = s

and

f ∈ Qs =⇒ fs = f

because S = {s}, F = {f}, Ss = {ss} and Fs = {fs}.
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Lemma 3. Let M = (Q,Σ, δ, {s}, {f}) be any machine for modelling inter-
action sequences and Ms = (Qs, Σs, δs, {ss}, {fs}) be a self-contained machine
with respect to M . We are assuming without loss of generality that machines M
and Ms have singleton start and final sets, by lemma 1. We require that M and
Ms have the SF property (definition 9). Further, let Ma = (Qa, Σa, δa, Sa, Fa)
be an abstract machine with abstract state x /∈ Q,Qs, where Ms is the machine
abstracted on. Finally, we assume a machine Mb = (Qb, Σb, δb, Sb, Fb) which is
the expansion of Ma with respect to Ms. Then our result is that machine Mb is
equivalent to machine M .

Proof

We have

δa = {fs}
x (δ \ δs){ss}x from definition 7 (1)

and

δb = δs ∪ {x}
fs

(δa){x}ss from definition 8 (2)

= δs ∪ {x}
fs

( {fs}
x (δ \ δs){ss}x ){x}ss substituting from 1 (3)

= δs ∪ (δ \ δs) over-riding and then reversing (4)

= δ δs ⊆ δ from definition 4 and set theory (5)

So also

Σ = α(δ) by our Note above (6)

= α(δb) by substitution and (2)-(5) (7)

= Σb by our Note above (8)

Then

Qb = (Qa \ {x}) ∪Qs by definition 8 (9)

= (((Q \Qs) ∪ {x}) \ {x}) ∪Qs by definition 7 Qa = (Q \Qs) ∪ {x} (10)

= (Q \Qs) ∪Qs by definition 7 x /∈ Q,Qs (11)

= Q Qs ⊆ Q from definition 4 and set theory (12)

Turning to the start states, recall from definition 8 if Sa contains only x then
Sb contains only ss. Otherwise Sb = Sa. Within those cases each has to consider
whether or not s ∈ Qs. We proceed by nested cases.

Assume Sa contains only x, so Sa = {x}. (13a)
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Now we have further cases depending on s ∈ Qs.

Assume s ∈ Qs (13ba)

{s} = {ss} by definition of 9 and 13ba (13bb)

= Sb by consequence of 13a and definition 8 (13bc)

Assume s /∈ Qs (13ca)

{s} = Sa by def. 7, since 13ca means S ∩Qs = ∅ (13cb)

= {x} by 13a (13cc)

contradiction definition 7 requires x /∈ Q, but s ∈ Q (13cd)

Assume Sa 6= {x} (13d)

Now we have further cases depending on s ∈ Qs

Assume s ∈ Qs (13ea)

Sa = {x} by definition 7 and 13ea (13eb)

contradiction by 13d (13ec)

Assume s /∈ Qs (13fa)

{s} = Sa by 13fa and definition 7 (13fb)

= Sb by 13d and definition 8 (13fc)

By cases (twice) we conclude that Sb = {s} (13g)

Finally to the final states, recall that definition 8 gives if Fa contains only x then
Fb contains only fs. Otherwise Fb = Fa. Within those cases each has to consider
whether or not f ∈ Qs. We proceed by nested cases.

Assume Fa contains only x, so Fa = {x}. (13h)

Now we have further cases depending on f ∈ Qs.

Assume f ∈ Qs (13ia)

{f} = {fs} by definition of 9 and 13ia (13ib)

= Fb by consequence of 13h and definition 8 (13ic)

Assume f /∈ Qs (13ja)

{f} = Fa by def. 7, since 13ja means F ∩Qs = ∅ (13jb)

= {x} by 13h (13jc)

contradiction definition 7 requires x /∈ Q, but f ∈ Q (13jd)
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Assume Fa 6= {x} (13k)

Now we have further cases depending on f ∈ Qs

Assume f ∈ Qs (13la)

Fa = {x} by definition 7 and 13la (13lb)

contradiction by 13k (13lc)

Assume f /∈ Qs (13ma)

{f} = Fa by 13ma and definition 7 (13mb)

= Fb by 13k and definition 8 (13mc)

