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Abstract
We investigate the effect of explicitly enforcing the Lipschitz continuity of neural networks 
with respect to their inputs. To this end, we provide a simple technique for computing an 
upper bound to the Lipschitz constant—for multiple p-norms—of a feed forward neural 
network composed of commonly used layer types. Our technique is then used to formulate 
training a neural network with a bounded Lipschitz constant as a constrained optimisation 
problem that can be solved using projected stochastic gradient methods. Our evaluation 
study shows that the performance of the resulting models exceeds that of models trained 
with other common regularisers. We also provide evidence that the hyperparameters are 
intuitive to tune, demonstrate how the choice of norm for computing the Lipschitz constant 
impacts the resulting model, and show that the performance gains provided by our method 
are particularly noticeable when only a small amount of training data is available.

Keywords Neural networks · Regularisation · Lipschitz continuity

1 Introduction

Supervised learning is primarily concerned with the problem of approximating a func-
tion given examples of what output should be produced for a particular input. For the 
approximation to be of any practical use, it must generalise to unseen data points. Thus, 
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we need to select an appropriate space of functions in which the machine should search 
for a good approximation, and select an algorithm to search through this space. This is 
typically done by first picking a large family of models, such as support vector machines 
or decision trees, and applying a suitable search algorithm. Crucially, when perform-
ing the search, regularisation techniques specific to the chosen model family must be 
employed to combat overfitting. For example, one could limit the depth of decision trees 
considered by a learning algorithm, or impose probabilistic priors on tunable model 
parameters.

Regularisation of neural network models is a particularly difficult challenge. 
The methods that are currently most effective (Srivastava et  al. 2014; Ioffe and Sze-
gedy 2015) are heuristically motivated. In contrast, well-understood regularisation 
approaches adapted from linear models, such as applying an �2 penalty term to the 
model parameters, are known to be less effective than the heuristic approaches (Sriv-
astava et  al. 2014). This provides a clear motivation for developing well-founded and 
effective regularisation methods for neural networks. Following the intuition that func-
tions are considered simpler when they vary at a slower rate, and thus generalise better, 
we develop a method that allows us to control the Lipschitz constant of a network—a 
measure of the maximum variation a function can exhibit. Our experiments show that 
this is a useful inductive bias to impose on neural network models.

One of the prevailing themes in the theoretical work surrounding neural networks 
is that the magnitude of the weights directly impacts the generalisation gap (Bartlett 
1998; Bartlett et al. 2017; Neyshabur 2017; Golowich et al. 2020), with larger weights 
being associated with poorer relative performance on new data. In several of the most 
recent works (Bartlett et al. 2017; Neyshabur 2017; Golowich et al. 2020), some of the 
dominant terms in these bounds are equal to the upper bound of the Lipschitz constant 
of neural networks as we derive it in this paper. While previous works have only consid-
ered the Lipschitz continuity of networks with respect to the �2 norm, we put a particu-
lar emphasis on working with �1 and �∞ norms and construct a practical algorithm for 
constraining the Lipschitz constant of a network during training. The algorithm takes a 
hyperparameter for each layer that specifies its maximum allowable Lipschitz constant, 
and these parameters together determine an upper bound on the allowable Lipschitz 
constant of the entire network. We reuse the same parameter value across multiple lay-
ers in our experiments to accelerate the hyperparameter optimisation process.

Several interesting properties of this regularisation technique are demonstrated 
experimentally. We show that although our algorithm is not competitive when used 
in isolation, it is highly effective when combined with other commonly used regular-
isers. Moreover, gains over conventional regularisation approaches are relatively more 
pronounced when only a small amount of training data is available. We verify that the 
hyperparameters behave in an intuitive manner: when set to small values, the model 
capacity is reduced, and as the values of the hyperparameters are increased, the model 
capacity also increases. Crucially, there is a range of hyperparameter settings where the 
performance is greater than that of a model trained without our regulariser.

The paper begins with an outline of previous work related to regularisation and the 
Lipschitz continuity of neural networks in Sect. 2. This is followed by a detailed deriva-
tion of the upper bound on the Lipschitz constant of a wide class of feed forward neural 
networks in Sect. 3, where we give consideration to multiple choices of vector norms. 
Section 4 shows how this upper bound can be used to regularise the neural network in 
an efficient manner. Experiments showing the utility of this regularisation approach are 
given in Sect. 5, and conclusions are drawn in Sect. 6.
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2  Related work

One of the most widely applied regularisation techniques currently used for deep networks 
is dropout (Srivastava et al. 2014). By randomly setting the activations of each hidden unit 
to zero with some probability, p, during training, this method noticeably reduces overfitting 
for a wide variety of models. Various extensions have been proposed, such as randomly 
setting weights to zero instead of activations (Wan et al. 2013). Another modification, con-
crete dropout (Gal et al. 2017), allows one to directly learn the dropout rate, p, thus mak-
ing the search for a good set of hyperparameters easier. Kingma et  al. (2015) have also 
shown that the noise level in Gaussian dropout can be learned during optimisation. Sriv-
astava et al. (2014) found that constraining the �2 norm of the weight vector for each unit 
in isolation—a technique that they refer to as maxnorm—can improve the performance of 
networks trained with dropout.

The recent work on optimisation for deep learning has also contributed to our under-
standing of the generalisation performance of neural networks. Most work in this area 
aims to be descriptive, rather than prescriptive, in the sense that the focus is on providing 
explanations for existing heuristic methods as opposed to developing new approaches to 
improving performance. For example, Hardt et al. (2016) quantify the relationship between 
generalisation error and early stopping. Several papers have shown that the generalisa-
tion gap of a neural network is dependent on the magnitude of the weights (Bartlett et al. 
2017; Neyshabur 2017; Bartlett 1998; Golowich et al. 2020). Early results, such as Bartlett 
(1998), present bounds that assume sigmoidal activation functions, but nevertheless relate 
generalisation to the sum of the absolute values of the weights in the network. More recent 
work has shown that the product of spectral norms, scaled by various other weight matrix 
norms, can be used to construct bounds on the generalisation gap. Bartlett et  al. (2017) 
scale the spectral norm product by a term related to the element-wise �1 norm, whereas 
Neyshabur et al. (2018) use the Frobenius norm. The key quantity used in these bounds 
is the Lipschitz constant of the parameters of a class of neural networks, which are in turn 
used in covering number arguments to bound the generalisation performance of models in 
the hypothesis space.

Neyshabur et al. (2018) speculate that Lipschitz continuity with respect to the �2 norm 
alone is insufficient to guarantee generalisation. However, the upper bound presented in 
Sect.  3 appears in multiple generalisation bounds (Neyshabur 2017; Bartlett et  al. 2017; 
Golowich et  al. 2020), and we show empirically in this paper that it is an effective aide 
for controlling the generalisation performance of a deep network. Moreover, the work of 
Xu and Mannor (2012) demonstrate the concrete link between the Lipschitz constant of 
a model with respect to its inputs and the resulting generalisation performance. This is 
accomplished using robustness theory, rather than the tools more typically used in learn-
ing theoretic bounds, such as Rademacher complexity and VC dimensions (Shalev-Shwartz 
et  al. 2014). Interestingly, Golowich et  al. (2020) present a bound on the Rademacher 
complexity of deep networks that depends only on the product of �∞ operator norms for 
each weight matrix, which corresponds exactly to the upper bound for the �∞ Lipschitz 
constant we consider in this paper. This provides yet more evidence that constraining the 
�∞ Lipschitz constant of a network is a principled method for improving generalisation 
performance.

