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ABSTRACT 

 

The Semantic Web aims to democratise information by making information open, shareable 

and recombinable. However, the amount of Semantic Web data may be so large that simple 

listings are not useful, and the variety of data means that templates will be fragile. An adaptive 

user interface can modify a display based on user preferences that are learned from user 

actions. The thesis is that a Semantic Web browser that groups and orders the data based on 

knowledge of user preferences has speed and accuracy that exceed those of alphabetical 

ordering. The investigation comprises three user studies. 

An adaptive user interface has overheads for learning and recording user preferences. The first 

user study indicates that user preferences are diverse enough to justify the overhead of an 

adaptive user interface. 

The research then proposes two adaptive user interface methods; ListAlg has a top-down user 

model, and GPRank has a bottom-up user model. The second user study demonstrates that 

both are capable of learning user preferences for grouping and ordering Semantic Web data. 

GPRank is both more accurate and preferred by users in a blind selection. 

In tasks involving selecting the answer to a question, some participants are faster with GPRank, 

and the users that are faster with Alphabetical ordering are not much slower when using 

GPRank. There is no difference in the accuracy of users performing information retrieval tasks 

when using GPRank or Alphabetical ordering. 
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CHAPTER ONE INTRODUCTION 

The Semantic Web aims to democratise data by making data open, shareable and 

recombinable (Berners-Lee, Hendler, & Lassila, 2001). To achieve these characteristics, 

Semantic Web data, different to data on the web, is structured. However, unlike traditional 

databases, the structure of Semantic Web data does not have to follow a single predefined 

schema.  Instead, the data itself contains links to its schema. Semantic Web data is machine-

understandable, and therefore data becomes easily shareable and recombinable. 

Semantic Web data is viewable by a Semantic Web browser.  The shareable and recombinable 

nature of Semantic Web data means that it is not possible to anticipate how users will want to 

visualise Semantic Web data. Also, recombination means that the potentially large amount of 

data items to display for any single subject may exhaust available screen space if the data is 

not filtered.  

Taken together, we believe that approaches for building user interfaces for data with a known 

structure are inadequate for the Semantic Web. An alternative method is to group and order 

data based on user preferences using an adaptive user interface. In an adaptive user interface 

for the Semantic Web, the way to display the Semantic Web data would adapt to the user’s 

preferences to suit their individual needs.  

In this thesis, we propose an adaptive user interface that categorises the Semantic Web data 

into groups and orders data according to user preference. Placing similar data items close 

together may make it easier for users to locate data items, especially when the number of 

data items is extensive. Showing relevant data at the top is a well-established approach, e.g. 

for search engine results.  
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In summary, an approach for grouping and ordering Semantic Web data based on user 

preferences is developed through this thesis and then evaluated against the established 

alphabetical ordering. 

1.1 MOTIVATION 

This research explores an approach to grouping and ordering Semantic Web data within an 

adaptive user interface for a Semantic Web browser. As a motivation for this research 

approach, this section briefly outlines the deficiencies of current approaches to displaying 

Semantic Web data (further details are given in Chapter 3). The current methods for displaying 

Semantic Web data are alphabetical order, source order, graph-based displays, and templates. 

Alphabetical ordering of Semantic Web data is used by The Disco Hyperdata Browser (Bizer & 

Gauß, 2007). These lists may contain a very large number of items (e.g. the DBPedia data for 

Germany1 contains over 200 entries), in which data with similar meanings but different text 

(e.g. label, commonName, and name) have different positions in the list. Alphabetical 

ordering is therefore not suitable for large lists (Hu, Ma, & Chau, 1999).  

Listing data according to the order that data appears in the data source (i.e. source order) is 

used in Brownsauce (Steer, 2003). The usefulness of this ordering then depends on the quality 

of ordering in the data source. However, it cannot be assumed that the data is deliberately 

ordered in the source, as this is not a requirement of Semantic Web standards. Even if the is 

deliberately ordered in the source, the ordering may not reflect user’s goals. Finally, because 

the Semantic Web encourages recombination of data, it is unclear how to order data that is 

combined from multiple data sources. 

Graph-based displays show Semantic Web data as a directed graph connected by arcs; it is 

used in LodLive (Camarda & Mazzini, 2012). This form of display can be useful for seeing how 

                                                           
1 http://dbpedia.org/Fresource/Germany 
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entities relate to each other. While graph-based displays often use a large proportion of the 

screen, they often do not prioritise data display and do not group related data. 

Rosenholtz et al. (2009) advocate for displaying data items in groups that match how users 

mentally group data. Additionally, users find data quicker when the data is displayed in order 

of relevance (e.g. as used in Google Search2). Decisions for grouping and ordering data for 

display are made based on prior knowledge of the user and their goals (Johnson, Johnson, & 

Zhang, 2005). Since Semantic Web data has dynamic structure and because Semantic Web 

data is recombinable then it is impossible for the data publisher to predict user goals. 

Therefore, there may be some benefit to deferring, until runtime, display decisions that rely 

on knowledge of user goals. 

An adaptive user interface can learn about a user’s preferences for data item display at 

runtime. It can also adapt to different data schemas. Therefore, we believe an adaptive user 

interface approach is suited for displaying Semantic Web data in response to runtime 

conditions such as data structure and user preferences. This thesis explores the hypothesis 

that a Semantic Web browser that groups and orders the data based on run-time knowledge 

of the user and the data has usability benefits that exceed those of alphabetical ordering. 

 

1.2 PROBLEM STATEMENT AND APPROACH 

Semantic Web data provides its own schema definition and recombining data from multiple 

sources is possible. The amount of Semantic Web data may be so large such that simple 

listings will not display data in useful ways. Some existing Semantic Web browsers group 

related data together using templates, and these are documented in 3. Seeliger and 

Paulheim’s browser (2012) uses lexical similarity to arrange triples into groups (see Section 

                                                           
2 http://www.google.com  

http://www.google.com/
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3.2.1.1 for a more in-depth description).  The lexical similarity used in the Seeliger Browser 

comes from a single shared lookup source (WordNet). Users may have their own preferences 

for which triples should be grouped together, and those preferences may differ from the 

preferences expressed by WordNet or other users. 

 

1.3 RESEARCH QUESTIONS 

The research investigates the following hypothesis:  

A Semantic Web browser with an adaptive user interface that groups and orders data has 

speed and accuracy advantages in information retrieval tasks. 

 

In exploring the hypothesis, the following three questions are addressed. 

 

Question 1. Is there sufficient diversity in user preferences for displaying Semantic Web data to 

justify an adaptive user interface? 

If users have very similar preferences for grouping and ordering Semantic Web data, then it is 

not necessary to adapt to user preferences at run-time, and so an adaptive user interface 

approach will be unnecessary overhead. Conversely, if users have different preferences for 

how data is grouped, then this lends support to investigating adaptive approaches. 
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Question 2. Can an adaptive interface learn user preferences for grouping and ordering 

displays of Semantic Web data? 

If there is sufficient diversity in user preferences (see Question 1), then it is possible an 

adaptive user interface will improve speed and accuracy in information retrieval tasks. 

Answering this question involves the exploration of existing approaches to grouping and 

ordering data based on user preferences and then the proposal of algorithms suited to 

Semantic Web data. Because the algorithms must quickly learn user preferences, then the 

proposed algorithms should be tested with real users. 

 

Question 3. Do users perform single screen search tasks quicker and more accurately with an 

adaptive user interface that groups and orders Semantic Web data or with data in alphabetical 

order?  

After identifying an adaptive interface model that can learn user preferences, then the next 

step will determine if the adaptive approach improves speed and accuracy in comparison to 

alphabetical order. The reason for selecting alphabetical ordering as the comparator is its 

familiarity to users and its widespread use. 

 

1.4 THESIS STRUCTURE 

This section outlines the structure of this thesis. 

Chapter 2 (Background) introduces key Semantic Web and adaptive user interface concepts. 

The purpose of this chapter is to aid understanding of this research by providing background 

information about Semantic Web concepts and the architecture of adaptive user interfaces. 
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Chapter 3 (Related Work) examines the present state of the art for displaying data in Semantic 

Web browsers. The chapter is arranged into categories of the different approaches, and this 

demonstrates that the adaptive user interface approach proposed in this research is novel. 

Chapter 4 (User study I: Do users agree on the relatedness of triples?) contributes to the first 

question by testing the level of agreement between participants regarding the relatedness of 

pairs of triples. If participants disagree about the relatedness of triples, then this indicates that 

users may have differing preferences for displaying Semantic Web and so an adaptive user 

interface may be worth investigating. 

Chapter 5 (User Preferences for Grouping and Ordering) presents three methods for grouping 

and ordering Semantic Web data for display. Two of the methods are adaptive: they learn user 

preferences, and the third method does not learn, and so its purpose is as a control. This 

change contributes to the second research question. 

Chapter 6 (User Study II: Learning User Preferences for grouping and ordering) tests the ability 

of the three methods proposed in the previous chapter to learn user preferences for grouping 

and ordering Semantic Web data. This chapter answers the first research question by directly 

comparing user preferences for grouping and ordering Semantic Web data. This chapter also 

answers the second research question by measuring the ability of the two-proposed adaptive 

user interface methods to learn user preferences. 

Chapter 7 (User Study III: GPRank versus Alphabetical ordering for user speed and accuracy in 

information retrieval tasks) compares the best adaptive user interface algorithm for grouping 

and ordering against alphabetical ordering for information retrieval. In this user study, 

participants must locate the answer to a given question on a display of Semantic Web data 

that is either in alphabetical ordering or Grouped and Ordered according to an adaptive user 
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interface algorithm. The measurements taken are time to answer and answer accuracy. This 

chapter directly addresses the third research question. 

Chapter 8 (Summary and Conclusions) summarises this thesis in the context of the research 

questions. The chapter discusses the limitations of the findings and highlights areas for future 

research. 
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CHAPTER TWO BACKGROUND 

The Semantic Web describes both a set of technologies and the decentralised platform for 

exchanging data in a manner that is open, shareable and recombinable. This chapter 

introduces background information about the Semantic Web and adaptive user interfaces that 

are relevant to this thesis. 

The chapter begins with a short history of the Semantic Web and where the term “Semantic 

Web” originates. Following the history is a brief discussion on the role of machine 

understandability in enabling data to be open, shareable and recombinable. Then the chapter 

discusses how the Semantic Web organises information conceptually into directed graphs that 

are expressed as triples. The next section discusses how Semantic Web data is expressed using 

ontologies and why ontological information is unreliable for making decisions regarding the 

display of Semantic Web data. The final section introduces adaptive and adaptable user 

interfaces and their architecture. 

2.1 HISTORY OF THE SEMANTIC WEB 

The section is a brief history of the Semantic Web and where the term “Semantic Web” 

originates. The history provides context to how the Semantic Web differs from the HTML-

based World Wide Web (WWW), and this provides a reference point for understanding the 

intent of the Semantic Web.  

As early as 1994, Berners-Lee articulated a method for attaching semantics to data to provide 

interoperability between systems (Shadbolt, Berners-Lee, & Hall, 2006). The World Wide Web 

Consortium (W3C) published the first Semantic Web standards3 in 1997, and these became full 

                                                           
3 http://www.w3.org/TR/WD-rdf-syntax-971002/ 
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W3C recommendations4 by 1999 (Shadbolt et al., 2006; Steer, 2003). Soon afterwards work on 

servers, stores, ontology languages (e.g. RDFS), and rule-based inference languages (e.g. OWL) 

began. 

In 2006, Berners-Lee published the linked open data blog post that describes the additional 

criteria that make Semantic Web data into linked open data and describes a method for HTTP-

based content negotiation to provide HTML to regular web browsers and Semantic Web data 

to Semantic Web consumers. The linked open data standard both enabled and encouraged 

interlinking between Semantic Web data. By 2011 linked open data consisted of 295 data sets 

with 32 billion triples and 500 million links to other datasets5 and this grew to over 1,000 data 

sets in 20146.  

Today, the Semantic Web is used in areas such as life sciences, government, and geography. 

W3C has a list of Semantic Web usage case studies7 up to 2017. The extent of the Semantic 

Web can be seen in the Linking Open Data Cloud Diagram8 which shows known available 

Semantic Web data sources as nodes and their interlinks as arcs. 

2.2 MACHINE UNDERSTANDABILITY 

The Semantic Web achieves machine understandability by attaching semantics to the data. 

Machine understandability also enables the Semantic Web data to be recombinable because it 

can link data from different domains. This section discusses the meaning of the term 

semantics and discusses what it means to be machine understandable in the context of the 

Semantic Web. 

                                                           
4 http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/ 
5 http://lod-cloud.net/state/state_2011/ 
6 http://lod-cloud.net/state/state_2014/ 
7 http://www.w3.org/2001/sw/sweo/public/UseCases/ 
8 http://lod-cloud.net/ 
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The origin of the term semantics comes from linguistics and describes the relationship 

between symbols and meanings. The term semantics originates with Michel Breal’s “Essai de 

Sémantique” (Bréal, 1904) which discusses the signification of words. The contemporary usage 

of the term semantics comes via Charles W. Morris’ division of semiotic signs into syntax 

which are the symbols used, pragmatics which is the usage of signs, and semantics which 

relates to meaning (Morris, 1946).   