By cases (twice) we conclude that Fb = {f} (13n)

We have, in 2-5, 6-8, 9-12, 13g and 13n, that M = Mb as required.
�

6 Infusion Pump Example

In this example we illustrate our main result as proven in Lemma 3 specifically
for interaction sequences, in this case for a simplified infusion pump, created
in reference to the Alaris GP Volumetric Pump (see figure 1). This simplified
version has the functionality to set up an infusion based on duration, time and
pump type; start, pause or stop an infusion; and view settings and check the
battery life. In total it has six widgets which allow the user to perform different
actions, these are the Up, Down, YesStart, NoStop, OnOff buttons, and Display.

Fig. 1. Wireframe of: Simplified Medical Infusion Pump

We create a task-widget-based sequence for this device. The tasks are: setting
up an infusion; starting the infusion; checking the settings; pausing and then
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stopping the infusion. Note that a task-based sequence does not need to be
based on a single task, as in practice it is common to combine tasks to create
more meaningful sequences. To generate the interaction sequence we must make
a few assumptions, this is to ensure that the sequence is reproducible and has
no ambiguity. In this example we assume that all initial values are set to 0; we
begin in the initial state of the system; volume is set to 4ml and duration is set
to 2 hours. Using the PM for this example we generate the following sequence.

1. Click YesStart 1.
2. Observe Display 1.
3. Click Up 4.
4. Observe Display 1.
5. Click YesStart 1.
6. Click Up 2.

7. Observe Display 1.
8. Click YesStart 1.
9. Observe Display 1.

10. Click YesStart 1.
11. Observe Display 1.
12. Click YesStart 1.

13. Observe Display 1.
14. Click YesStart 1.
15. Observe Display 1.
16. Click YesStart 1.
17. Observe Display 1.
18. Click NoStop 2.

We can now convert this sequence to an FSA. This involves using definition
1 to construct a well-formed machine M = {Q,Σ, δ, S, F}. For machine M , Q
is the set of widgets used in the sequence and Σ is the set of interactions. δ
represents the transitions of the machine in the form (q, x, q′) where q is the
widget from the previous step, x is the interaction of the current step, and q′

is the widget from the current step. If a widget is interacted with more than
once, for example “Click Up 4”, then this step also has the transition (q′, x, q′).
The start set S is a singleton set comprising of the state “Initialise” which is a
“place holder” to ensure that we have included the initial action performed on
the YesStart as a triple in δ. The final set F is a singleton set including the final
widget of the final step. Therefore, machine M is as follows:

Q = {Initialise,Display,NoStop, Y esStart, Up}
Σ = {Click,Observe}
δ = {(Initialise, Click, Y esStart), (Display, Click,NoStop), (Display, Click,
Y esStart), (Display, Click, Up), (NoStop, Click,NoStop), (Y esStart, Click, Up),
(Y esStart, Observe,Display), (Up,Click, Up), (Up,Observe,Display)}
S = {Initialise}
F = {NoStop}

Note that in FSA M we assume that the device is already switched on prior
to any interaction. The FSA allows us to generate sequences of varying lengths
for a specific task based on the assumptions. This has helped in reducing the
number of sequences we explore due to the use of the task to constrain the
sequence and consequently the model, in other words the FSA of the sequence.

We now apply the definition of self-containment (def. 4) to this machine to
construct machine Ms = {Qs, Σs, δs, Ss, Fs}:

Qs = {Display, Y esStart, Up}
Σs = {Click,Observe}
δs = {(Display, Click, Y esStart), (Display, Click, Up), (Y esStart, Click, Up), (Y es
Start, Observe,Display), (Up,Click, Up), (Up,Observe,Display)}
Ss = {Y esStart}
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Fs = {Display}

Ms is not the only self-contained machine we can construct using definition
4. As proven in lemma 2 every machine is self-contained with respect to itself
and in fact each single state could be a self-contained machine, however as stated
previously this would not be particularly useful in terms of the state explosion
problem. If we inspect Ms it contains all the widgets associated with setting up
and starting the infusion. We are left with a sequence which we assume sets up
and begins an infusion correctly, then explicitly pauses and stops that infusion.