Yoshida and Miyato (2017) propose a new regularisation scheme that adds a term to 
the loss function which penalises the sum of spectral norms of the weight matrices. This is 
related to but different from what we do in this paper. Firstly, we investigate norms other 
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than �2 . Secondly, Yoshida and Miyato (2017) use a penalty term, whereas we employ 
a hard constraint on the induced weight matrix norm, and they penalise the sum of the 
norms. The Lipschitz constant is determined by the product of operator norms. Finally, 
they use a heuristic to regularise convolutional layers. Specifically, they compute the larg-
est singular value of a flattened weight tensor, as opposed to deriving the true matrix cor-
responding to the linear operation performed by convolutional layers, as we do in Sect. 3.2. 
Explicitly constructing this matrix and computing its largest singular value—even approxi-
mately—would be prohibitively expensive. We provide efficient methods for computing 
the �1 and �∞ norms of convolutional layers exactly, and show how one can approximate 
the spectral norm efficiently by avoiding the need to explicitly construct the matrix repre-
senting the linear operation performed by convolutional layers. Balan et al. (2017) provide 
a means for computing an upper bound to the Lipschitz constant of a restricted class of 
neural networks known as scattering networks. Although their approach computes tighter 
bounds than those presented in this paper for the networks they consider, most neural net-
works that are used in practice do not fit into the scattering network framework.

Enforcing Lipschitz continuity of a network is not only interesting for regularisation. 
Miyato et al. (2018) show that constraining the weights of the discriminator in a genera-
tive adversarial network to have a specific spectral norm can improve the quality of gen-
erated samples. They use the same technique as Yoshida and Miyato (2017) to compute 
these norms, and thus may benefit from the improvements presented in this paper. Szegedy 
et al. (2014) demonstrate that a naïve approach to constraining the Lipschitz constant can 
improve the adversarial robustness of neural networks.

Several pieces of related work have been carried out concurrently to this study. Sedghi 
et al. (2018) propose a method for characterising all the singular values of a convolutional 
layer through the use of Fourier analysis. Tsuzuku e al. (2018) propose a similar method 
for computing the spectral norm of a convolutional layer, with the intention of regularising 
it in order to improve the adversarial robustness of the resulting model. Zou et al. (2019) 
propose a general framework for computing bounds on Lipschitz constants by solving a 
linear program.

3  Computing the Lipschitz constant

A function, f ∶ X → Y  , is said to be Lipschitz continuous if it satisfies

for some real-valued k ≥ 0 , and metrics DX and DY . The value of k is known as the Lip-
schitz constant, and the function can be referred to as being k-Lipschitz. Generally, we are 
interested in the smallest possible Lipschitz constant, but it is not always possible to find 
it. In this section, we show how to compute an upper bound to the Lipschitz constant of 
a feed-forward neural network with respect to the input features. Such networks can be 
expressed as a series of function compositions:

where each �i is an activation function, linear operation, or pooling operation. A particu-
larly useful property of Lipschitz functions is how they behave when composed: the com-
position of a k1-Lipschitz function, f1 , with a k2-Lipschitz function, f2 , is a k1k2-Lipschitz 
function. Denoting the Lipschitz constant of some function, f, as L(f), repeated application 

(1)DY (f (�1), f (�2)) ≤ kDX(�1, �2) ∀�1, �2 ∈ X,

(2)f (�) = (�l◦�l−1◦...◦�1)(�),
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of this composition property yields the following upper bound on the Lipschitz constant for 
the entire feed-forward network:

Thus, we can compute the Lipschitz constants of each layer in isolation and combine 
them in a modular way to establish an upper bound on the constant of the entire network. 
It is important to note that k1k2 will not necessarily be the smallest Lipschitz constant of 
(f2◦f1) , even if k1 and k2 are individually the best Lipschitz constants of f1 and f2 , respec-
tively. It is possible in theory that a tighter upper bound can be obtained by considering the 
entire network as a whole rather than each layer in isolation. In the remainder of this sec-
tion, we derive closed form expressions for the Lipschitz constants of common layer types 
when DX and DY correspond to �1 , �2 , or �∞ norms respectively. As we will see in Sect. 4, 
Lipschitz constants with respect to these norms can be constrained efficiently.

3.1  Fully connected layers

A fully connected layer, �fc(�) , implements an affine transformation parameterised by a 
weight matrix, W, and a bias vector, �:

Others have already established that, under the �2 norm, the Lipschitz constant of a fully 
connected layer is given by the spectral norm of the weight matrix (Miyato et  al. 2018; 
Neyshabur 2017). We provide a slightly more general formulation that will prove to be 
more useful when considering other p-norms. We begin by plugging the definition of a 
fully connected layer into the definition of Lipschitz continuity:

By setting � = �1 − �2 and simplifying the expression slightly, we arrive at

which, assuming �1 ≠ �2 , can be rearranged to

The smallest Lipschitz constant is therefore equal to the supremum of the left-hand side of 
the inequality,

which is the definition of the operator norm of W.
For the p-norms we consider in this paper, there exist efficient algorithms for com-

puting operator norms on relatively large matrices. Specifically, for p = 1 , the operator 
norm is the maximum absolute column sum norm; for p = ∞ , the operator norm is the 
maximum absolute row sum norm. The time required to compute both of these norms 

(3)L(f ) ≤

l∏
i=1

L(�i).

(4)�fc(�) = W� + �.

(5)‖(W�1 + �) − (W�2 + �)‖p ≤ k‖�1 − �2‖p.

(6)‖W�‖p ≤ k‖�‖p,

(7)
‖W�‖p
‖�‖p ≤ k, � ≠ 0.

(8)L(�fc) = sup
�≠0

‖W�‖p
‖�‖p ,
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is linearly related to the number of elements in the weight matrix. When p = 2 , the 
operator norm is given by the largest singular value of the weight matrix—the spectral 
norm—which can be approximated relatively quickly using a small number of iterations 
of the power method.

3.2  Convolutional layers

Convolutional layers, �conv(X) , also perform an affine transformation, but it is usually 
more convenient to express the computation in terms of discrete convolutions and point-
wise additions. For a convolutional layer, the ith output feature map is given by

where each Fi,j is a filter, each Xj is an input feature map, Bi is an appropriately shaped bias 
tensor exhibiting the same value in every element, and the previous layer produced Ml−1 
feature maps.