In the Semantic Web, the link between a representation (i.e. data) and the real-world thing to 

which the URI refers (i.e. the semantics) is a URI or a literal. A thing is “something in the 

world” 9 , and this can be physical and abstract things. For example, the URI 

http://dbpedia.org/resource/Germany refers to the country called Germany and, Germany is a 

real-world thing. Whenever the same URI is encountered, then a machine can assume that this 

refers to the same thing.  

The basic unit on the Semantic Web is a triple which contains a reference to a subject thing, an 

object thing and a predicate that expresses the nature of the relationship between the subject 

and object. Semantic Web data is recombinable because triples can refer to subjects and 

objects from different domains.  

Since similar types of things may have similar data about them, for example, all countries have 

a capital city. The formalisation of similar data structures is called ontology.  

 

                                                           
9 https://www.w3.org/TR/rdf11-concepts/#resources-and-statements 

http://dbpedia.org/resource/Germany
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2.3 THE RESOURCE DESCRIPTION FRAMEWORK 

Semantic Web’s data model is called the Resource Description Framework (RDF)10. RDF can be 

represented conceptually as a graph-based model with arcs, the predicates, representing the 

relationships between things (nodes). One thing is termed the subject, and the other thing is 

termed the object (see Figure 2.1). 

 

Figure 2.1: An RDF Graph with two nodes (Subject and Object) and Predicate connecting them11 

 

Nodes in the Semantic Web can be Uniform Resource Identifier (URI), a blank node or a literal 

value. However, only objects can contain literal values: the subject and predicate must be URIs. 

URIs are unique addresses that are like a web page address, except that a Semantic Web URI 

can refer to any thing that exists in a universe of discourse. 

The RDF data format represents the predicate relation between a subject and object as a 

three-member tuple which is called a triple. The three tuple members are (subject, 

predicate, object)12. For example, the following triple represents that Germany has 

the capital city Berlin. 

(Germany, capital, Berlin) 

The following triple, from the DBpedia dataset, represents that Germany has the capital city 

Berlin. 

                                                           
10 http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/ 
11 https://www.w3.org/TR/rdf11-concepts/#fig-an-rdf-graph-with-two-nodes-subject-and-object-and-a-
triple-connecting-them-predicate 
12 http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/#section-triples 

Subject 
Predicate 

Object 
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(http://dbpedia.org/resource/Germany, 

http://dbpedia.org/ontology/capital, 

http://dbpedia.org/resource/Berlin)  

URIs may be shortened using a namespace abbreviation for the first part of the URI, a colon 

and then the unique part of the URI. Using namespaces makes reading RDF easier. The 

DBpedia dataset uses dbr:13 and dbo:14 as namespace abbreviations for things and predicates 

respectively. The Germany has-capital Berlin triple can be written in tuple form as: 

(dbr:Germany, dbo:capital, dbr:Berlin) 

For clarity, further examples of triples will dispense the conventions of tuple syntax by 

omitting the brackets and commas. The members of the triple are tab-delimited, and the triple 

itself is newline delimited. The Germany has-capital Berlin triple is written as: 

dbr:Germany dbo:capital dbr:Berlin 

Literal values are used to display labels or to state values. Labels for things are commonly 

expressed using the rdfs:label predicate from the rdfs: namespace. For example, the 

label of the thing Germany is the literal text “Germany”. This is expressed by the following 

triple with the literal text enclosed in double quotes. 

dbr:Germany rdfs:label  ″Germany″ 

In practice, it is common for subject URIs to have a triple with an rdfs:label predicate and 

this triple will ordinarily have a string literal value as the object. This string literal is displayed 

in a user interface as the textual representation of the entity. The following, more complete, 

example gives the data for a Semantic Web browser to render that Germany has-capital Berlin 

as the string “Germany capital Berlin”. Each of the URIs within the first triple become the 

                                                           
13 http://dbpedia.org/resource/ 
14 http://dbpedia.org/ontology/ 
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subject of a new triple with an rdfs:label predicate and the literal that labels that URI as 

the object. 

dbr:Germany dbo:capital dbr:Berlin 

dbr:Germany rdfs:label  ″Germany″ 

dbo:capital rdfs:label  ″capital″ 

dbr:Berlin  rdfs:label  ″Berlin″ 

When triples have the same subject URI, then those triples have data about the same thing. 

Triples with the same predicate URI describe the same thing about the subject. Triples with 

shared object URIs have the same thing in common.  

There is no restriction that prevents a triple from having combinations of members in common 

with another triple. It is common for two triples to have the same subject and predicate to 

show either members of an unordered list or to specify alternatives. In the following examples 

both Angela Merkel and Gerhard Schröder are/were leaders of Germany and, Germany is 

called Germany in English (en) and Deutschland German (de). 

dbr:Germany dbo:leader  dbr:Angela_Merkel 

dbr:Germany dbo:leader  dbr:Gerhard_Schröder 

and 

dbr:Germany rdfs:label  ″Germany″@en 

dbr:Germany rdfs:label  ″Deutschland″@de 

A collection of triples expresses an RDF Graph15. The set of nodes in the RDF Graph are all the 

subjects and objects in the collection of triples. The set of arcs in the RDF Graph are all the 

predicates contained in the triples that represent the graph. An RDF Graph is serialised into 

                                                           
15 https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/#section-rdf-graph 
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triples, and these are transmitted, typically using HTTP/S, across the Semantic Web in an RDF 

Document.  

If an RDF Document is focused around a single subject, then that RDF Document might not 

include the rdfs:label information for all of the predicates and objects that are contained 

in the RDF Document. For example, the RDF Document returned for Berlin on DBpedia16  

includes an rdfs:label triple for Berlin but no rdfs:labels for any other entities 

referenced in that RDF Document. Without caching, finding the rdfs:label for each entity 

requires another HTTP/S transaction to retrieval the RDF Document for each entity. Compared 

to local machine or local network access, HTTP/S transactions across the internet are 

comparatively slow – perhaps too slow for a user interface. Since the lookup across the 

internet for a single item is comparatively slow and there are many RDF Documents to retrieve, 

resolving rdfs:labels in RDF Documents is time expensive. Since rdfs:label lookup is 

a common and time expensive operation, some Semantic Web browsers (e.g. Becker & Bizer, 

2009; Seeliger & Paulheim, 2012) cache rdfs:label data. 

This research will focus on Semantic Web browsers that display data about a single subject at 

a time. The hypothetical use case is a user queries for information about a single thing and 

receives a list of possible subjects, and then the user then selects a subject from the list of 

search results. So, Semantic Web browsers that visualise complete RDF graphs - that may 

contain data about many subjects - are not addressed in this research. The search facility is 

outside the scope of this research. 

The Semantic Web browsers focused on in this thesis show data about a single thing at a time. 

Therefore, the underlying RDF Graph need only contain triples that are focused around a 

single subject (i.e. the thing of interest). For clarity, these RDF Graphs will be referred to as 

Single Subject RDF Graphs (SSRGs). 

                                                           
16 http://dbpedia.org/resource/Berlin 
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Linked open data are an additional set of criteria upon the Semantic Web data standards, and 

so the research of this thesis will also apply to linked open data with the caveat that only a 

single subject is shown at a time. The user interfaces of interest here focus on subjects rather 

than links between many subjects. 

2.4 ONTOLOGY 

A Semantic Web ontology defines the concepts and relationships used to describe a domain of 

knowledge17. RDF Schema18 (RDFS), Web Ontology Language19 (OWL) and Simple Knowledge 

Organization System20 (SKOS) are different standards for expressing Semantic Web ontologies. 

A typical example of ontological linking is the “type” of a thing is represented as a triple with 

an rdf:type21 predicate and an object that links to ontological information. Another form 

of ontological linking is found by dereferencing the predicate in a triple. For example, 

dereferencing the predicate rdf:type provides ontological information that specifies 

rdf:type is a Property defined by the RDF standards and the acceptable types of subjects 

are Resources (anything), and the acceptable types of objects are Classes. So, data is linked to 

ontology by special triples and predicates. This research focuses on predicates are the basic 

unit of ontology. 

Just because ontology can be expressed by special triples and through predicates does not 

mean that this always happens in practice or that the links to ontology are accurate. There is 

no enforcement of ontology on the Semantic Web, and so ontological information is unreliable. 

For example, the following example states that Germany is an instance (rdf:type) of the 

literal string “Country”, but the ontological information for rdf:type states that any triple 

using rdf:type as a predicate will have an object that is an instance of the datatype 

                                                           
17 http://www.w3.org/standards/semanticweb/ontology 
18 http://www.w3.org/TR/2014/REC-rdf-schema-20140225/ 
19 http://www.w3.org/TR/2012/REC-owl2-primer-20121211/ 
20 http://www.w3.org/TR/2009/REC-skos-reference-20090818/ 
21 http://www.w3.org/1999/02/22-rdf-syntax-ns#type 
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rdfs:Class. However, these following two triples are valid and represent a valid RDF Graph. 

Semantic Web browsers are not expected to reject these triples. 

dbr:Germany rdf:type  ″Country″ 

rdf:type  rdfs:range  rdfs:Class 

Ontological freedom exists because Semantic Web data can be expressed in a mixture of 

ontologies and there are no restrictions on creating new ontologies. Ontological freedom is an 

essential feature of an open Semantic Web because individual data creators can express 

information in ways appropriate to their context. There is no centralised social, cultural, or 

political viewpoint on is an ideal ontology. For example, the naming of people around the 

world follows many different patterns. Therefore, an ontology based on Anglosphere 

conventions of first name, middle names, and family name may not properly represent names 

from outside the Anglosphere. As a specific example, the Vivo ontology22 (namespace vivo:) 

is based on Anglosphere naming and so it is not clear how to encode the Chinese name LIN 

Wanzeng (林宛曾). Should LIN Wanzeng be represented as: 

<#person1>  vivo:familyName ″Lin″ 

<#person1>  vivo:givenName ″Wanzeng″ 

or 

<#person1> vivo:familyName ″Lin″ 

<#person1> vivo:givenName ″Wan″ 

<#person1> vivo:middleName ″Zeng″ 

Semantic Web documents can be thought of as having an individual dynamic ontology that 

follows external ontologies to varying degrees. Since Semantic Web documents can contain 

triplets from multiple ontologies then, in effect, each Semantic Web document can potentially 

                                                           
22 http://vivoweb.org/ontology/core 
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have a combined ontology that is unique to that document. The problem of multiple 

ontologies is compounded when combining multiple data sources, which may be missing some 

details. The effect of this is that there are no certain means to predict which ontologies will be 

present in an RDF Graph until it is retrieved and read. 

When data from multiple sources are combined, especially if the sources do not have 

complete data about the same topics, the chances of data not conforming to ontology 

increases. Additionally, the ability of Semantic Web data to be recombined increases the 

likelihood that data source will be used by a user who has goals from the source’s publisher. 

When ontology is static (an equivalent example is a table in a database) then a static data 

presentation can adequately display that data to users. However, since ontology is dynamic, 

then static approaches to display Semantic Web data are not suitable. Even if the ontological 

information was static-enough (i.e. less dynamic), there is still no guarantee that the 

ontological information is reliable. Also, recombination means what users will do with data is 

not foreseeable, so this means that pre-determined methods for displaying data might not suit 

the user. Recombination also means that the Semantic Web is innumerable because it is 

impractical to count all the information available on the Semantic Web. The set of triples for a 

single subject, once data sources are combined, and inference applied, could potentially be 

enormous. 

2.5 ADAPTIVE AND ADAPTABLE USER INTERFACES 

An adaptive user interface (AUI) self-modifies content, structure and functionality to meet the 

needs of individual users (Schneider-Hufschmidt, Malinowski, & Kuhme, 1993). This section 

introduces the concept of an AUI, and this is later used to evaluate the adaptiveness of current 

Semantic Web browsers. 
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An AUI models a user by learning from user actions and stores what is learnt in a user model. 

The part of the AUI that decides how to self-modify based on the user model is called the 

recommender (de la Flor, 2004).  

A problem in AUI user modelling is that a system begins with no information about a new user 

and must rapidly learn from few training cases (Langley, 1999). Langley says that the user’s 

time is the “precious resource” and not CPU cycles. This leads Langley to suggest that an AUI 

that has high accuracy and learns rapidly is more competitive than an AUI that learns slower, 

even if the slower learner has higher accuracy. 

Producing an AUI takes more effort than a non-Adaptive User Interface because of the 

additional work in producing the action observer, the learner, the user model and the 

recommender. However, Kules (2000) suggests that the benefits of an AUI are most likely to 

outweigh the costs when amortised over a large number of users. An AUI based Semantic Web 

browser would need to capture a broader audience than a domain specific application to 

justify the creation of that browser. 

There is a related form of modifiable user interface, called an Adaptable User Interface, that 

the user modifies using special configuration actions (Oppermann, 1994). The key distinction 

between an Adaptive UI and Adaptable UI is that an Adaptable User Interface does not 

automatically modify itself in response to normal user interactions and an Adaptive User 

Interface self-modifies. More recent work (e.g. Kaufmann et al., 2007) view Adaptable versus 

Adaptive UIs as a continuum that measures the degree to which the UI learns from normal 

user interactions or uses special configuration actions. All else being equal, a more Adaptive UI 

is preferred over a more Adaptable UI because an Adaptive UI does not require extra user 

actions for modifications. 
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2.6 SUMMARY 

This chapter explained Semantic Web concepts that are relevant to this thesis. Firstly, there 

was a brief history of the Semantic Web and the origin of the term semantics. This is to assist 

the reader to understand that semantics is the connection between a representation and its 

meaning.  