To perform the abstraction we create a new FSA Ma = {Qa, Σa, δa, Sa, Fa}
as per definition 7:

Qa = {Initialise,Ω0, NoStop}
Σa = {Click}
δa = {(Initialise, Click,Ω0), (Ω0, Click,NoStop), (NoStop, Click,NoStop)}
Sa = {Initialise}
Fa = {NoStop}

In this machine we have added an abstract state “Ω0” representing Ms. In
lemma 3 the machine we are abstracting must have singleton start and final
states in order to preserve equivalence, in this case Ms satisfies this condition.
If required, we could apply lemma 1 to Ms to ensure that this is true.

The abstract sequence for the same task is reduced from 18 steps to two. It
is important to remember that this reduction comes from being able to not only
contain the other 16 steps in a self-contained machine, but also from specifying
a focus for later testing purposes. If we wish to test the setup and start of the
infusion we could focus on the self-contained machine Ms, ignoring the last two
steps of the original sequence, however the reduction here is significantly smaller.

Using definition 8 we can reconstruct our original machine M by expanding
the abstract state. The input transitions to the abstract state are re-directed to
the start state of the sub-machine, and the output transitions are now output
transitions of the final state of the sub-machine.

The new machine Mb = {Qb, Σb, δb, Sb, Fb} as per definition 8:

Qb = {Initialise,Display,NoStop, Y esStart, Up}
Σb = {Click,Observe}
δb = {(Initialise, Click, Y esStart), (Display, Click,NoStop), (Display, Click, Y es
Start), (Display, Click, Up), (NoStop, Click,NoStop), (Y esStart, Click, Up), (Y es
Start, Observe,Display), (Up,Click, Up), (Up,Observe,Display)}
Sb = {Initialise}
Fb = {NoStop}

As expected from lemma 3 M and Mb are equivalent machines. This result
illustrates that even in a small example we can significantly reduce the number
of states in a machine of the form in definition 1, thus addressing the state
explosion problem. Furthermore, should we wish to revisit the original machine
we are able to expand the abstract state, this allows us to hide, rather than
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lose, information, which may become important when adapting the sequences
for testing purposes. More importantly, this gives control over the size of the
state space to reduce and expand as required.

To demonstrate the use of our technique, in this example we show machine
M and then build the corresponding abstract machine. However, in practical
use we envision that machines will be constructed with abstract states to hide
certain parts of an interactive system, which can be modelled later (or not at
all). For example, in a safety-critical interactive system we may wish to focus
specifically on the safety-critical aspects of that system, we may construct an
abstract machine which hides the non-safety-critical aspects in abstract states.
We will then be able to use this technique to expand the abstract state if required.

7 Future Work and Conclusions

In this paper we have introduced a new technique for abstracting and expanding
states in an FSA representing interaction sequences to provide more control over
the state space. We described how we use tasks and widgets to describe inter-
action sequences and how we formalise them using PMs and FSA. We discussed
sequence length and tasks to constrain sequences to avoid intractable models.
We also highlighted how this in combination with existing techniques such as
FSA minimisation was not enough to address the state explosion problem.

This led to further investigation into abstraction within models to address
this problem. The main contribution of this paper was to define the self-containment
property and how this is used to further abstract and constrain sequences. Fur-
thermore, we showed how we could expand the abstract state to include the
hidden information, allowing us to reduce and expand the state space as re-
quired. This not only addressed the state explosion problem but also provided
us with greater control over the state space and results in more tractable models.

Our modelling approach is not without limitations, the major concern being
we could have a model which contains no self-contained sub-models (beyond the
trivial case of abstracting to a single state). In this instance we are not be able
to abstract the model further using this method. It is possible that this could
occur in a highly inter-connected system and further investigation is required.

Furthermore, while we can use the self-containment property to construct
the abstract machine automatically, we cannot know if this abstraction will be
useful or not (in terms of adapting the sequences for testing purposes). Keeping
in mind that we can abstract an entire machine to a single abstract state, we
leave it to human reasoning to determine if abstracting a self-contained machine
provides benefits or not from a testing perspective. Future work will involve
investigations into adapting this approach for testing and the implications of
the abstraction in the testing environment.
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