The convolutions in Eq.  (9) are linear operations, so one can exploit the isomor-
phism between linear operations and square matrices of the appropriate size to reuse 
the matrix norms derived in Sect. 3.1. To represent a single convolution operation as a 
matrix–vector multiplication, the input feature map is serialised into a vector, and the 
filter coefficients are used to construct a doubly block circulant matrix. Due to the struc-
ture of doubly block circulant matrices, each filter coefficient appears in each column 
and row of this matrix exactly once. Consequently, the �1 and �∞ operator norms are the 
same and given by ‖Fi,j‖1 , the sum of the absolute values of the filter coefficients used to 
construct the matrix.

Summing over several different convolutions associated with different input feature 
maps and the same output feature map, as done in Eq. (9), can be accomplished by hori-
zontally concatenating matrices. For example, suppose Vi,j is a matrix that performs a con-
volution of Fi,j with the jth feature map serialised into a vector. Equation (9) can now be 
rewritten in matrix form as

where the inputs and biases, previously represented by X and Bi , have been serialised into 
vectors � and �i , respectively. The complete linear transformation, W, performed by a con-
volutional layer to generate Ml output feature maps can be constructed by adding additional 
rows to the block matrix:

To compute the �1 and �∞ operator norms of W, recall that the operator norm of Vi,j 
for p ∈ {1,∞} is ‖Fi,j‖1 . A second matrix, W ′ , can be constructed from W, where each 
block, Vi,j , is replaced with the corresponding operator norm, ‖Fi,j‖1 . Each of these operator 
norms can be thought of as a partial row or column sum for the original matrix, W. Now, 
based on the discussion in Sect. 3.1, the �1 operator norm is given by

(9)�conv
i

(X) =

Ml−1∑
j=1

Fi,j ∗ Xj + Bi,

(10)�conv
i

(�) = [V1,1 V1,2 ... V1,Ml−1
]� + �i,

(11)W =

⎡⎢⎢⎣

V1,1 … V1,Ml−1

⋮ ⋱

VMl ,1
VMl,Ml−1

⎤⎥⎥⎦
.
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and the �∞ operator norm is given by

We now consider the spectral norm for convolutional layers. Yoshida and Miyato (2017) 
and Miyato et al. (2018) both investigate the effect of penalising or constraining the spec-
tral norm of convolutional layers by reinterpreting the weight tensor of a convolutional 
layer as a matrix,

where each �i,j contains the elements of the corresponding Fi,j serialised into a row vector. 
They then proceed to compute the spectral norm of U, rather than computing the spectral 
norm of W, given in Eq. (11). As Cisse et al. (2017) and Tsuzuku e al. (2018) show, this 
only computes a loose upper bound of the true spectral norm.

Explicitly constructing W and applying a conventional singular value decomposition 
to compute the spectral norm of a convolutional layer is infeasible, but we show how the 
power method can be adapted to use standard convolutional network primitives to com-
pute it efficiently. Consider the usual process for computing the largest singular value of a 
square matrix using the power method, provided in Algorithm 1. The expression of most 
interest to us is inside the for loop, namely

which, due to the associativity of matrix multiplication, can be broken down into two steps:

and

When W is the matrix in Eq. (11), the expressions given in Eqs. (16) and  (17) correspond 
to a forward propagation and a backwards propagation through a convolutional layer, 
respectively. Thus, if we replace these matrix multiplication with convolution and trans-
posed convolution operations respectively, as implemented in many deep learning frame-
works, the spectral norm can be computed efficiently. Note that only a single vector must 
undergo the forward and backward propagation operations, rather than an entire batch of 
instances. This means, for most cases, only a small increase in runtime will be incurred by 
using this method. It also automatically takes into account the padding and stride hyper-
parameters used by the convolutional layer. In contrast to the reshaping method used by 
Yoshida and Miyato (2017) and Miyato et al. (2018), the approach we use is capable of 
computing the spectral norm of a convolutional layer exactly if it is run until convergence.

(12)‖W‖1 = max
j

Ml�
i=1

‖Fi,j‖1,

(13)‖W‖∞ = max
i

Ml−1�
j=1

‖Fi,j‖1.

(14)U =

⎡⎢⎢⎣

�1,1 … �1,Ml−1

⋮ ⋱

�Ml,1
�Ml ,Ml−1

⎤⎥⎥⎦
,

(15)�i = WTW�i−1,

(16)��
i
= W�i−1

(17)�i = WT��
i
.
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Algorithm 1 Power method for producing the largest singular value, σmax, of a
non-square matrix, W .

Randomly initialise x0
for i = 1 to n do

xi ← WTWxi−1
end for
σmax ← Wxn 2

xn 2

3.3  Pooling layers and activation functions

Computing Lipschitz constants for pooling layers and activations is trivial for commonly 
used pooling operations and activation functions. Most common activation functions and 
pooling operations are, at worst, 1-Lipschitz with respect to all p-norms. For example, the 
maximum absolute sub-gradient of the ReLU activation function is 1, which means that 
ReLU operations have a Lipschitz constant of one. A similar argument yields that the Lip-
schitz constant of max pooling layers is one. The Lipschitz constant of the softmax is one 
(Gao and Pavel 2017).

3.4  Residual connections

Recently developed feed-forward architectures often include residual connections between 
non-adjacent layers (He et al. 2016). These are most commonly used to construct structures 
known as residual blocks:

where the function composition may contain a number of different linear transformations 
and activation functions. In most cases, the composition is formed by two convolutional 
layers, each preceded by a batch normalisation layer1 and a ReLU function. While networks 
that use residual blocks still qualify as feed-forward networks, they no longer conform to 
the linear chain of function compositions we formalised in Eq. (2). Fortunately, networks 
with residual connections are usually built by composing a linear chain of residual blocks 
of the form given in Eq. (18). Hence, the Lipschitz constant of a residual network will be 
the product of Lipschitz constants for each residual block. Each block is a sum of two func-
tions (see Eq. 18). Thus, for a k1-Lipschitz function, f1 , and a k2-Lipschitz function, f2 , we 
are interested in the Lipschitz constant of their sum:

which can be rearranged to

The subadditivity property of norms and the Lipschitz constants of f1 and f2 can then be 
used to bound Eq. (20) from above:

(18)�res(�) = � + (�j+n◦...◦�j+1)(�),

(19)‖(f1(�1) + f2(�1)) − (f1(�2) + f2(�2))‖p

(20)‖(f1(�1) − f1(�2)) + (f2(�1) − f2(�2))‖p.

1 We discuss batch normalisation and the corresponding Lipschitz constant in Sect. 4.2 below.
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Thus, we can see that the Lipschitz constant of the addition of two functions is bounded 
from above by the sum of their Lipschitz constants. Setting f1 to be the identity function 
and f2 to be a linear chain of function compositions, we arrive at the definition of a residual 
block as given in Eq.  (18). Noting that the Lipschitz constant of the identity function is 
one, we can see that the Lipschitz constant of a residual block is bounded by

where the property given in Eq. (3) has been applied to the function compositions.