The chapter introduced the triple made of a(subject, predicate, object) as the 

basic unit of information in an RDF Graph. Then there was a discussion on why this thesis will 

restrict its focus to RDF Graphs focused on a single subject. This restricted RDF Graph termed 

Single Subject-focused RDF Graph (SSRG). 

The chapter then discussed ontology and how the term is used in the context of the Semantic 

Web. The chapter then showed how ontology is connected via special triples and by predicate. 

Then the discussion moved on to reason that ontological information on the Semantic Web is 

dynamic and unreliable and this represents challenges when displaying Semantic Web data 

using static presentations.  

The final section introduced adaptive user interfaces as interfaces that self-modify in response 

to user actions. An AUI observes user actions, learns from these and forms a user model. A 

recommender than applies the user model to data to form a display from that data. The AUI 

approach is applied to the challenges of displaying Semantic Web data, dynamic and 

unreliable ontology, in the rest of this thesis. 
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CHAPTER THREE RELATED WORK 

This chapter reviews different approaches to displaying Semantic Web data in Semantic Web 

browsers. Approaches to forming data displays are grouped into lexical, semantic and user 

preference-based approaches. Lexical approaches base display decisions upon characters 

strings. Semantic approaches utilise the semantic information in RDF Graphs to form displays. 

User Preference approaches consider knowledge of the user when producing displays of 

Semantic Web data. 

Dadzie and Rowe (2011) survey many Semantic Web data browsers and evaluate their 

interfaces from the perspective of ease of use. The survey of Semantic Web browsers in this 

chapter focus primarily on browsers that display data about a single subject at a time, and the 

focus of the review is on how the browsers adapt, or not, to different data. While there are 

some overlaps in the browsers surveyed, the evaluation criteria are different.  

A Semantic Web browser is a type of data viewing software that displays Semantic Web data 

and allows the user to follow links through the Semantic Web (D. A. Quan & Karger, 2004). The 

primary concerns for producing a suitable display from Semantic Web data are deciding which 

triples to display (filtering) and how to arrange the triples on screen (ordering). This section 

looks at current approaches to arranging and filtering Semantic Web data in current Semantic 

Web browsers, especially approaches that are adaptive. 

The approaches to filtering and arranging for display may exploit a combination of three 

sources of information: lexical, semantic and user preferences. Lexical approaches operate on 

characters within the labels of Semantic Web subjects, objects, and predicates. Semantic 

approaches exploit ontological knowledge that is provided in RDF Graphs. User preference 

approaches are AUI approaches that learn to filter and arrange data from user interactions. 
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Throughout this chapter, there are screenshots of Semantic Web browsers that illustrate 

usage of an approach to displaying data that is being discussed. When the Semantic Web 

browser software is publicly available, the screenshots use selected RDF Documents. 

Otherwise, the screenshots come from external sources and so show the data used in that 

screenshot. Using the same RDF Documents in the example Semantic Web browsers gives a 

better basis with which to compare the way each browser displays data. The selected RDF 

documents are from different ontologies to highlight how some browsers render Semantic 

Web data from different ontologies, differently. The selected RDF documents Tim Berners-

Lee’s FOAF file23 and either Berlin24 from the GeoNames ontology or a test calendar file25 from 

W3C. 

3.1 LEXICAL APPROACHES 

Lexical approaches operate on characters within strings of text themselves. On the Semantic 

Web, the text is usually found in the labels of subjects, predicates, and objects in the triples 

that make up an RDF Graph. The terms lexical analysis and syntactic analysis are often used 

interchangeably. The term “syntactic approaches” comes from the semantic-syntactic-

pragmatic distinction in Charles W. Morris’ triadic division of Semiotic Signs (Morris, 1946). 

Lexical algorithms do not take into account the semantic information contained in RDF Graphs. 

Lexical algorithms are computationally efficient because they operate only on characters 

within strings and do not navigate complex data structures. A lexical algorithm does not 

require knowledge of the user.  On the Semantic Web, once rdfs:labels are available for 

all entities then a lexical algorithm requires no further network transactions.   

                                                           
23 http://www.w3.org/People/Berners-Lee/card 
24 http://sws.geonames.org/2950159/about.rdf 
25 http://www.w3.org/2002/12/cal/test/bus-hrs.rdf 
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Lexical approaches to filtering and arranging have no external dependencies that require 

expensive lookups into the corpus. Lexical approaches also need no user preference data. 

Where lexical similarity is a reasonable approximation for conceptual similarity, then lexical 

similarity can be a computationally efficient basis to form displays of Semantic Web data. 

The main types of lexical approaches are Document Ordering, Alphabetical Ordering and 

Lexical Matching. 

3.1.1 Document Ordering 

Document ordering displays the triples in the order they appear in the source RDF Document. 

Brownsauce (Steer, 2003), Disco Hyperdata Browser (Bizer & Gauß, 2007), and the Quick and 

Dirty RDF Browser (Gutteridge, 2012) use document ordering (see Figures 3.1, 3.2, 3.3 & 3.4). 

The RDF standard does not expect that RDF documents will have triples in a useful order, but it 

could be true that a document author (or data source) could supply triples that are 

meaningfully ordered. It is unclear how to use RDF Document Ordering when triples are 

combined from multiple sources. 
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Figure 3.1: Tim Berners-Lee’s FOAF file in Brownsauce. Triples are shown in Document Order. 

 

 

Figure 3.2: Berlin from GeoNames in Brownsauce. Triples are shown in Document Order. 
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Figure 3.3: Tim Berners-Lee’s FOAF file in the Quick and Dirty RDF Browse. Triples are shown in Document Order. 
 

 

Figure 3.4: Berlin from GeoNames shown in the Quick and Dirty RDF Browser. Triples are shown in Document Order. 
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The Disco Hyperdata Browser (Bizer & Gauß, 2007) can simultaneously display RDF triples 

from multiple HTTP sources. Disco shows the source of the data using a legend to the right of 

the triple (see Figures 3.5 & 3.6). 

 

Figure 3.5: Tim Berners-Lee’s FOAF file in Disco. Data is shown in document order. [Black zig-zags denote edits that 
omit spaces so that the screenshot shows relevant features] 

. 
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Figure 3.6: Berlin from GeoNames in Disco. Triples are shown in document order. [Black zig-zag denote an edit that 
omits space so that the screenshot shows relevant features] 

 

3.1.2 Alphabetical Ordering 

Alphabetical ordering is a collation method for ordering a list of strings according to the 

ordering of an alphabet, specifically the Latin alphabet and its variants. The default browser 

for DBPedia26 (see Figure 3.7) displays triples alphabetically by predicate label, whether that 

label is an rdfs:label or heuristically derived from the predicate URI. 

                                                           
26 Live demo: http://dbpedia.org/page/Berlin 
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Figure 3.7: Berlin for DBpedia. Triples are shown in alphabetical order by predicate. 

 

3.1.3 Lexical Matching 

Lexical matching use patterns in the triples to make decisions about arranging triples in a 

display. Alshukaili, Fernandes, and Paton (2016) use lexical matching as part of a probabilistic 

soft logic program that combines RDF graphs. 

Falcons (Cheng & Qu, 2009) is a keyword-based Semantic Web search engine (see Figure 3.8). 

Filtering and ranking search results is analogous to filtering and ordering triples for display. 

Falcons generates a virtual document for each entity in a corpus of Semantic Web data. The 

virtual document contains a string derived heuristically from the URI of the entity, and the 

string literals associated with the entity; typically the object values of rdfs:label and 

rdfs:comment. Keyword searches in Falcon are ranked according to how well the keywords 
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are similar to the virtual documents. Falcons’ keyword search weights terms according to how 

often they appear in the corpus of virtual documents; terms that appear less often are given 

higher weight than terms that appear more often. Falcons is a lexical approach because the 

process of filtering and ordering is lexical. 

 

Figure 3.8: A screenshot of Falcons Concept Search (Cheng & Qu, 2009) 

 

3.2 SEMANTIC APPROACHES 

Semantic approaches to displaying Semantic Web data operate on the meanings attached to 

data, usually by reference to external sources. The Semantic Web provides facilities for 

exploiting semantic information because the semantics are attached to the data, and the 

semantics are often formalised into ontologies. Common semantic approaches include 

predicate matching, type matching, and ontological reasoning. 

3.2.1 Predicate Matching 

Predicate Matching forms data into displays by matching predicates in the data with 

predicates expected by an ontology. Predicate matching is a semantic approach because 

predicates connect Semantic Web data to ontology. The two approaches to predicate 

matching are string matching and graph matching. 
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3.2.1.1 String Matching 

String matching approaches use the string contents of predicates, or the predicate labels, to 

decide how to arrange Semantic Web data in a display. An example of semantic predicate 

string matching is Seeliger and Paulheim’s browser (2012) that automatically arranges related 

triples into groups (see Figure 3.9). The browser uses the WordNet distance of predicate labels 

from pairs of triples as distance metrics for a clustering algorithm. The groups are 

automatically labelled by using the nearest ancestor word of all predicates in a group from 

WordNet’s tree. If the most common ancestor word is too high level, then the most frequent 

predicate label in the group is used instead. 

 

Figure 3.9: Screenshot of a Semantic Web browser that automatically groups triples using semantic predicate 
matching based on strings (Seeliger & Paulheim, 2012) 

 

The Quick and Dirty RDF Browser (Gutteridge, 2012) and Marbles (Becker & Bizer, 2009) 

recognises some predicates from the Friend of a Friend (FOAF) and GeoNames (GEO) 

ontologies and will display triples containing those predicates differently. Specifically, for 

certain predicates indicating images, they display the images linked by the object member of 

the triple instead of printing the URI as a text string. 
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3.2.1.2 Graph Matching 

Graph matching approaches form displays of Semantic Web data by applying transformation 

steps which match parts of an RDF graph to style rules. For example, using XLST to transform 

an RDF document into a display matching XPath expressions (Pietriga, Bizer, Karger, & Lee, 

2006) to spaces in templates. Graph Stylesheets27 (GSS) is a transformation language for 

displaying RDF Graphs. GSS is primarily used in IsaViz (W3C, 2007) a tool for visualising RDF 

graphs. Another approach, Xenon (D. Quan & Karger, 2004) uses a different RDF-based 

stylesheet ontology that matches using SPARQL queries instead of XPath. Stegeman, Ziegler, 

Hussein & Gaulke (2012) uses XLST to match the results of a SPARQL query to widgets.  

A limitation for Graph Matching is that a given RDF Graph has many representations in 

RDF/XML. This means the XLST rules, which match and transform RDF/XML, are sensitive to 

the how an RDF Graph is encoded into RDF/XML. 

3.2.2 Type Matching  

Type Matching approaches select between alternative displays depending on the rdf:type 

of the subject being displayed. The most common form of type matching is template based. 

Templates are used to arrange and filter triples in Exhibit (Huynh, Karger, & Miller, 2007), 

IsaViz (W3C, 2007, p. 3), Marbles (Becker & Bizer, 2009), Tabulator (Berners-Lee et al., 2006), 

Haystack (D. Quan, Huynh, & Karger, 2003), and Zitgist DataViewer (OpenLink Software, 2009). 

This section discusses the templating systems Exhibit Lens (Huynh et al., 2007), Fresnel 

(Pietriga et al., 2006) and Ozone (D. Quan et al., 2003). 

                                                           
27 http://www.w3.org/2001/11/IsaViz/gss/gssmanual.html 
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3.2.2.1 Exhibit Lens 

Exhibit (Huynh, Karger, & Miller, 2007) is an HTML/CSS/JSON/Javascript based template 

system for browsing a fixed corpus that includes a template system called “Lens.” Exhibit 

collections are shown using Views and navigated using Facets. The Exhibit View uses the 

Lenses as templates to display individual data items from a collection (see Figures 3.10 & 3.11). 

Exhibit works on a fixed corpus of data, and so it is assumed the author of the Exhibit-based 

visualisation will invest time in data comprehensiveness, having a stable ontology and 

matching visualisation methods to the data. Exhibit, therefore, works on more restrictive 

assumptions than the Semantic Web.  

 

Figure 3.10: Exhibit showing keyword search, facets, timeline, and map. (Screenshot of http://www.simile-
widgets.org/exhibit/examples/presidents/presidents.html, taken 19 Jan 2017) 
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Figure 3.11: Exhibit showing a timeline overview (left) and a detail view of a person (right). 

 

3.2.2.2 Fresnel 

Fresnel (Pietriga et al., 2006) is a template system for Semantic Web data. Fresnel is supported 

by the Semantic Web browsers IsaViz (W3C, 2007), Longwell (MIT, 2005) and Marbles (Becker 

& Bizer, 2009). Fresnel achieves some measure of display device independence by 

conceptually separating into Fresnel Lenses and Fresnel Formats. Lenses specify how triples 

are filtered and ordered for display. Fresnel Formats specify how Lenses are visually presented. 

Formats have hooks that are styled using Cascading Stylesheets (CSS). Fresnel templates are 

RDF-based and described in the Web Ontology Language (OWL)28.  

Fresnel matches triples using SPARQL expressions or the XPath-like Fresnel Selector Language 

(FSL). Fresnel supports grouping of Lenses and Formats. Groups allow lens or format 

instructions to be attached to groups as a whole. Groups also specify larger units analogous to 

a compound widget made of multiple components.  

Marbles (Becker & Bizer, 2009) allows the user to switch between different Formats when 

these are available. For example, Marbles has switchable data presentations for full data, 

photos only or mobile versions (see Figure 3.12). The view is selected depending on the URI 

used to access the Marbles browser. No other user interface affordances are given to switch 

the view. 

                                                           
28 http://www.w3.org/TR/2012/REC-owl2-overview-20121211/ 
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Figure 3.12: Marbles’ alternative data presentations (from left to right) Full view, Summary view, Photo view 

 

3.2.2.3 Ozone 

Ozone (D. Quan et al., 2003) is an RDF based user interface ontology for the Haystack 

Semantic Web browser. Ozone allows the definition of user interface elements called views. In 

Haystack, operations on Semantic Web data can be performed by linking control widgets to 

operations (called Adenine). Ozone views are attached to RDF data via the rdfs:Class that 

they support. Ozone views have attached requirements for display size so that Haystack can 

select the appropriate view compared to the available display space, e.g. full-screen mode or 

summary mode. Ozone views can also be embedded by other views to allow reuse. 

3.2.3 Ontological Reasoning 

Ontological Reasoning extends type matching, based on matching the rdf:type or 

rdfs:Class, to reasoning about the ontology of the RDF Graph.  

Alshukaili, Fernandes and Paton (2016) have an approach that uses Programmable Soft Logics 

(PSL) to combine inferences from lexical, semantic and user preferences to improve keyword 

search of Semantic Web data. Their approach focuses on learning about the structure of the 

data. While the approach focuses on search results, it is relevant because the search process 
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filters and orders for relevance which is a similar task to filtering and ordering to build a 

display.  

A PSL program consists of weighted first-order logic assignment rules where the weighting 

denotes “more or less likely to be true or false.” Situations are evaluated against the rules and 

the weights combined to give an overall likelihood of true/falseness. Alshukaili et al.’s 

approach uses a lexical similarity in many rules. Semantic information is gathered by 

inferences on the ontology itself, and user preferences are incorporated via user feedback 

from previous interactions with the system.  

Alshukaili et al.’s approach is robust because the use of PSL means that partial, uncertain and 

inductive inferences can be gathered together to build a case for likelihood of similarity. If a 

certain form of information (e.g. ontological information about rdf:type) is missing then, 

the approach will still produce good results. However, like many semantic approaches on the 

Semantic Web, Alshukaili’s approach requires dereferencing many URIs, and that could 

translate into many network transactions. Moreover, the user feedback mechanism begins 

with no knowledge of user preferences and these will take some time to learn. 

3.3 USER PREFERENCE APPROACHES 

User preference approaches make decisions about arranging Semantic Web data by 

incorporating information about the user. User preferences are a special case of semantic 

information but are distinguished from other semantic approaches in that the source of the 

information is the user’s conceptual relationship with the data rather than from either the 

author of the data, the author of the ontology or some other third party. Marbles (Becker & 

Bizer, 2009) allows the user to switch between available views: this is an adaptable approach 

but is not adaptive because view switching occurs in response to explicit user actions. 
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3.4 SUMMARY 

Lexical approaches to grouping and ordering have the advantage that they operate quickly 

with no external dependencies that require expensive lookups into the corpus. Lexical 

approaches also need no user preference data. Common lexical approaches are to leave triples 

in the order they appear in the RDF Document, Alphabetical ordering or String Similarity. 

Where lexical similarity is a reasonable approximation for conceptual similarity, then string 

similarity can be a computationally efficient way to group triples for display. 

Semantic approaches exploit knowledge of semantics to make decisions about filtering and 

ordering for display. Semantic approaches include matching; which matches at the level of 

predicate and templates that match at the level of ontology. Semantic approaches will work 

efficiently if the program has high-speed access to its entire corpus, such as if the corpus is 

entirely contained (enclosed) on a single server. An enclosed corpus is a reasonable 

assumption for a search engine because a search engine can only be expected to search for 

items which it knows (i.e. in its corpus). However, the Semantic Web is closed in any practical 

sense. Enclosure might be achieved if network access to the corpus has speed increases to the 

level they are comparable to local corpus access. Until this happens, approaches that rely on 

semantic approaches may be too slow to be of practical use. 

Templates are a semantic approach for displaying Semantic Web data that operates at the 

level of ontology. Templates are more likely to filter and arrange displays of Semantic Web 

data in ways that make more sense to users. However, templates are selected based on the 

rdf:type or rdfs:class of the subject. Semantic Web has unstable ontologies because 

the presence of a triple matching a particular subject and predicate cannot be relied upon. A 

user could write templates to suit their needs, however in practice template writing may be 

too time-consuming. 
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Under the right conditions – stable predicate patterns, known ontology and some match with 

user goals – templates can work well because users learn where a particular template places 

the data for which they are looking. Templates often display the most useful data more 

prominently and display conceptually related data in groups. 

A common goal of arranging data into a display is to place conceptually related data in close 

proximity. In a template, it is the template’s designer that applies their estimations of 

conceptual proximity when they design the template. Seeliger and Paulheim’s browser (2012) 

groups triples using a clustering algorithm that groups by the semantic similarity of predicate 

labels. Alshukaili, Fernandes and Paton’s approach (2016) combines lexical, semantic and 

ontological information using a probabilistic soft logic program to select data that is related. 

However, where semantic information is available, stable and known, then it should be made 

use of when forming displays of Semantic Web data. As discussed earlier, User Preferences are 

a special case of semantic information where the user preferences are stored where the 

Semantic Web browser can access them quickly. A Semantic Web-browser can also cache 

certain useful semantic information for quick access. There is a strong case to cache 

rdfs:label. Additionally, if other ontological information was cached, then it could be used 

to reason for the purposes of display. The caveat is that ontologies on the Semantic Web are 

unstable and so ontological information might not be available or reliable. Also, ontological 

information does not necessarily represent the user's view on how data should be displayed. 
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Other semantic web browsers exist with similar features to those above. Notably, Dipper29,  

Sig.ma (Tummarello et al., 2010) and URI Burner30 as surveyed in Dadzie and Rowe (2011). 

There are no current Semantic Web browsers that use an AUI and so the use of an AUI is novel. 

While some Semantic Web browsers do self-modify in response to the data (e.g. Marbles), to 

qualify as an AUI, the Semantic Web browser must self-modify in response to the user. 

 

                                                           
29 http://api.talis.com/stores/iand-dev1/items/dipper.html and http://notes.3kbo.com/talis 
30 http://linkeddata.uriburner.com 
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CHAPTER FOUR USER STUDY I: DO USERS AGREE ON THE 

RELATEDNESS OF TRIPLES? 

This chapter explores the first research question by studying the extent to which human 

raters agree on the relatedness of triples. If users do not agree on the relatedness of 

triples, this will provide support for the argument that users may have different 

preferences for the display of triples. 

Question 1. Is there sufficient diversity in user preferences for displaying Semantic Web 

data to justify the overhead of an adaptive user interface that learns how to group and 

order? 

The chapter is structured as follows:  The user study’s introduction and hypothesis, 

methodology, the results of the user study, and conclusions. 

The study described here was originally part of a larger study that investigated lexical 

algorithms for predicting the relatedness of pairs of triples. However, only the part of that 

study relevant to this thesis is described in this chapter. 

This study measures the agreement between multiple raters regarding the relatedness of 

triples. Relatedness means to be associated or connected. In Single Subject RDF Graph 

(SSRGs), relatedness is most strongly expressed in the similarity in meanings of the 

predicate. For example, firstName and familyName are related because they refer to 

information about a user’s name, whereas firstName and dateOfConstruction 

are unrelated because the first refers to information about a name and the second to 

information about time.  
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4.1 HYPOTHESES 
The hypotheses are: 

H0: Raters do not give the same ratings when asked to rate the relatedness of triples 

H1: Raters give the same ratings when asked to rate the relatedness of triples 

 

4.2 METHODOLOGY 

The study compares the participant ratings for the relatedness of two triples with the 

same subject. There were twenty participants and each participant rated fifty pairs of 

triples.  

Participants were recruited by personal contact. Almost all participants were 

acquaintances of the researcher before the study. Participants complete a demographic 

questionnaire which is summarised in “Participant Demographics” (see Section 4.2.3). 

Participants also give informed consent. A copy of the demographic questionnaire is in 

Appendix One. 

Participant performed the rating tasks on an iPad2 running a custom HTML web app. Each 

participant first completed five familiarisation ratings and then rated fifty pairs of triples. 

Of the fifty pairs, forty asked about the relatedness of pairs of triples and ten asked about 

the extent to which a pair of triples contain the same. The databank of triples used in this 

user test is available on GitHub at https://github.com/Stormrose/GPRank. 

Figure 4.1 shows the screen for a rating task. A guiding question is at the near the top of 

the screen. The pair of triples have a common subject, and so this subject is integrated as 

part of the question and bolded (e.g. subject The Beatles). Underneath the question is the 

predicate and object for a pair of triples. Each triple is shown with a colon separating the 



40 
 

predicate (left) from the object (right), for example, “pastMembers: Pete Best” 

represents a triple with the subject “The Beatles”, the predicate “pastMembers” 

and the object “Pete Best”. Underneath the pair of triples is the rating slider. Labels 

appear on the ends of the slider to guide the participant. The slider snaps to five positions 

and defaults to the left-most position. There are approximately 2 centimetres between 

choices on the slider. The five positions on the slider are encoded as the whole numbers {0, 

1, 2, 3, 4}. The left of the slider corresponds to a value of 0, and the rightmost end of the 

slider corresponds to a rating value of 4. The numbers were not labelled on the slider. 

Instead, the sliders are labelled on the two ends, as explained below. 

 

Figure 4.1: Screenshot for the study where the user has given a rating of 1 

 

Figure 4.1 shows where a participant has moved the slider one position from the left and 

this is encoded as a rating of 1 out of {0,1,2,3,4}. 

Participants give relatedness ratings for forty pairs of triples. The question for participants 

is: To what degree do these two snippets give related information about SubjectX? For this 
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category of questions, the slider ends are labelled “Totally unrelated” and “Very strongly 

related”. The pairs of triples used in the relatedness questions are listed in Appendix Two 

and have the question numbers 10 to 49. 

Additionally, participants give ratings for ten pairs of triples based on the extent to which 

the two triples contain the same information. The question presented to participants is:  

To what extent do these two snippets provide the same information about SubjectX? For 

this category of questions, the slider ends are labelled “Completely different” and “Exactly 

the same”.  The pairs of triples used in these types of questions are listed in Appendix Two 

and have the question numbers 0 to 9. 

 

After supplying a rating, the participant presses the continue button to move to the next 

rating task. The slider was reset to the left (corresponding to a value of zero out of five) for 

each question. At the bottom of the screen, there is a progress bar that shows how much 

of the study has been completed. The participant has a forced break of a few seconds 

every ten questions. 

Participants rated the same fifty pairs of triples, but each participant encounters the pairs 

of triples in an individually random order. Participant responses were stored on the iPad2 

using HTML local storage. 

 

4.2.1 Measuring Agreement 

This study uses inter-rater reliability to measure the reliability of the agreement between 

raters for the rating tasks in this study. Inter-rater reliability is a statistical measure of the 

reliability of the agreement amongst different raters.  
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The ratings given by participants are encoded as ordinal numbers, so although the ratings 

are made on a ranked scale, the difference between the ranks is not quantifiable. 

Krippendorff’s Alpha Reliability Coefficient (Krippendorff, 2004), henceforth referred to as 

α, is a measure of inter-rater reliability for multiple raters and ordinal data. Krippendorff’s 

α is a real number between 0 and 1 with zero representing perfect disagreement and 1 

representing perfect agreement between the raters. This study will interpret α using the 

scales from Landis and Koch (1977), which is given in Table 4.1. 

Range Agreement 

   0 to .20 Slight 

.21 to .40 Fair 

.41 to .60 Moderate 

.61 to 80 Substantial 

.81 to 1 Near Perfect 

Table 4.1: Interpreting inter-rater reliability (Landis & Koch, 1977) 

 

4.2.2 Study Location and Time. 

The study was carried out between the 3rd and 14th of June 2012 in the Waikato area. 

Twenty people participated in the study.  

 

4.2.3 Participant Demographics 

Participants were asked to complete a demographic questionnaire to give an overall 

indication of demographic biases that may exist in the participant pool. The results are not 

analysed by demographic attribute. A copy of the questionnaire is in Appendix One. The 

demographic questions ask about participant gender, age, ethnicity, first languages, 

profession, and education level. Participants are not required to respond to any questions 
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and could supply multiple answers so the numbers of responses might not equal the 

number of participants. A summary of the participant demographic attributes follows.  

There were seven female and 13 male participants. There was one participant aged 15 – 

19 years, 11 aged 20 – 24, two aged 25 - 29, two aged 30 – 39 and four aged 40 – 50. 