4  Constraining the Lipschitz constant

The assumption motivating our work is that adjusting the Lipschitz constant of a feed-for-
ward neural network controls how well the model will generalise to new data. Using the 
composition property of Lipschitz functions, we have shown that the Lipschitz constant 
of a network is the product of the Lipschitz constants associated with its layers. Ideally, 
one would simply add a term to the training objective consisting of the product of weight 
matrix norms. In practice, we found it difficult to train any deep networks with such an 
approach, and we suspect this is due to very poor conditioning of the resulting optimisation 
problem, as the product of norms can become very large. Instead, controlling the Lipschitz 
constant of a network can be accomplished by constraining the Lipschitz constant of each 
layer in isolation. This can be achieved by performing constrained optimisation when train-
ing the network. In practice, we pick a single hyperparameter, � , and use it to control the 
upper bound of the Lipschitz constant for each layer. This means the network as a whole 
will have a Lipschitz constant less than or equal to �d , where d is the depth of the network.

Instead of using a projected gradient descent method, one might be tempted to add 
a sum of norms penalty term, which would not have the same issues encountered when 
attempting to train with a product of norms term. Although the penalty and constraint-
based formulations of common regularisation methods are equivalent when training linear 
models (Oneto et al. 2016), the line of reasoning used to prove this does not extend to deep 
learning for two reasons that we can see. First, it relies on the convexity of the objective 
function. Second, it assumes the resulting penalty-based regularisation algorithm finds a 
critical point of the training objective. In practice, this is rarely the case in deep learning—
practitioners typically determine convergence by looking at the validation accuracy rather 
than the training loss or gradient magnitudes.

The easiest way to adapt existing deep learning methods to allow for constrained opti-
misation is to introduce a projection step and perform a variant of the projected stochastic 
gradient method. In our particular problem, because each parameter matrix is constrained 

(21)
‖(f1(�1) − f1(�2)) + (f2(�1) − f2(�2))‖p

≤ ‖f1(�1) − f1(�2)‖p + ‖f2(�1) − f2(�2)‖p

(22)≤ k1‖�1 − �2‖p + k2‖�1 − �2‖p

(23)= (k1 + k2)‖�1 − �2‖p.

(24)L(�res) ≤ 1 +

j+n∏
i=j+1

L(�i),
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in isolation, it is straightforward to project any infeasible parameter values back into the set 
of feasible matrices. Specifically, after each weight update step, we must check that none 
of the weight matrices (including the filter banks in the convolutional layers) are violating 
the constraint on the Lipschitz constant. If the weight update has caused a weight matrix to 
leave the feasible set, we must replace the resulting matrix with the closest matrix that does 
lie in the feasible set. This can all be accomplished with the projection function

which will leave the matrix untouched if it does not violate the constraint, and project it 
back to the closest matrix in the feasible set if it does. We measure closeness by the matrix 
distance metric induced by taking the operator norm of the difference between two matri-
ces. Note that in order for the stochastic subgradient method to have guaranteed conver-
gence, the measure of closeness should actually be Euclidean distance (Bubeck 2015). In 
practice, the results of our experiments show that our improper projection method does not 
have an adverse impact on performance—likely because current techniques for optimising 
deep networks already disregard conditions required for convergence. This method of pro-
jection will work with any valid operator norm because all norms are absolutely homoge-
neous (Pugh 2002). In particular, it will work with the operator norms with p ∈ {1, 2,∞} , 
which can be computed using the approaches outlined in Sect. 3.

Pseudocode for this projected gradient method is given in Algorithm  2. We have 
observed fast convergence when using the Adam update rule (Kingma and Ba 2015), but 
other variants of the stochastic gradient method also work. For example, in our experi-
ments, we show that stochastic gradient descent with Nesterov’s momentum is compatible 
with our approach.

Algorithm 2 Projected stochastic gradient method to optimise a neural network
subject to the Lipschitz Constant Constraint (LCC). W1:l is used to refer to all
Wi for i ∈ {1, ..., l}.

t ← 0
while W

(t)
1:l not converged do

t ← t+ 1
g
(t)
1:l ← ∇W1:lf(W

(t−1)
1:l )

W
(t)
1:l ← update(W (t−1)

1:l , g
(t)
1:l )

for i = 1 to l do
W

(t)
i ← π(W (t)

i , λ)
end for

end while

4.1  Stability of p‑norm estimation

A natural question to ask is which p-norm should be chosen when using the training proce-
dure given in Algorithm 2. The Euclidean (i.e., spectral) norm is often seen as the default 
choice, due to its special status when talking about distances in the real world. Like   
Yoshida and Miyato (2017), we use the power method to estimate the spectral norms of the 
linear operations in deep networks. The convergence rate of the power method is related to 
the ratio of the two largest singular values, �2

�1
 (Larson 2016). If the two largest singular val-

ues are almost the same, it will converge very slowly. Because each iteration of the power 

(25)�(W, �) =
1

max
�
1,

‖W‖p
�

�W,
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method for computing the spectral norm of a convolutional layer requires both forward 
propagation and backward propagation, it is only feasible to perform a small number of 
iterations before one will notice an impact in the training speed. However, regardless of the 
quality of the approximation, we can be certain that it does not overestimate the true norm: 
the expression in the final line of Algorithm 1 is maximised when �n is the first eigenvector 
of W. Therefore, if the algorithm has not converged, �n will not be a singular vector of W 
and our approximation of �max will be an underestimate.

In contrast to the spectral norm, we compute the values of the �1 and �∞ norms exactly, 
in time that is linear in the number of weights in a layer, so it always comprises a relatively 
small fraction of the overall runtime for training the network. Of course, it may be the case 
that the �1 and �∞ constraints do not provide as suitable an inductive bias as the �2 con-
straint. This is something we investigate in our experimental evaluation.

4.2  Compatibility with batch normalisation

Constraining the Lipschitz constant of the network will have an impact on the magnitude 
of the activations produced by each layer, which is what batch normalisation attempts to 
explicitly control (Ioffe and Szegedy 2015). Thus, we consider whether batch normalisa-
tion is compatible with our Lipschitz constant constraint (LCC) regulariser. Batch normali-
sation can be expressed as

where diag(⋅) denotes a diagonal matrix, and � and � are learned parameters. This can be 
seen as performing an affine transformation with a linear transformation term

Based on the operator norm of this diagonal matrix, the Lipschitz constant of a batch 
normalisation layer, with respect to the three p-norms we consider, is given by

Thus, when using batch normalisation in conjunction with our technique, the � param-
eter must also be constrained. This is accomplished by using the expression in Eq. (28) to 
compute the operator norm in the projection function given in Eq. (25). In practice, when 
training the network with minibatch gradient descent, we use a moving average estimate of 
the variance for performing the projection, rather than the variance computed solely on the 
current minibatch of training examples. This is done because the minibatch estimates of 
the mean and variance can be quite noisy.

4.3  Interaction with dropout

In the standard formulation of dropout, one corrupts activations during training by per-
forming pointwise multiplication with vectors of Bernoulli random variables. As a 

(26)�bn(�) = diag

�
�√

Var[�]

�
(� − E[�]) + �,

(27)diag

�
�√

Var[�]

�
�.