Genders and age bands are taken from those used by Statistics New Zealand. 

 Participant ethnicity included New Zealand European (10), Asian (5), New Zealander or 

Kiwi (3), European (3), Maori (1) and White (1). Three participants listed dual ethnicities. 

Ethnicity labels are supplied by the participants.  

Seventeen participants had English as a first language, and three participants did not list 

English as a first language. Other first languages included five Asian languages and one 

European language. Two participants listed more than one first language. The participants 

supply language names. Since this user study is primarily a language task, participants 

without English as a first language (3) may have found completing the user study more 

difficult. 

Participant profession included 11 graphic designers, two educators, two from other 

design/media professions, one business person, an individual in the IT industry and three 

who did not specify a profession. Participants could specify more than one profession. 

Professions categories are self-nominated by the participants. 

Participant education levels varied from 3 with Masters, seven with post-graduate 

qualifications, four at Bachelors, 5 in tertiary education at an unspecified level and one 

who did not specify an education level. Participants self-nominated their level of 

education. 
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4.3 RESULTS 
Table 4.2 shows the number of ratings at a given value for each question. Each row 

represents one of the fifty questions. The second to sixth columns contain the number of 

participants giving the rating at the column heading for the question indicated in the first 

column. 

 

Question# Rating (Number of Raters) 

0 1 2 3 4 

0 18 0 1 1 0 

1 14 1 3 2 0 

2 8 6 4 2 0 

3 2 6 4 8 0 

4 4 6 6 3 1 

5 4 5 3 5 3 

6 1 1 2 9 7 

7 0 1 3 11 5 

8 0 0 1 14 5 

9 0 0 6 11 3 

10 10 7 3 0 0 

11 11 3 2 3 1 

12 15 3 2 0 0 

13 11 3 4 1 1 

14 0 2 2 5 11 

15 4 8 2 2 4 

16 0 1 2 8 9 

17 0 1 1 3 15 

18 0 0 0 3 17 

19 0 0 1 6 13 

20 6 5 7 2 0 

21 5 6 3 3 3 

22 13 2 2 2 1 

23 4 5 4 7 0 

24 14 6 0 0 0 

 

Question# Rating (Number of Raters) 

0 1 2 3 4 

25 4 5 4 6 1 

26 3 5 4 5 3 

27 5 7 2 3 3 

28 6 7 3 2 2 

29 1 0 5 8 6 

30 3 7 5 4 1 

31 9 6 4 1 0 

32 6 5 6 2 1 

33 12 1 0 0 7 

34 7 5 3 4 1 

35 7 2 8 3 0 

36 0 0 1 5 14 

37 3 1 0 3 13 

38 2 1 3 10 4 

39 4 0 0 10 6 

40 16 4 0 0 0 

41 16 2 2 0 0 

42 15 2 1 1 1 

43 11 5 2 2 0 

44 4 4 3 6 3 

45 6 4 7 3 0 

46 1 0 3 5 11 

47 3 5 4 3 5 

48 3 0 2 8 7 

49 3 1 1 8 7 

 

Table 4.2: Summary of Ratings 
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For half of the questions (25 out of 50 questions), half of the participants (10 or more of 20 

participants) gave the same rating. The greatest number of participants agreeing on a single 

rating for a single question is 18 participants agreeing on a rating of 0 for question number 0. 

More than two-thirds of the participants (14 or more out of 20 participants) gave the same 

rating in 11 questions of 50. Questions number 5 and 26 had the lowest agreement (measured 

as having 3, 4 or 5 participants supplying each of the possible ratings). 

For half of the questions about related pairs (20 questions of 40), half of the participants (10 

or more out of 20 participants) gave the same rating. The greatest number of participants 

agreeing on a single rating for a single question about related pairs is 17 participants agreeing 

on a rating of 0 for question number 18.  

More than two-thirds of the participants (14 or more out of 20 participants) gave the same 

rating in 3 questions regarding related pairs out of 10 questions. Question number 5 had the 

lowest agreement out of all the pairs being rated for identical information. 

The Krippendorff α for all questions is 0.449 and this, on the scale from Landis and Koch (1977), 

indicates a moderate level of inter-rater reliability. 

 

4.4 DISCUSSION 
 

Half the participants were aged in their early twenties, and there were no participants older 

than fifty years of age. Most participants were first language speakers of English, over half are 

graphic designers, and almost all have specified some degree of tertiary education. This may 

have introduced some bias into the results. 
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There is a moderate level of reliability in the agreement between raters (0.449), and so the 

null hypothesis H0 is rejected, and H1 accepted with the caution that the reliability of 

agreement is moderate.  

H1: Raters give the same ratings when asked to rate the relatedness of triples 

 

The moderate level of agreement demonstrates that raters differ on how they interpret the 

relatedness of triples. This indicates that users may have different expectations for how triples 

are arranged in a display. However, this implication rests on the assumption that relatedness 

of triples and proximity in a display of triples are linked. 

The moderate level of inter-rater agreement provides support for answering the first research 

question in the affirmative; that there is sufficient diversity in user preferences for displaying 

Semantic Web data to justify the overhead of an adaptive user interface. 

 

4.5 SUMMARY 
The chapter documented a user study that addressed the first research question to justify an 

adaptive user interface approach to displaying Semantic Web data. The user study tested how 

twenty participants rated the relatedness of fifty pairs of triples on an ordinal scale from 0 to 4. 

There is only a moderate level of inter-rater agreement between participants, and this 

indicates that an adaptive user interface approach that learns individual user preferences may 

give better individual results. Two user preference learning algorithms are proposed in 

Chapter Five Chapter Five User preferences for grouping and ordering and then tested in 

Chapter Six User Study II: Learning user preferences for grouping and ordering. 
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CHAPTER FIVE USER PREFERENCES FOR GROUPING AND ORDERING 

This chapter proposes three methods for forming grouped and ordered displays of Semantic 

Web data (called NonLearner, ListAlg, and GPRank); the three methods are tested in the 

following chapter. NonLearner does not learn user preference but is used as a baseline to 

compare the other two methods. ListAlg uses a top-down user model and GPRank a bottom-

up user model. 

The chapter is structured with a section for each of the three methods: NonLearner, ListAlg, 

and GPRank. The description of each the methods first gives an overview and then defines the 

user model, how grouping and ordering decisions are made using the user model, how the 

method learns new user preferences, and then a discussion on the approach. Then there is a 

discussion that compares ListAlg and GPRank. The chapter is then summarised to 

contextualise key parts of this chapter within the thesis. 

5.1 NONLEARNER 

NonLearner does not learn user preferences but instead makes grouping decisions based on 

lexical similarity. The input is an SSRG represented as a list of triples, and the output are the 

triples grouped and ordered. NonLearner provides a baseline against which to compare the 

two learning methods. It could be argued that random results should be the baseline, but 

should NonLearner perform better than randomness then the adaptive algorithms must also 

out perform NonLearner. A Javascript implementation of NonLearner is available on Github at 

https://github.com/Stormrose/GPRank. 

NonLearner uses a similar rationale to that in Alshukaili (2016): that nothing is known about 

how to group items, then lexical methods provide an acceptable fallback. Falcons (Cheng & Qu, 

https://github.com/Stormrose/GPRank
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2009) also extends lexical similarity to work with triples and uses a clustering algorithm to 

group similar triples together. 

Since NonLearner does not learn, then it does not require a user model or a method for 

incorporating user preference information into a user model. Accordingly, the description of 

NonLearner focuses on how NonLearner groups and orders a list of triples that represent and 

SSRG. 

 

5.1.1 Forming Displays from NonLearner 

An SSRG that is represented as a list of triples is grouped and ordered using the following steps:  

1. hierarchical clustering  

2. collapsing into groups and orders  

3. eliminating redundant triples. 

Each of these steps is now described.  

5.1.1.1 Hierarchical Clustering 

NonLearner groups triples from an SSRG using a hierarchical clustering algorithm. The input to 

this step is an SSRG represented as a list of triples. The output of hierarchical clustering is a 

tree with weights at each of the nodes and the triples at the leaf nodes. 

Another clustering algorithm used in lexical clustering is k-means. Hierarchical clustering does 

not require a starting estimate of the number of groups in the data whereas k-means 

clustering requires an estimate. The number of clusters/groups may vary between SSRGs, so a 

universal estimate is of limited usefulness. 

The clustering algorithm uses a pairwise distance metric to decide which triples to group 

together. The distance metric used in NonLearner is an extension of the Dice Coefficient (Dice, 
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1945; Sørensen, 1948). The Dice Coefficient is a value between 0 and 1, expressing the 

similarity of two lists of samples (with duplicate entries permitted). A zero value means that 

the lists are not similar and a one value means that the lists are the same. We assume the 

existence of two ordered lists, X and Y. The cardinality |X| of a list is the number of elements it 

contains.  The intersection between two lists contains all elements that occur in both lists 

(allowing for repeated elements). Then the Dice Coefficient is defined in Equation 5.1:  

dice(𝑋, 𝑌) =
2|𝑋 ∩ 𝑌|

|𝑋| + |𝑌|
 

Equation 5.1: Dice Coefficient for lists 

 

The Dice Coefficient for string similarity is calculated by first decomposing the strings into 

case-sensitive lists of bigrams (strings of two characters). For example, we consider the two 

strings “firstName” and “familyName”, which are converted into the following two lists of 

bigrams: {"fi","ir","rs","st","tN","Na","am","me"} and 

{"fa","am","mi","il","ly","yN","Na","am","me"}. For this example, the 

Dice Cofficient is calculated as follows (see Equation 5.2):  

𝑑𝑖𝑐𝑒("firstName","familyName") =  
2 | {"Na","𝑎𝑚","𝑚𝑒"} |

8 + 9
=

6

17
= 0.35 

Equation 5.2: Example of Dice Coefficient for the strings “firstName” and “familyName” 

 

The distance metric between two triples, t1 and t2, used in NonLearner is one minus the 

average between the Dice Coefficients of the predicate and objects (see Equation 5.3).  

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑀𝑒𝑡𝑟𝑖𝑐: Triple ×  Triple → [0, 1] 
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𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑀𝑒𝑡𝑟𝑖𝑐(𝑡1, 𝑡2)

= 1.0

−  
𝑑𝑖𝑐𝑒(𝑡1. 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒, 𝑡2. 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒) + 𝑑𝑖𝑐𝑒(𝑡1. 𝑜𝑏𝑗𝑒𝑐𝑡, 𝑡2. 𝑜𝑏𝑗𝑒𝑐𝑡)

2
 

Equation 5.3: NonLearner’s hierarchical cluster distance metric extends Dice Coefficient 

 

The implementation of NonLearner uses the hcluster() method from the javascript library 

clusterfck[sic]31 to perform the hierarchical clustering. NonLearner combines items when they 

are 90% similar. 

5.1.1.2 Collapsing into Groups and Orders 

The tree structure given by the hierarchical clustering algorithm is converted into a balanced 

tree of height 2. The tree nodes at level one become groups, and the leaves become triples 

within that group. All other depth information is discarded. NonLearner cannot order groups 

or their member triples because hierarchical clustering has no concern for the order of the 

triples. At this point, NonLearner has constructed a set of groups containing triples, where the 

triples within each group are lexically similar.  

 

  

                                                           
31 https://github.com/harthur/clusterfck 
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5.2 LISTALG 

ListAlg attempts to learn user preferences for grouping and ordering triples by recording how 

users group and order predicates. Since ListAlg is a learning algorithm for an adaptive user 

interface it has a user model, a procedure for grouping and ordering a list of triples, a 

procedure for bringing new user preference information into a user model and these are 

discussed below. ListAlg is based on taking a data model that supports a grouped and ordered 

view and extending this data model with a set of heuristic rules to store user preferences. A 

Javascript implementation of ListAlg is available on GitHub at 

https://github.com/Stormrose/GPRank. 

 

5.2.1 User Model 

ListAlg’s user model is an ordered list of groups in which each group is an ordered list of 

predicates (see Figure 5.1).  Each predicate is unique within the user model.  

 

Figure 5.1: User Model for ListAlg 

 

The structure of the ListAlg user model has a close relationship to how triples would be 

grouped and ordered for display; that is, the ListAlg user model is itself stored as ordered 

groups containing ordered predicates. 

 

User Model Groups Predicates 
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5.2.2 Forming Displays from ListAlg 

ListAlg creates a display from an RDF document by placing triples into display groups that 

correspond to groups in the user model. The order within groups also follows order within 

groups in the user model.  

If ListAlg encounters predicates with triples for which it has no user preference information, 

then the UI should take this into account and encourage the user to place those triples 

according to their preference. An example implementation would be to place triples with no 

user preference information into a single group and then to display this group differently to 

draw user attention to these triples. 

 

5.2.3 Incorporating New User Preferences 

ListAlg attempts to merge information about new preferences from a candidate grouping and 

ordering into the user model using a series of heuristic rules. The input to this process is a 

current user model and new preference data, and this produces a new user model. The new 

preference data is represented as triples that are grouped and ordered, for example, taken 

from a grouped and ordered display that the user a rearranged via drag and drop. The process 

for incorporating the user preferences is described below. A worked example follows to 

demonstrate the process and aid understanding. 

ListAlg extracts the predicates from the new preference data and places them into an empty 

ListAlg user model (candidate user model) such that the grouping and ordering of the 

predicates correspond to the grouping and ordering of the triples that contain those 

predicates from the new preference data. The remainder of the process merges two ListAlg 

user models to produce a new user model that would replace the current user model. 
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ListAlg iterates over the predicates in both the current and candidate user models together in 

depth first order from the first predicate in the first group. If the predicates from the 

candidate user model and the current user model are the same, then ListAlg appends the 

predicate to the corresponding group in the new user model.  

If predicates differ then the predicates from the candidate user model are appended into the 

corresponding group in the new user model until either a predicate from the candidate user 

model matches the predicate from the current user model, or there are no further predicates 

in that group within the candidate user model.  

Another way to explain this is that transferring predicates from the current user model into 

the new pauses when there is a mismatch with the candidate user model. If the iteration of a 

candidate user model group has ended then predicates from the current user model are 

appended.  

Predicates from the current user model are only appended into the corresponding group in 

the new user model if the predicate is not already present and does not exist elsewhere in the 

new or candidate user models. This restriction preserves the requirement that predicates only 

appear once in the new user model. 

The following step-by-step example demonstrates ListAlg’s procedure for incorporating new 

preference data. The examples use a JSON-like notation where square brackets represent 

ordered lists. The outer square brackets enclose a ListAlg user model. The inner square 

brackets contain groups of predicates. Strings within the groups represent predicates. Strings 

are unquoted for clarity. At the end of the examples, there is a condensed summary of the 

example with each step represented on a single line. 
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The process removes predicates from the old and candidate user models as the algorithm adds 

predicates to the new user model. The new user model begins empty (see Table 5.1). 

Current User Model Candidate User Model New User Model 

[ 

  [ 

    predicateA, 

    predicateB, 

    predicateC, 

    predicateD 

  ], [ 

    predicateE, 

    predicateF 

  ] 

] 

[ 

  [ 

    predicateA, 

    predicateE, 

    predicateB, 

    predicateG 

  ], [ 

    predicateD 

  ], [ 

    predicateH 

  ] 

] 

[ 

] 

Table 5.1: ListAlg Example - Beginning 

 

ListAlg transfers the first predicate directly into the new user model because the first predicate 

in the current user model and the candidate user model match (see Table 5.2). 

Current User Model Candidate User Model New User Model 

[ 

  [ 

    predicateA, 

    predicateB, 

    predicateC, 

    predicateD 

  ], [ 

    predicateE, 

    predicateF 

  ] 

] 

[ 

  [ 

    predicateA, 

    predicateE, 

    predicateB, 

    predicateG 

  ], [ 

    predicateD 

  ], [ 

    predicateH 

  ] 

] 

[ 

  [ 

    predicateA 

  ] 

] 

Table 5.2: ListAlg Example - Predicate matches in old and candidate user models 
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The predicate from the candidate user model is added to the new user model because there is 

a mismatch between the current predicate in the current user model and the candidate user 

model (see Table 5.3).  

Current User Model Candidate User Model New User Model 

[ 

  [ 

    predicateB, 

    predicateC, 

    predicateD 

  ], [ 

    predicateE, 

    predicateF 

  ] 

] 

[ 

  [ 

    predicateE, 

    predicateB, 

    predicateG 

  ], [ 

    predicateD 

  ], [ 

    predicateH 

  ] 

[ 

  [ 

    predicateA, 

    predicateE 

  ] 

] 

Table 5.3: ListAlg Example - Mismatch between predicate in old and candidate user models 

 

The predicate from the current user model and the candidate user model match again, so they 

are both appended to the corresponding group in the new user model which, in this case, is 

predicateB (see Table 5.4). 

Current User Model Candidate User Model New User Model 

[ 

  [ 

    predicateB, 

    predicateC, 

    predicateD 

  ], [ 

    predicateE, 

    predicateF 

  ] 

] 

[ 

  [ 

    predicateB, 

    predicateG 

  ], [ 

    predicateD 

  ], [ 

    predicateH 

  ] 

[ 

  [ 

    predicateA, 

    predicateE, 

    predicateB 

  ] 

] 

Table 5.4: ListAlg Example - Another predicate match 
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The predicates from the current user model and the candidate user model do not match, so 

ListAlg adds the predicate from the candidate user model to the new user model (see Table 

5.5). 

Current User Model Candidate User Model New User Model 

[ 

  [ 

    predicateC, 

    predicateD 

  ], [ 

    predicateE, 

    predicateF 

  ] 

] 

[ 

  [ 

    predicateG 

  ], [ 

    predicateD 

  ], [ 

    predicateH 

  ] 

[ 

  [ 

    predicateA, 

    predicateE, 

    predicateB, 

    predicateG 

  ] 

] 

Table 5.5: ListAlg Example - Another predicate mismatch 

 

The first group in the candidate user model is exhausted of all predicates, so the remaining 

predicates from the first group of the current user model are appended to the first group in 

the new user model in order. However, predicates from the current user model that remain in 

either the new or candidate user models are not appended to the new user model. In this 

example, ListAlg appends predicateC to the first group of the new user model, but ListAlg 

ignores predicateD (for now) because predicateD appears in the candidate user model (see 

Table 5.6).  

Current User Model Candidate User Model New User Model 

[ 

  [ 

    predicateC, 

    predicateD 

  ], [ 

    predicateE, 

    predicateF 

  ] 

] 

[ 

  [ 

 

  ], [ 

    predicateD 

  ], [ 

    predicateH 

  ] 

[ 

  [ 

    predicateA, 

    predicateE, 

    predicateB, 

    predicateG, 

    predicateC 

  ] 

] 

Table 5.6: ListAlg Example - Candidate user model group exhausted 
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ListAlg skips predicateE in the current user model because predicateE already exists in the new 

user model (in the first group). PredicateF and predicateD do not match, so ListAlg adds 

predicateD from the candidate user model to the corresponding (second) group in the new 

user model (see Table 5.7). 

Current User Model Candidate User Model New User Model 

[ 

  [ 

 

  ], [ 

    predicateE, 

    predicateF 

  ] 

] 

[ 

  [ 

  ], [ 

    predicateD 

  ], [ 

    predicateH 

  ] 

[ 

  [ 

    predicateA, 

    predicateE, 

    predicateB, 

    predicateG, 

    predicateC 

  ], [ 

    predicateD 

  ] 

] 

Table 5.7: ListAlg Example - Pausing for current user model items already in the new user model 

 

The second group in the candidate user model is now exhausted of predicates. ListAlg appends 

the remaining predicates from the second group of the current user model to the second 

group of the new user model in order. In this case, ListAlf appends predicateF to the second 

group in the new user model. If a group in the current user model was exhausted of predicates 

and the corresponding group in the candidate user model had remaining predicates, then 

ListAlg would append the remaining predicates from the candidate user model to the 

corresponding group in the new user model (see Table 5.8). 
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Current User Model Candidate User Model New User Model 

[ 

  [ 

 

  ], [ 

    predicateF 

  ] 

] 

[ 

  [ 

 

  ], [ 

 

  ], [ 

    predicateH 

  ] 

[ 

  [ 

    predicateA, 

    predicateE, 

    predicateB, 

    predicateG, 

    predicateC 

  ], [ 

    predicateD, 

    predicateF 

  ] 

] 

Table 5.8: ListAlg Example - Another candidate user model group exhausted 

 

When there is no corresponding group between the current user model or the candidate user 

model, then that is treated as if there was an empty group there instead. In the following case, 

there is no third group in the current user model, so ListAlg treats the situation as if there was 

an empty group in the current user model. ListAlf inserts predicateH to a third group in the 

new user model. The merge is complete and the new user model is stable because ListAlg has 

processed all predicates in both the current and candidate user models (see Table 5.9). 

Current User Model Candidate User Model New User Model 

[ 

  [ 

 

  ], [ 

 

  ] 

] 

[ 

  [ 

 

  ], [ 

 

  ], [ 

    predicateH 

  ] 

[ 

  [ 

    predicateA, 

    predicateE, 

    predicateB, 

    predicateG, 

    predicateC 

  ], [ 

    predicateD, 

    predicateF 

  ], [ 

    predicateH 

  ] 

] 

Table 5.9: ListAlg Example - Implying an empty group in the current user model 
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Table 5.10 shows the current user model and candidate user models in their original states 

and the new user model when ListAlg has merged the old and candidate user models. The 

table shows an overview of the whole process. Extra line breaks aid following the process 

step-by-step from top to bottom. 

Current User Model Candidate User Model New User Model 

[ 

  [ 

    predicateA, 

 

    predicateB, 

 

    predicateC, 

    predicateD 

  ], [ 

    predicateE, 

 

    predicateF 

  ] 

 

 

] 

[ 

  [ 

    predicateA, 

    predicateE, 

    predicateB, 

    predicateG 

  

 

 ], [ 

 

    predicateD 

 

  ], [ 

    predicateH 

  ] 

] 

[ 

  [ 

    predicateA, 

    predicateE, 

    predicateB, 

    predicateG, 

    predicateC 

 

  ], [ 

 

    predicateD, 

    predicateF 

  ], [ 

    predicateH 

  ] 

] 

Table 5.10: ListAlg Example - Line by line 

 

5.2.4 Discussion 

ListAlg’s user model is a compact format and runs in O(n) (linear) time because the 

integration process iterates over current user model and candidate user models in tandem. 

That is, the number of operations required to produce a new user model will never be greater 

than the count of predicates in the old and candidate models added together (see Equation 

5.4). 

𝐿𝑖𝑠𝑡𝐴𝑙𝑔 𝑟𝑢𝑛𝑠 𝑖𝑛 𝑂(𝑛) 𝑡𝑖𝑚𝑒, 𝑤ℎ𝑒𝑟𝑒 𝑛

< |𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑠 𝑖𝑛 𝑜𝑙𝑑 𝑢𝑠𝑒𝑟 𝑚𝑜𝑑𝑒𝑙|

+ |𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑠 𝑖𝑛 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑢𝑠𝑒𝑟 𝑚𝑜𝑑𝑒𝑙| 

Equation 5.4: Upper bound for iterations in ListAlg 
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ListAlg can use predicates that are URIs, so ListAlg does not incur network delays 

dereferencing labels or risk the inaccuracies introduced by using a heuristic derivation of 

predicate labels. This gives ListAlg an advantage over methods that use label data, such as 

NonLearner.  

ListAlg can match user preferences where the diversity of predicates seen across different RDF 

documents is low. The calculation for Predicate Diversity is one minus the mean number of 

unique predicates per document encountered divided by the total number of unique 

predicates encountered in all documents (see Equation 5.5). 

𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 = 1.0 − 
𝑀𝑒𝑎𝑛 𝑈𝑛𝑖𝑞𝑢𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑅𝐷𝐹 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑈𝑛𝑖𝑞𝑢𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑅𝐷𝐹 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛
 

Equation 5.5: Predicate Diversity for the diversity of predicates in a collection of RDF documents 

 

When Predicate Diversity is low, then the patterns of groups will not change much. ListAlg may 

not reflect user preferences when there are groups missing in the candidate user model that 

are present in the current user model. Missing groups are more likely to occur when the 

Predicate diversity is high. 

ListAlg also assumes that users will always want predicates in the same order. While this might 

be the case, it is possible that a user may prefer the same predicate placed differently in 

different situations. For example, a user prefers the dc:comment predicate displayed in one 

place for movies and in another place for historic events. ListAlg cannot cater for this level of 

sophistication. 
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During preliminary self-testing by the researcher, predicates in groups lower in the order 

tended to frequently move around groups when predicate diversity was high due to ListAlg 

not dealing with missing groups in candidate user models.  

Whether ListAlg is sufficient for real-world SSRGs is tested in the next chapter. If ListAlg 

performs well according to user expectations, then ListAlg’s memory compactness and O(n) 

computation may suit constrained computation environments. 

 

5.3 GROUPED PAIRWISE RANKING (GPRANK) 

Group Pairwise Ranking (GPRank) is a supervised learning method learning user preferences 

for grouping and ordering triples. GPRank is supervised learning because a supervisor (the user) 

guides the learning by providing their preferred grouping and ordering. The difference 

between ListAlg and GPRank is that ListAlg’s balanced tree user model is a top-down method 

and GPRank’s pairwise user model is a bottom-up method.  

GPRank is pairwise: all decisions are made based upon pairs of predicates. GPRank decides 

group membership using weighted voting between pairs of triples. GPRank orders group 

members using pairwise comparisons with accommodation for partial orders. GPRank must 

support partial orders because user preference information is incomplete. GPRank orders 

groups by comparing the sorting order of each predicate in one group versus every other 

predicate in the other group. GPRank was influenced by other sorting algorithms that are 

pairwise and support partial orders and extends these to support grouping Semantic Web data. 

Additional influences are Bayes (Bayes & Price, 1763) and simulated annealing (Kirkpatrick, 

1984). The differences to Bayes are discussed in Section 5.3.4. 

GPRank incorporates new preference data by adjusting the weights between pairs. 



62 
 

Since GPRank is a learning algorithm for an adaptive user interface it has a user model, a 

procedure for grouping and ordering a list of triples, a procedure for bringing new user 

preference information into a user model and these are discussed below. A Javascript 

implementation of GPRank is available on GitHub at https://github.com/Stormrose/GPRank. 