(28)L(�bn) = max
i

�����
�i√

Var[�i]

�����
.
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consequence, when making a prediction at test time—when units are not dropped out—the 
activations must be scaled by the probability that they remained uncorrupted during train-
ing. This means the activation magnitude at both test time and training time is approxi-
mately the same. The majority of modern neural networks make extensive use of rectified 
linear units, or similar activation functions that are also homogeneous. This implies that 
scaling the activations at test time is equivalent to scaling the weight matrices in the affine 
transformation layers. That is, for a homogeneous activation function, �(⋅) , and a dropout 
rate of r, we have

Moreover, from the homogeneity of norms we also have that

indicating that when a network is trained with dropout, the Lipschitz constant of each layer 
is scaled by 1 − r . As a result, one may expect that when using our technique in conjunc-
tion with dropout, the � hyperparameter will need to be increased in order to maintain the 
desired Lipschitz constant. Note that this does not imply that the optimal value for � , from 
the point of view of generalisation performance, can be found by performing hyperparam-
eter optimisation without dropout, and then dividing the best � found on the validation set 
by one minus the desired dropout rate: the change in optimisation dynamics and regularisa-
tion properties of dropout make it difficult to predict analytically how these two methods 
interact when considering generalisation performance.

5  Experiments

The experiments in this section aim to answer several questions about the behaviour of 
the Lipschitz constant constraint (LCC) regularisation scheme presented in this paper. The 
question of most interest is how well this regularisation technique compares to related reg-
ularisation methods, in terms of accuracy measured on held-out data. In addition to this, 
experiments are performed that demonstrate how sensitive the method is to the choice of 
values of the � hyperparameters, how it interacts with existing regularisation methods, 
and how the additional inductive bias imposed on the learning system impacts the sample 
efficiency.

Several different network architectures are employed in the experiments. Specifically, 
fully connected multi-layer perceptrons, VGG-style convolutional networks, and networks 
with residual connections are used. This is to ensure that the regularisation method works 
for a broad range of feed-forward architectures. SGD with Nesterov momentum is used 
for training networks with residual connections, and the Adam optimiser (Kingma and Ba 
2015) is used otherwise. Batch normalisation is used in all networks to accelerate training. 
All regularisation hyperparameters for the convolutional networks were optimised on a per-
layer type basis using the hyperopt package2 of Bergstra et al. (2015). Separate dropout, 
spectral decay, and � hyperparameters were optimised for fully connected and convolu-
tional layers. All network weights were initialised using the method of Glorot and Bengio 
(2010), and the estimated accuracy reported in all tables is the mean of five networks that 

(1 − r)�(W� + �) = �((1 − r)W� + �).

‖(1 − r)W‖p = (1 − r)‖W‖p,

2 https ://githu b.com/hyper opt/hyper opt.

https://github.com/hyperopt/hyperopt
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were each initialised using different seeds, unless stated otherwise. The standard deviation 
is also reported to give an idea of how robust different regularisers are to different initiali-
sations. The code for running these experiments is available online.3

5.1  CIFAR‑10

The CIFAR-10 dataset (Krizhevsky and Hinton 2009) contains 60,000 tiny images, each 
belonging to one of 10 classes. The experiments in this section follow the common pro-
tocol of using 10,000 of the images in the 50,000 image training set for tuning the model 
hyperparameters. Two network architectures are considered for this dataset: a VGG19-style 
network (Simonyan and Zisserman 2014), resized to be compatible with the 32 × 32 pixel 
images in CIFAR-10, and a wide residual network (WRN) (Zagoruyko and Komodakis 
2016). All experiments on this dataset utilise data augmentation in the form of random 
crops and horizontal flips, and the image intensities were rescaled to fall into the [−1, 1] 
range. Each VGG network is trained for 140 epochs using the Adam optimiser (Kingma 
and Ba 2015). The initial learning rate is set to 10−4 and decreased by a factor of 10 after 
epoch 100 and epoch 120. The WRNs are trained for a total of 200 epochs using the sto-
chastic gradient method with Nesterov’s momentum. The learning rate was initialised to 
0.1, and decreased by a factor of 5 at epochs 60, 120, and 160.

The performance of LCC is compared to dropout and the spectral decay method 
of Yoshida and Miyato (2017). Dropout is a widely used regularisation method, often act-
ing as key components of state-of-the-art models (Simonyan and Zisserman 2014; Kaim-
ing He et al. 2016; Zagoruyko and Komodakis 2016), and the spectral decay method has 
a similar goal to the �2 instantiation of our method: encouraging the spectral norm of 
the weight matrices to be small. For this particular experiment, each regulariser is con-
sidered in isolation, but we also consider combinations of LCC and spectral decay with 
dropout. Results are given in Table 1. Interestingly, the performance of the VGG network 

Table 1  Performance of VGG19 
and WRN-16-10 networks 
trained with spectral decay, 
dropout, LCC, and combinations 
thereof on CIFAR-10

Bold values indicate the method with the highest mean accuracy for 
each network
LCC-�p denotes the Lipschitz constant constraint method for a given 
p-norm

Method VGG19 WRN-16-10

None 90.43 ± 0.17 95.13 ± 0.17

Dropout 90.46 ± 0.10 95.46 ± 0.20

Spectral decay 90.14 ± 0.16 95.21 ± 0.08

LCC-�1 92.48 ± 0.13 95.34 ± 0.21

LCC-�2 92.57 ± 0.28 95.32 ± 0.15

LCC-�∞
91.64 ± 0.20 ��.�� ± �.��

Dropout + spectral decay 90.29 ± 0.17 95.22 ± 0.08

Dropout + LCC-�1 91.72 ± 0.17 95.47 ± 0.15

Dropout + LCC-�2 91.23 ± 0.24 95.57 ± 0.15

Dropout + LCC-�∞ ��.�� ± �.�� 95.68 ± 0.11

3 https ://githu b.com/henry gouk/keras -lipsc hitz-netwo rks.

https://github.com/henrygouk/keras-lipschitz-networks
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varies considerably more than that of the Wide Residual Network. VGG networks see the 
most benefit from LCC-�2 , but dropout and spectral decay do not provide any noticeable 
improvement in performance. Combining dropout with the other methods is not an effec-
tive strategy on this dataset. In the case of WRNs, LCC performs similarly to dropout and 
marginally better than spectral decay, but there is little separation between methods on this 
dataset.

We also report the average per-epoch runtime of training a VGG-19 under each regular-
iser in Table 2. Measurements were made using an NVIDIA V100 GPU. We can see that 
the �1 and �∞ variants of LCC result in negligible increases in runtime compared to using 
no regularisation or dropout, and the two approach that use the power method result in 
approximately 20–30% increase in runtime.