 

5.3.1 User Model 

The user model for GPRank (see Equation 5.6) stores two predicates (a and b) and the values 

which associate between them: order, group and confirmations. The GPRank user 

model for a single user is of type 𝑢𝑠𝑒𝑟𝑔𝑟𝑜𝑢𝑝𝑟𝑎𝑛𝑘𝑠, that is, a set of GPRankEntries. 

𝐺𝑃𝑅𝑎𝑛𝑘𝐸𝑛𝑡𝑟𝑦  ∶=  (𝒂, 𝒃, 𝑜𝑟𝑑𝑒𝑟, 𝑔𝑟𝑜𝑢𝑝, 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠) 

𝑎 ∈  𝑅𝐷𝐹𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑠  

𝑏 ∈  𝑅𝐷𝐹𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑠 

𝑜𝑟𝑑𝑒𝑟 ∈  [0,1]  ∈  ℝ, the confidence that 𝑎 is ordered higher than 𝑏 

𝑔𝑟𝑜𝑢𝑝 ∈  [0,1] ∈  ℝ, the confidence that 𝑎 and 𝑏 are members of the same group. 

𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠 =  ℕ0, the count of confirmations for this tuple. 

𝑢𝑠𝑒𝑟𝑔𝑟𝑜𝑢𝑝𝑟𝑎𝑛𝑘𝑠 ∶= { 𝑥 | 𝑥 ∈  𝐺𝑃𝑅𝑎𝑛𝑘𝐸𝑛𝑡𝑟𝑦 }  

Equation 5.6: GPRankEntry tuple as used in a GPRank based user model 

 

Each relation (a,b) stores an ordering weight (order) in the range [0-1], a group 

membership affinity in the range [0-1] and a count of the number of user confirmations 

this relation has. Logically a usergroupranks forms a sparse table with all predicates 

present on both axes. Order values less than 0.5 represent the probability that the first 
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predicate in the relation is ordered before the second predicate. Order values greater than 0.5 

represent the probability that the second predicate is ordered before the first predicate. The 

divergence of the order value from 0.5 indicates the strength – further from 0.5 being a 

stronger indication. The group affinity value works similarly with lower group affinity values 

representing the likelihood that the two predicates in the relation are not in the same group 

and higher values representing that the two predicates are in the same group. 

In the following example, shown in Equation 5.7, for the predicates firstName and 

familyName, gprank is low (0.15) which indicates that triples containing the predicate 

familyName should be ordered after triples containing the predicate firstName, the 

group affinity is high (0.95) so triples containing these two predicates should be in the same 

group and there are four confirmations of this information. 

𝐺𝑃𝑅𝑎𝑛𝑘𝐸𝑛𝑡𝑟𝑦("𝑓𝑎𝑚𝑖𝑙𝑦𝑁𝑎𝑚𝑒", "𝑓𝑖𝑟𝑠𝑡𝑁𝑎𝑚𝑒", 0.15, 0.95,4) 

Equation 5.7: Example GPRankEntry 

 

In order to support an open-world assumption 𝑎, 𝑏, 𝑜𝑟𝑑𝑒𝑟 and 𝑔𝑟𝑜𝑢𝑝 attributes can also have 

a value that is 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 and the 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠 attribute can also be 0 or infinite. The 

above specifications (see Equation 5.6) represent the usual case for brevity. The open-world 

assumption is so that GPRank’s user model properly reports when information is incomplete 

and does not assume default values that might mislead a display algorithm. 

To be thorough in the conceptual definition, technically the composite candidate key for user 

model entries is (a, b and confirmations) together. However, the order and group 

affinity for the most recent confirmation value is the most useful, so GPRank discards data 

from earlier confirmations. Thus, (a, b) is treated as the composite candidate key. 
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5.3.1.1 A Lookup Function 

It is useful to define a function for referring to a GPRankEntry tuple from within a 

usergroupranks (ugr) by its compound primary key (a, b). This function is used in 

explanations later in the chapter and for understanding how GPRank’s user model operates. 

By definition, tuple attributes are functionally dependent upon the primary key. The lookup 

function will always return a single tuple of type GPRankEntry. The open world cases, 

where tuples are returned for combinations of a and b that are not explicitly stored by the 

implementation, are discussed later. 

Defining the lookup function, gpr, (Equation 5.10) has several steps. Firstly, the function 

gprb (Equation 5.8) returns a single member usergroupgranks set. The function gpra 

(Equation 5.9) extracts the single set member returned by gprb to return a GPRankEntry 

tuple. For readability, gpra is partially composed with the current user’s user model (type 

usergroupranks, a set of GPRankEntries) to define the gpr lookup function. Finally, 

dot notation is used to access the value of attributes in the GPRankEntries (Equation 5.11). 

The gprb function will always return a set with exactly one member. The chapter discusses 

the open world cases where parameters are unknown later. 

𝑔𝑝𝑟𝑏: 𝑢𝑠𝑒𝑟𝑔𝑟𝑜𝑢𝑝𝑟𝑎𝑛𝑘𝑠 × 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 ×  𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 → 𝑢𝑠𝑒𝑟𝑔𝑟𝑜𝑢𝑝𝑟𝑎𝑛𝑘𝑠 

𝑔𝑝𝑟𝑏〈𝑢𝑔𝑟, 𝑎, 𝑏〉  ∶= { 𝑥 | 𝑥 ∈  (𝐺𝑃𝑅𝑎𝑛𝑘𝐸𝑛𝑡𝑟𝑦 ∩  𝑢𝑔𝑟)  ∧   𝑥. 𝑎 = 𝑎 ∧  𝑥. 𝑏 = 𝑏 } 

∀𝑎∀𝑏: |𝑔𝑝𝑟𝑏〈𝑢𝑔𝑟, 𝑎, 𝑏〉| = 1 

Equation 5.8: First step defining a lookup function for a particular GPRankEntry 

 

The lookup function gpr returns a single GPRankEntry tuple, but gprb always returns a 

single member set. So, the definition for the intermediate function gpra borrows square 
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bracket notation with an ordinal parameter from C-Style computer programming languages. In 

this case, the ordinal parameter 1 means the first, and in this case only, member. 

 𝑔𝑝𝑟𝑎: 𝑢𝑠𝑒𝑟𝑔𝑟𝑜𝑢𝑝𝑟𝑎𝑛𝑘𝑠, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 → 𝐺𝑃𝑅𝑎𝑛𝑘𝐸𝑛𝑡𝑟𝑦 

 𝑔𝑝𝑟𝑎(𝑢𝑔𝑟, 𝑎, 𝑏) ∶=  𝑔𝑝𝑟𝑏(𝑢𝑔𝑟, 𝑎, 𝑏)[1] 

Equation 5.9: Second step defining a lookup function for a particular GPRankEntry 

 

For the sake of brevity, the parameter ugr will usually be omitted when it refers to the user 

model for the current user. This partial function is called gpr and will normally be written 

without the partial subscript. To use terminology from functional programming, this step binds 

the user model parameter to a function and returns a new function. gpr always returns a 

single GPRankEntry – it inherits this property from grpa. 

𝑔𝑝𝑟 ∶= 𝑝𝑎𝑟𝑡𝑖𝑎𝑙(𝑔𝑝𝑟𝑎, 𝑢𝑔𝑟): 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 × 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 →  𝐺𝑃𝑅𝑎𝑛𝑘𝐸𝑛𝑡𝑟𝑦 

𝑔𝑝𝑟𝑝𝑎𝑟𝑡𝑖𝑎𝑙(𝑎, 𝑏) ∶= 𝑔𝑝𝑟𝑎(𝑢𝑔𝑟, 𝑎, 𝑏)  ugr is bound as the first parameter. 

Equation 5.10: Second step defining a lookup function for a particular GPRankEntry 

 

For readability, this research writes the partial function without the partial subscript 

e.g. 𝑔𝑝𝑟(𝑎, 𝑏) without the partial function subscript. 
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Dot notation accesses the value of a named attribute in the GPRankEntry tuples, such as 

those returned by 𝑔𝑝𝑟(𝑎, 𝑏). 

𝑔𝑝𝑟(𝑎, 𝑏). 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 

where attribute is one of: a, b, order, group, confirmations 

e.g. 𝑔𝑝𝑟(𝑎, 𝑏). 𝑜𝑟𝑑𝑒𝑟 

𝐺𝑃𝑅𝑎𝑛𝑘𝐸𝑛𝑡𝑟𝑦(𝐶ℎ𝑒𝑒𝑠𝑒, 𝐶ℎ𝑎𝑙𝑘, 1.0, 1.0, 5). 𝑎 = 𝐶ℎ𝑒𝑒𝑠𝑒 

Equation 5.11: Dot notation for named members in a GPRankEntry tuple 

 

5.3.1.2 Constraints and Assertions 

There are constraints and assertions that stem from the design of GPRank’s user model and its 

open world assumption. The undefined tuple and when confirmations are zero support the 

open world assumption. The predicate reversal constraint makes the user model indifferent to 

the order in which predicates pairs are assigned to a and b for lookup. The constraint that a 

and b cannot be the same is because GPRank cannot order pairs of triples that have the same 

predicate. 

5.3.1.2.1 Constraint: 𝑎 and 𝑏 cannot be the same 

When 𝑎 = 𝑏 then order is undefined, 𝑔𝑟𝑜𝑢𝑝 is the same (1.0) and 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠 are 

infinite (see Equation 5.12). This means that there is no ordering information but the two 

predicates are always members of the same group. The implementation used in this research 

avoids this situation so the definition below is included for conceptual completeness. 

∀𝑥 (𝑥 ∈ 𝐺𝑃𝑅𝑎𝑛𝑘𝐸𝑛𝑡𝑟𝑦 ∧  𝑥. 𝑎 = 𝑥. 𝑏

→  𝐺𝑃𝑅𝑎𝑛𝑘𝐸𝑛𝑡𝑟𝑦(𝑥. 𝑎, 𝑥. 𝑎, 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑, 1.0, ∞)) 

Equation 5.12: a and b cannot be the same in a GPRankEntry tuple 
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5.3.1.2.2 Constraint: Predicate Reversal 

Given any 𝐺𝑃𝑅𝑎𝑛𝑘𝐸𝑛𝑡𝑟𝑦  within a particular 𝑢𝑠𝑒𝑟𝑔𝑟𝑜𝑢𝑝𝑟𝑎𝑛𝑘𝑠  (user model) another 

𝐺𝑃𝑅𝑎𝑛𝑘𝐸𝑛𝑡𝑟𝑦 can be calculated which is its reverse (Equation 5.13). In this calculation, the 𝑎 

and 𝑏  predicates are swapped, the order is subtracted from one and the 𝑔𝑟𝑜𝑢𝑝 and 

𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠 are transferred as they are. When the predicates are swapped then the 

gprank (ordering) is inverted but the group affinity and confirmations remain the same. The 

term u is given here to emphasise that the inversion is relevant within only a single user model. 

∀𝑢∀𝑥: (𝑢 ∈ 𝑢𝑠𝑒𝑟𝑔𝑟𝑜𝑢𝑝𝑟𝑎𝑛𝑘𝑠 ∧  𝑥 ∈ (𝐺𝑃𝑅𝑎𝑛𝑘𝐸𝑛𝑡𝑟𝑦 ∩  𝑢)

→  𝐺𝑃𝑅𝑎𝑛𝑘𝐸𝑛𝑡𝑟𝑦(𝑥. 𝑏, 𝑥. 𝑎, (1.0 − 𝑥. 𝑜𝑟𝑑𝑒𝑟), 𝑥. 𝑔𝑟𝑜𝑢𝑝, 𝑥. 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠)) 

Equation 5.13: The result of reversing a and b in a GPRankEntry tuple is calculatable 

 

Which encapsulates the following shown in Equation 5.14: 

𝑔𝑝𝑟(𝑎, 𝑏). 𝑜𝑟𝑑𝑒𝑟 =  1.0 −  𝑔𝑝𝑟(𝑏, 𝑎). 𝑜𝑟𝑑𝑒𝑟 

𝑔𝑝𝑟(𝑎, 𝑏). 𝑔𝑟𝑜𝑢𝑝 =  𝑔𝑝𝑟(𝑏, 𝑎). 𝑔𝑟𝑜𝑢𝑝 

𝑔𝑝𝑟(𝑎, 𝑏). 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠 =  𝑔𝑝𝑟(𝑏, 𝑎). 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠 

Equation 5.14: Deriving a new GPRankEntry tuple from the reversal of a and b 

 

5.3.1.2.3 Statement: The undefined tuple 

When a 𝐺𝑃𝑅𝑎𝑛𝑘𝐸𝑛𝑡𝑟𝑦  tuple referred to by the predicates 𝑎, 𝑏  does not exist in the 

implementation of a particular 𝑢𝑠𝑒𝑟𝑔𝑟𝑜𝑢𝑝𝑟𝑎𝑛𝑘𝑠 then an undefined tuple is returned to 

satisfy the constraint that gprb(a,b) must always return a single GPRankEntry (Figure 

5.15). This supports the open world assumption.  
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𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑𝑔𝑝𝑟𝑎𝑛𝑘𝑡𝑢𝑝𝑙𝑒 ∶= 𝐺𝑃𝑅𝑎𝑛𝑘𝐸𝑛𝑡𝑟𝑦(𝑎, 𝑏, 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑, 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑, 0) 

∀𝑎∀𝑏: ( |𝑔𝑝𝑟〈𝑎, 𝑏〉| = 0 →  𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑𝑔𝑝𝑟𝑎𝑛𝑘𝑡𝑢𝑝𝑙𝑒 ) 

Equation 5.15: The undefined GPRankEntry tuple 

 

In situations where 𝑎 = 𝑏 then the “𝑎 cannot be the same as 𝑏” rule takes precedence 

because the same predicates are in the same group and this is unaffected by the number of 

confirmations. When the predicates are not the same and are also not stored in the user 

model, then nothing can be inferred about the GPRankEntry except that confirmations are 

zero.  