5.2  CIFAR‑100

CIFAR-100, like CIFAR-10, is a dataset of 60,000 tiny images, but contains 100 classes 
rather than 10. The same data augmentation methods used for CIFAR-10 are also used for 
training models on CIFAR-100—random crops and horizontal flips. Once again, WRNs 
and VGG19-style networks are trained on this dataset. The learning rate schedules used in 

Table 2  Average time (in 
seconds) required per epoch 
to train a VGG-19 network on 
CIFAR-10

Networks were trained using an NVIDIA V100 GPU

Method Time (s)

None 40
Dropout 40
Spectral decay 48
LCC-�1 42
LCC-�2 52
LCC-�∞ 42

Table 3  Performance of 
networks trained with spectral 
decay, dropout, LCC, and 
combinations thereof on CIFAR-
100

Bold values indicate the method with the highest mean accuracy for 
each network
LCC-�p denotes our Lipschitz constant constraint method for some 
given p-norm

Method VGG19 WRN-16-10

None 65.46 ± 0.43 77.94 ± 0.33

Dropout 66.75 ± 0.40 77.98 ± 0.24

Spectral decay 65.32 ± 0.24 77.93 ± 0.20

LCC-�1 69.59 ± 0.29 78.16 ± 0.04

LCC-�2 68.25 ± 0.38 79.00 ± 0.33

LCC-�∞
69.16 ± 0.22 79.39 ± 0.28

Dropout + spectral decay 66.97 ± 0.24 77.70 ± 0.33

Dropout + LCC-�1 70.17 ± 0.21 79.08 ± 0.11

Dropout + LCC-�2 ��.�� ± �.�� ��.�� ± �.��

Dropout + LCC-�∞
69.25 ± 0.43 78.17 ± 1.86



407Machine Learning (2021) 110:393–416 

1 3

the CIFAR-10 experiments also worked well on this dataset, which is not surprising given 
their similarities. However, the regularisation hyperparameters were optimised specifically 
for CIFAR-100. The results for the VGG and WRN models are given in Table 3.

It can be seen that the Lipschitz-based regularisation scheme is an effective technique 
for improving generalisation of networks both with and without residual connections. The 
results on CIFAR-100 follow a similar trend to those observed on CIFAR-10: LCC per-
forms the best, dropout provides a small increase in performance over no regularisation, 
and combining dropout other approaches can sometimes provide a small boost in accuracy. 
Spectral decay performs noticeably worse than LCC-�2 , often having comparable perfor-
mance to no regularisation.

5.3  MNIST and Fashion‑MNIST

The Fashion-MNIST dataset (Xiao et al. 2017) is designed as a more challenging drop-in 
replacement for the original MNIST dataset of hand-written digits (LeCun et  al. 1998). 
Both contain 70, 000 greyscale images labelled with one of 10 possible classes. The last 
10,000 instances are used as the test set. The final 10,000 instances in the training set are 
used for measuring performance when optimising the regularisation hyperparameters. In 
these experiments, small convolutional networks are trained on both of these datasets with 
different combinations of regularisers. The networks contain only two convolutional layers, 
each consisting of 5 × 5 kernels, and both layers are followed by 2 × 2 max pooling layers. 
The first layer has 64 feature maps, and the second has 128. These layers feed into a fully 
connected layer with 128 units, which is followed by the output layer with 10 units. ReLU 
activations are used for all hidden layers, and each model is trained for 60 epochs using 
Adam (Kingma and Ba 2015). The learning rate was started at 10−4 and decreased by a fac-
tor of 10 at the fiftieth epoch.

The test accuracies for each of the models trained on these datasets are given in Table 4. 
For both datasets, dropout and spectral decay decrease performance, whereas LCC-�1 
results in a consistent performance increase.

Table 4  Test accuracies of the 
small convolutional networks 
trained with spectral decay, 
dropout, LCC, and combinations 
thereof on the MNIST and 
Fashion-MNSIT datasets

Bold values indicate the method with the highest mean accuracy for 
each network

Method MNIST Fashion-MNIST

None 99.29 ± 0.03 92.54 ± 0.10

Dropout 98.93 ± 0.17 91.68 ± 0.17

Spectral decay 99.28 ± 0.07 92.59 ± 0.03

LCC-�1 99.41 ± 0.05 93.06 ± 0.15

LCC-�2 99.41 ± 0.05 92.62 ± 0.18

LCC-�∞
99.32 ± 0.09 92.87 ± 0.12

Dropout + spectral decay 98.85 ± 0.15 91.86 ± 0.18

Dropout + LCC-�1 99.35 ± 0.08 ��.�� ± �.��

Dropout + LCC-�2 ��.�� ± �.�� 91.71 ± 0.38

Dropout + LCC-�∞
99.36 ± 0.04 92.75 ± 0.25
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5.4  Street view house numbers

The Street View House Numbers dataset contains over 600, 000 images of digits extracted 
from Google’s Street View platform. Each image contains three colour channels and has 
a resolution of 32 × 32 pixels. As with the previous datasets, the only preprocessing per-
formed is to rescale the input features to the range [−1, 1] . However, in contrast to the 
experiments on CIFAR-10 and CIFAR-100, no data augmentation is performed while 
training on this dataset. The first network architecture used for this dataset, which follows 
a VGG-style structure, is comprised of four conv–conv–maxpool blocks with 64, 128, 192, 
and 256 feature maps, respectively. This is followed by two fully connected layers, each 
with 512 units, and then the logistic regression layer. Due to the large training set size, it is 
only necessary to train for 20 epochs. The Adam optimiser (Kingma and Ba 2015) is used 
with an initial learning rate of 10−4 , which is decreased by a factor of 10 at epochs 15 and 
18. Small WRN models are also trained on this dataset. Once again, due to the large size 
of the training set, it is sufficient to only train each network for 20 epochs in total. There-
fore, compared to the WRNs trained on CIFAR-10 and CIFAR-100, a compressed learning 
rate schedule is used. The learning rate is started at 0.1, and is decreased by a factor of 5 
at epochs 6, 12, and 16. Measurements of the test set performance for each of the models 
trained on SVHN are provided in Table 5.

For VGG, using dropout in conjunction with other approaches results in the best perfor-
mance, but in isolation is not effective. LCC improves accuracy in both the VGG and WRN 
models, whereas spectral decay does not help for either.

5.5  Scaled ImageNet subset (SINS‑10)

The SINS-10 dataset is a collection of 100,000 images taken from ImageNet by  Gouk 
(2018). Each image in this dataset is 96 × 96 pixels and is labelled with one of 10 classes. 
What makes this dataset distinct from other commonly used image classification bench-
marks is that it is divided into 10 non-overlapping and equal sized predefined folds. Within 
each fold, 9000 images are used for training and 1000 are used for testing. By gathering 

Table 5  Prediction accuracy 
of VGG-style and WRN-16-4 
networks trained with spectral 
decay, dropout, LCC, and 
combinations thereof on the 
SVHN dataset

Bold values indicate the method with the highest mean accuracy for 
each network

Method VGG WRN-16-4

None 96.90 ± 0.05 97.97 ± 0.04

Dropout 96.98 ± 0.10 98.23 ± 0.05

Spectral decay 96.88 ± 0.04 98.02 ± 0.04

LCC-�1 97.17 ± 0.09 98.00 ± 0.06

LCC-�2 96.94 ± 0.04 97.93 ± 0.07

LCC-�∞
97.35 ± 0.03 98.03 ± 0.05

Dropout + spectral decay 97.10 ± 0.06 98.15 ± 0.04

Dropout + LCC-�1 97.30 ± 0.07 98.21 ± 0.02

Dropout + LCC-�2 ��.�� ± �.�� 98.17 ± 0.05

Dropout + LCC-�∞
97.32 ± 0.06 ��.�� ± �.��
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multiple estimates of algorithm performance, one can perform hypothesis tests to deter-
mine statistically significant differences between methods.

The experiments conducted on SINS-10 in this paper make use of the same VGG-
style and WRN network architectures used for the SVHN experiments. However, 
because each fold of the SINS-10 dataset has many fewer instances than SVHN, the 
number of epochs and learning rate schedules are changed. The VGG networks are 
trained for a total of 60 epochs, beginning with a learning rate of 10−4 that is decreased 
by a factor of 10 at epochs 40 and 50. The WRN models are trained for 100 epochs 
each, with a starting learning rate of 0.1 that is decreased by a factor of five at epochs 

Table 6  Prediction accuracies 
of VGG-style networks 
trained with spectral decay, 
dropout, batchnorm, LCC, and 
combinations thereof on the 
SINS-10 dataset

Bold value indicates the method with the highest mean accuracy for 
each network
The +/-  column indicates whether adding LCC to the combination of 
regularisers results in a statistically significant improvement or degra-
dation in performance at the 95% confidence level

Method VGG +/-

None 63.73 ± 1.18

Dropout 68.65 ± 1.00 +

Spectral decay 63.81 ± 1.25

LCC-�1 71.24 ± 1.31 +

LCC-�2 69.96 ± 2.16 +

LCC-�∞
70.92 ± 2.04 +

Dropout + spectral decay 68.97 ± 1.31

Dropout + LCC-�1 ��.�� ± �.�� +

Dropout + LCC-�2 71.15 ± 1.13 +

Dropout + LCC-�∞
70.99 ± 1.03 +

Table 7  Prediction accuracies 
of WRNs trained with spectral 
decay, dropout, batchnorm, LCC, 
and combinations thereof on the 
SINS-10 dataset

Bold value indicates the method with the highest mean accuracy for 
each network
The +/-  column indicates whether adding LCC to the combination of 
regularisers results in a statistically significant improvement or degra-
dation in performance at the 95% confidence level

Method WRN-16-4 +/-

None 68.26 ± 1.89

Dropout 68.14 ± 2.78

Spectral decay 76.85 ± 1.29 +

LCC-�1 72.85 ± 1.63 +

LCC-�2 75.89 ± 2.02 +

LCC-�∞
74.09 ± 2.19 +

Dropout + spectral decay ��.�� ± �.�� +

Dropout + LCC-�1 73.27 ± 1.19 +

Dropout + LCC-�2 77.93 ± 1.19 +

Dropout + LCC-�∞
76.80 ± 1.05 +
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30, 60 and 80. The regularisation hyperparameters are optimised on a per-fold basis. 
The final 1000 instances of the training set are repurposed as a validation set to deter-
mine the quality of a given hyperparameter setting. The results for these experiments 
are given in Table 6 for the VGG models, and Table 7 for the wide residual network 
models. Hypothesis tests are carried out using a paired t-test to determine whether 
using the regulariser improves performance. In the case where a method is used in con-
junction with dropout, the hypothesis test compares the performance of the combina-
tion with that of dropout along.

In contrast to the previous experiments, spectral decay is a very effective regular-
iser for wide residual network models trained on this dataset, with the combination of 
dropout and spectral decay being the best results. The hypothesis tests indicate that for 
both architectures, networks trained with LCC perform statistically significantly better 
than comparable networks trained without LCC.

5.6  Fully connected networks

Neural networks consisting exclusively of fully connected layers have a long history of 
being applied to classification problems arising in data mining scenarios. To evaluate 
how well the LCC regularisers work on tabular data, we have trained fully connected 
networks on the classification datasets collected by Geurts and Wehenkel (2005). These 
datasets are primarily from the University California at Irvine dataset repository. The 
only selection criterion used by Geurts and Wehenkel (2005) is that they contain only 
numeric features. In these experiments, each network contains two hidden layers con-
sisting of 100 units each, and uses the ReLU activation function. Two repetitions of 
5-fold cross-validation are performed for each dataset. Hyperparameters for each regu-
lariser were tuned on a per-fold basis using grid search. The accuracy of a particular 
hyperparameter combination tried during the grid search was determined using a hold-
out set drawn from the training data in each fold. The values considered for dropping a 
unit when using dropout were p ∈ {0.2, 0.3, 0.4, 0.5} . The values considered for � when 
using the �2 and �∞ approaches were {2, 4, ..., 18, 20} , and for the �1 variant we used 
{5, 10, ..., 45, 50} . Once again, the combination of LCC with each of the regularisation 
methods is also evaluated.

Table 8  Mean test set accuracies obtained using two repetitions of 5-fold cross validation

The highest mean accuracy achieved on each dataset is bolded

None DO �1 �2 �∞ DO+�1 DO+�2 DO+�∞

dig44 96.96 95.79 96.83 96.85 97.11 96.04 96.04 96.81
letter 95.37 90.28 95.29 95.34 96.42 91.44 91.37 93.24
pendigits 99.44 99.14 99.45 99.45 99.52 99.21 99.25 99.41
sat 90.82 89.18 90.75 90.73 91.00 90.08 89.84 90.06
segment 95.37 93.70 95.91 95.89 96.52 93.90 93.85 95.52
spambase 94.11 93.88 94.06 93.86 94.37 93.68 93.68 94.06
twonorm 97.16 97.64 97.10 97.05 97.41 97.71 97.68 97.69
vehicle 78.02 72.52 77.84 78.07 80.14 74.94 74.65 77.60
vowel 86.21 68.18 82.98 83.13 90.86 70.61 71.21 77.07
waveform 85.40 86.16 86.00 85.82 86.51 86.71 86.54 86.59
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Several interesting trends can be found in Table 8. One particularly surprising trend 
is that the presence of dropout is a very good indicator of a degradation in accuracy. 
Interestingly, the only exceptions to this are the two synthetic datasets, where dropout is 
associated with an improvement in accuracy. LCC is one of the more reliable approaches 
to regularisation. In particular, the LCC-�∞ method achieves the highest mean accuracy 
on eight of the 10 datasets. On the other two datasets there is no substantial difference in 
performance between all methods. This provides strong evidence that LCC-�∞ is a good 
choice for regularisation of neural network models trained on tabular data.

These results can also be visualised using a critical difference diagram (Demšar 
2006), as shown in Fig. 1. When ordering the methods by descending accuracy on each 
dataset, the average rank of LCC-�∞ is just over 1.5, whereas the next best method—
using no regularisation at all—achieves an average rank of just over 3.5. However, there 
is insufficient evidence to be able to state that LCC-�∞ statistically significantly outper-
forms standard neural networks. Nevertheless, it can also be seen from this diagram that 
LCC-�∞ is statistically significantly better than most of the combinations of regularisers 
that include dropout.

Fig. 1  A critical difference diagram showing the statistically significant (95% confidence) differences 
between the average rank of each method. The number beside each method is the average rank of that 
method across all datasets. The thick black bars overlaid on groups of thin black lines indicate a clique of 
methods that have not been found to be statistically significantly different

Fig. 2  This figure demonstrates 
the sensitivity of the algorithm 
to the choice of � for each of 
the three p-norms when used 
to regularise VGG19 networks 
trained on the CIFAR-100 data-
set. Because a different hyperpa-
rameter was optimised for each 
layer type, the horizontal axis 
represents the value of a single 
constant that is used to scale the 
three different � hyperparameters 
associated with each curve. Note 
that when c = 0.6 , the LCC-�1 
network fails to converge
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5.7  Sensitivity to �

The ability to easily tune the hyperparameters of a regularisation method is important. The 
previous experiments have primarily taken advantage of automated hyperparameter tun-
ing through the use of the hyperopt package (Bergstra et al. 2015), but investigating how 
sensitive the algorithm is to the choice of � could lead to useful intuition for both manual 
hyperparameter tuning and automated methods. The networks that have been trained with 
LCC regularisation thus far have required up to three different � hyperparameters—one 
for each parameterised layer type. Therefore, one cannot simply plot the model accuracy 
for given values of � : it is not a scalar quantity. However, one can multiply all three of 
these hyperparameters by a single scalar value, and vary this scalar quantity to investigate 
the relationship between hyperparameter magnitude and generalisation performance. Fig-
ure  2 visualises this relationship using the CIFAR-100 dataset and several models with 
the VGG19-style architecture. This plot was generated by defining a hyperparameter vec-
tor, � = [�conv, �fc, �bn] , where each component is set to the value found during the hyper-
parameter optimisation procedure performed as part of the experiments carried out in 
Sect. 5.2. Each data point in the plot is created by training a network with hyperparameters 
specified by c� , where c is a user-provided scalar value, and plotting the resulting test set 
accuracy for different values of c.

One trend that is particularly salient in Fig. 2 is that choosing values for the hyperpa-
rameters that are even slightly too small results in a massive degradation in performance. 
Conversely, when c is set above the optimal value, each method exhibits a slow decline 
in performance until the accuracy is comparable to that of a network trained without any 
regularisation. Although this is the type of behaviour one might expect from a sensible 
means for controlling model capacity, this second phenomenon can cause difficulty dur-
ing hyperparameter tuning. It is easy to determine when the hyperparameters have been 
assigned values that are too small, as the model fails to converge. However, it is not easy 
to determine how much the hyperparameters should be increased by. It was found that for 
each dataset, network architecture, and p-norm choice, vastly different hyperparameter set-
tings were chosen by the automated tuning process. This means there is no typical range 
one should expect the optimal hyperparameters to lie in, and one must use a very unin-
formative prior when performing hyperparameter optimisation.
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Fig. 3  Learning curves for VGG (left) and WRN (right) trained on CIFAR-10 with each of the regularisa-
tion methods
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5.8  Sample efficiency

Imposing on a learning algorithm additional inductive biases that accurately reflect the 
underlying relationship between the input and output variables should result in a method 
that can produce well-performing models with fewer training examples than an algorithm 
without such inductive biases: more informative inductive biases should yield better sam-
ple efficiency. To determine if LCC improves the sample efficiency of training neural net-
works on image data, a series of networks are trained on progressively larger subsets of the 
CIFAR-10 training set. The full test set is still used for computing estimates of the accuracy 
of the resulting models. The learning curves for the VGG and WRN models are given in 
Fig. 3.

In the VGG plot, there is a difference of approximately 10 percentage points 
between the performance of the networks trained with LCC and those trained with 
one of the weaker baselines, for the case where only 5000 instances are used during 
training. As the number of available training instances is increased, the gap between 
the performance of all methods becomes smaller because each method must rely less 
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Fig. 4  Plots of the per-layer �1 (top left), �2 (top right), and �∞ (bottom left) Lipschitz constants for convo-
lutional and fully connected operations in models trained with different regularisation methods. The bottom 
right plot shows the Lipschitz constants for the batch normalisation components
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on the prior knowledge built into the learning algorithm and more on the evidence 
provided by the examples in the training set. Interestingly, the wide residual networks 
trained with the spectral decay method achieve very good performance when only a 
small amount of training data is available. This agrees with the previous results on 
the SINS-10 dataset. However, it is interesting to note that as the number of available 
training examples grows, this advantage is lost and the performance of networks regu-
larised with the spectral decay method tend towards the performance of the unregular-
ised baseline—a trend that is also noticeable in the experiments on other datasets.

5.9  Do other methods constrain the Lipschitz constant?

The results presented so far have indicated that constraining the Lipschitz constant of a 
network provides effective regularisation, but it is interesting to consider how different the 
resulting Lipschitz constants are compared to not using LCC regularisation. To further 
investigate this, we supply plots of the Lipschitz constant of each layer of VGG-19 net-
works trained on CIFAR-10. These plots are given in Fig. 4. When the network is trained 
with dropout, we scale each of the operator norms by the probability of retaining an activa-
tion for the reasons described in Sect. 4.3. The constants for batch normalisation operations 
are plotted separately due to the large difference in magnitude. We identify two salient 
trends. First, the different variants of LCC result in significant reductions in the Lipschitz 
constant of each layer, and therefore the whole network. Second, spectral decay—another 
method aimed at reducing the �2 Lipschitz constant, but via a penalty approach—is less 
effective than LCC-�2.

6  Conclusion

This paper has presented a simple and effective regularisation technique for deep feed-for-
ward neural networks called Lipschitz constant constraint (LCC), shown that it is appli-
cable to a variety of feed-forward neural network architectures, and established that it is 
particularly suited to situations where only a small amount of training data is available. The 
investigation into the differences between the three p-norms ( p ∈ {1, 2,∞} ) considered has 
provided some useful information about which one might be best-suited to the problem at 
hand. In particular, the �∞ norm appears particularly suitable for tabular data, and the �2 
norm showed the most consistently competitive performance when used as a regulariser on 
natural image datasets. However, given that LCC-�2 with few power method iterations is 
only approximately constraining the norm, if one wants a guarantee that the Lipschitz con-
stant of the trained network is bounded below some user-specified value, then using the �1 
or �∞ norm would be more appropriate.

Lastly, recent and concurrent work suggests that the utility of constraining the Lipschitz 
constant of neural networks is not limited to improving classification accuracy. There is 
already evidence that constraining the Lipschitz constant of the discriminator networks in 
GANs is useful (Arjovsky et al. 2017; Miyato et al. 2018). Given the drawbacks in previ-
ous approaches to constraining Lipschitz constants we have outlined (cf. Sect.  3.2), one 
might expect improvements training GANs that are k-Lipschitz with respect to the �1 or 
�∞ norms, and approximately 1-Lipschitz with respect to the �2 norm, by applying the 
methods presented in this paper. Exploring how well the technique presented in this paper 
works with recurrent neural networks would also be of interest. Finally, the experiments 
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carried out in this paper forced all layers of the same type to have the same Lipschitz 
constant. This is likely an inappropriate assumption in practice, and a more sophisticated 
hyperparameter tuning mechanism that allows for selecting a different value of � for each 
layer could provide a further improvement to performance. However, devising a means for 
efficiently allocating modelling capacity on a per-layer basis is an open problem.
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