 

5.3.1.2.4 Statement: Confirmations as zero 

To complete the open world assumption, a further rule is needed to define what happens 

when 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠 are zero. This is called the undefined tuple. The meaning is that when 

confirmations are zero, then order and group affinity are always undefined (Equation 5.16). 

∀𝑥: (𝑥 ∈ 𝐺𝑃𝑅𝑎𝑛𝑘𝐸𝑛𝑡𝑟𝑦 ∧ 𝑥. 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠 = 0 →  𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑𝑔𝑝𝑟𝑎𝑛𝑘𝑡𝑢𝑝𝑙𝑒) 

Equation 5.16: A GPRankEntry tuple with 0 confirmations is undefined 

 

5.3.2 Forming Displays with GPRank 

GPRank forms displays by using pairwise comparisons of predicates to organise triples into 

ordered groups and then order within those groups. An overview of the process follows: 

1. Group: Assign triples to groups 

2. Order Groups: sort the groups into preferred order 

3. Order Triples: sort the triples within groups into preferred order 
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GPRank must perform the first step before the others, but steps 2 & 3 can be performed in 

either order – or even in parallel. 

5.3.2.1 Step One - Grouping 

The grouping stage uses a weighted peer election to decide which predicates are grouped 

together. The group weighting is the weighted average of the group affinity values for the 

candidate predicate and the current members of the group. However, weights are also 

adjusted by confirmations to favour the newest user preference information. The 

implementation starts each predicate in a group by itself and then uses simulated annealing 

(Kirkpatrick, 1984) to move predicates into more suitable groups. 

The basic process is to iterate over all predicates looking for the change that would give the 

strongest result in a weighted peer election. In the first iteration, since all groups contain a 

single predicate, this will be equivalent to moving the predicates with the highest group 

affinity value into the same group. The value of the peer-election value is then assigned to the 

simulated annealing target. This has the effect of reducing the annealing target value over 

time. Further iterations merge groups when the peer election strength is stronger than the 

annealing target. The grouping process ends when the annealing target reduces to 0.5. 

5.3.2.2 Step Two – Ordering Groups 

GPRank orders groups by a weighted comparison of the order probability between all 

predicates in one group against all predicates in the other group. This results in a value that 

can be used in a sorting algorithm. It is possible that there are no relations in the user model 

that contain predicates from both groups; in this case, there is no group ordering information 

so the algorithm that does the group sorting must work with partial orders. The 

implementation used by this research is an exhaustive matrix sort, but any pairwise sort that 

supports partial orders will work. 
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5.3.2.3 Step Three – Ordering Predicates Within Groups 

To ordering triples within groups, GPRank uses comparisons of the pairwise ordering weights 

(order) from the user model. This step is the most sensitive to partial orders because 

information about the relations between might be incomplete and only the predicates from a 

single group can contribute ordering information. The implementation used in this research is 

an exhaustive matrix sort, but any pairwise sort that supports partial orders will work. 

5.3.2.4 Resolving Conflicts Between .gprank and grouprank() 

A situation may arise when using GPRank where a higher ordered triple to ends up in a lower 

ordered group. This rule resolves the inconsistency. 

The order of the group takes precedence over the order of triples. If two triples are in the 

same display-group then they are ordered using the value of the order attribute from the 

𝐺𝑃𝑅𝑎𝑛𝑘𝐸𝑛𝑡𝑟𝑦 found in the user model, otherwise, they are ordered according to the order of 

the groups to which they belong. 

Implementations of GPRank can avoid this situation by first ordering the groups of triples and 

then ordering triples within groups. 

 

5.3.3 Incorporating New User Preferences into the GPRank User Model 

Incorporating new user preference information into a GPRank user model from grouped and 

ordered triples begins by tagging predicates with their group number into an ordered list. The 

gathering process can extract this information from a grouped and ordered set of triples, such 

as that provided by the user from a drag and drop interface. 

GPRank compares each predicate in the new preference data to every other predicate in the 

new preference data. If the predicates are the same, then the loop continues – there is no 

need to compare a predicate with itself. If the predicates are not in alphabetical order, then 
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the loop continues because the information from this predicate pair will be recorded when the 

predicates are in alphabetical order. Otherwise, if the predicates are different and in 

alphabetical order, then GPRank retrieves the relation, with the two predicates as primary-key, 

from the current user model. 

If the implementation does not an existing record for gpr(a,b), then a new record is 

created with the starting values for order and group affinity set at either 0.3333 or 0.6667 

and confirmations is set to one. Higher ordering values indicate a greater likelihood that 

the predicate in the first index is ordered before the predicate in the second index. Higher 

group affinity means that the two predicates are likely to be in the same display group. These 

two numbers have a range [0.0 – 1.0] with 0.5 being the midpoint denoting no 

information or no particular preference. 

If this is an existing relation, then the confirmations are incremented by one. If the 

ordering in the incoming user preference information places the first predicate earlier than 

the second, then the order value is moved halfway between its current value and 1.0. If the 

ordering is instead the other way, then the order value is moved halfway between its current 

value and 0.0. If the predicates are members of the same group, then the group affinity value 

is moved halfway between its current value and 1.0 otherwise if the predicate in the new 

preference information is not in the same group then the group affinity value is moved 

halfway between its current value and 0.0. The number of confirmations is increased by 

one, and the relation is saved back into the user model. The process repeats until all 

predicates in the new preference information have been processed against each other and 

each iteration updates the user model as above.  

5.3.4 Discussion 

This section discusses some of the considerations that underlie GPRank. The first topic 

examines why GPRank is based upon predicates patterns and not ontological information from 
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RDF. The next section examines the GPRank weight adjustment formula and why it differs 

from Bayes (Bayes & Price, 1763). 

GPRank does not use ontological reasoning because detecting when users might want a 

predicate displayed in a different place also has some challenges as described in here. At first 

glance, rdf:type seems to be a good basis for ontological reasoning – an algorithm could 

associate different display preferences with different values of rdf:type. However, this 

would rely on rdf:type being present in each SSRG and introduces challenges when 

multiple rdf:type triples are present in an SSRG. This might be made more deterministic if 

rdf:type entries were resolved to find their rdfs:class and rdfs:subClassOf 

values but that would come at the cost of numerous network operations and rely on the 

dereferenced RDF data being both available and of useful quality. These requirements are 

presumptive and so a solution should not rely upon them. 

 

GPRank adjusts half-way between the current order or group affinity values and 0.0 or 1.0, 

and this has advantages over Bayes (Bayes & Price, 1763) that are discussed below. 

The effect of halfway weighing is that new preference information has an immediate effect. 

For example, if the current value of group affinity for two predicates is 0.94 and the incoming 

preference data does not have the two predicates in the same group, then the new group 

affinity value will become 0.47. The effect is a signal to GPRank’s display process that these 

two predicates would prefer to be in different groups, but this preference is weak because the 

weighting is close to 0.5. When the number of samples is high, Bayes requires more contrary 

samples to change to reflect a change in user preferences.  

GPRank’s move-half-way weight adjustment enables predicates that are displayed in different 

groups depending on which other predicates are around. The grouping process uses simulated 
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annealing to create groups where the members maximise their pairwise group affinity. With 

each iteration, the predicate to group affinities are recalculated and the highest chosen again. 

A group’s affinity to a predicate is the average of the group member predicate’s affinities with 

that predicate. The effect of this is that predicates that are sometimes in the same group as 

another predicate and sometimes not when both are present will have group-affinity values 

close to 0.5. Such predicate pairs will have less effect on grouping decisions because the 

weighting value has less effect on the group-average that forms a predicate-to-group affinity. 

Predicates that are consistently placed in the same group, or consistently placed in different 

groups, will develop values that tend towards 0.0 or 1.0. This has more effect upon the 

weighted average for predicate-to-group affinity. 

In addition, the averages for predicate-group affinity is weighted by the number of 

confirmations. The strength of the weighting becomes stronger as more confirmations are 

received. The strength is currently capped at six confirmations based on a preliminary 

investigation by the researcher. The confirmation-based weighting could the subject of more 

robust further research. 

The previous paragraphs discuss the effect of the move-half-way weight adjustment on group 

affinity. The weight adjustment also affects the ordering of groups because the pairwise value 

used to decide which group is order before the other is also weighted based on comparing the 

pairwise ordering values of all members in both groups. Predicate pairs that are ordered 

consistently will develop strong order values (closer to 0.0 or 1.0), and predicate pairs that 

are inconsistently ordered will have order ordering values that converge on 0.5. 

In summary, GPRank’s weight adjustment encapsulates both a pairwise preference and a 

weighting for how much effect the grouping and ordering decisions should place upon that 

preference. This enables displays where predicates are displayed in different groups in 

different circumstances. 
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5.4 COMPARISON BETWEEN LISTALG AND GPRANK 

This section discusses when ListAlg or GPRank might be a more suitable choice for a particular 

context. The discussion compares the projected processing and storage overheads between 

ListAlg and then proposes a future investigation into a hybrid user model that combines the 

advantages of ListAlg and GPRank. This discussion is to round out the understanding of ListAlg 

and GPRank. 

In GPRank, the number of loop iterations will be the square of the number of predicates in the 

incoming user preference data. However, the number of operations to the user model will be 

the number of predicates in the incoming preference data squared minus itself, or n * (n – 

1). This is because predicates that are equal are skipped and the two predicates in the loop 

only affect the user model when the first is alphabetically earlier than the second. The number 

of updates to the user model is not affected by the current size of the user model. In ListAlg, 

the number of updates to the user model is always less than the number of predicates in the 

current user model plus the number of predicates in the incoming preference data. More 

precisely, the number of user model updates in ListAlg will be the number of unique 

predicates in the union of the current user model and the incoming preference data. 

While it may appear that ListAlg’s linear scaling model will have fewer user model updates, 

thus being more efficient, in real-world usage this will only remain true up to a point. The 

number of predicates in a document is expected to remain relatively stable while the number 

of predicates contained in the user model is expected to grow as the user encounters more 

diverse content.  

There eventually becomes a point where GPRank is more efficient (fewer user model updates) 

for incorporating new user preference information when user models become sufficiently 
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large. This cross-over point is when ListAlgUMUpdateCount (Equation 5.17) is equal to 

GPRankUMUpdateCount (Equation 5.18). 

𝐿𝑖𝑠𝑡𝐴𝑙𝑔𝑈𝑀𝑈𝑝𝑑𝑎𝑡𝑒𝐶𝑜𝑢𝑛𝑡

∶= | 𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑠𝐼𝑛𝐼𝑐𝑜𝑚𝑖𝑛𝑔𝑈𝑠𝑒𝑟𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐷𝑎𝑡𝑎 

∪ 𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑠𝐼𝑛𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑖𝑠𝑡𝐴𝑙𝑔𝑈𝑠𝑒𝑟𝑀𝑜𝑑𝑒𝑙 | 

Equation 5.17: The number of user model update operations for ListAlg 

 

𝐺𝑃𝑅𝑎𝑛𝑘𝑈𝑀𝑈𝑝𝑑𝑎𝑡𝑒𝐶𝑜𝑢𝑛𝑡 ∶= |𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑠𝐼𝑛𝐼𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑈𝑠𝑒𝑟𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐷𝑎𝑡𝑎|

∗ ( |𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑠𝐼𝑛𝐼𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑈𝑠𝑒𝑟𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐷𝑎𝑡𝑎| − 1 ) 

Equation 5.18: The number of user model update operations for GPRank 

 

The uniqueness constraint in the union operation for ListAlgUMUpdateCount means that the 

actual crossover point where GPRank’s update process has fewer user model update 

operations than ListAlg is guaranteed once the number of predicates in the user model is at 

least the number of predicates in the incoming user preference data squared and then plus 

twice itself. 

5.4.1 Future research: a hybrid user model 

Although GPRank has a higher computational cost and its user model takes more storage than 

ListAlg, it is possible to improve GPRank’s efficiency by looking for fragments for which 

ListAlg’s assumptions hold (same grouping and order all the time) and then treating those 

fragments as if they were predicates within GPRank. This is an area for further research that 

may improve the efficiency of GPRank implementations.  
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5.5 SUMMARY 

This chapter presented three algorithms for forming displays of Semantic Web data. 

NonLearner uses hierarchical clustering with a lexical distance metric. ListAlg uses heuristics to 

learn user preferences in a way that is space and computationally efficient. GPRank uses 

pairwise measures of group affinity and ordering between predicates. 

The extent to which NonLearner reflects user preference is the extent to which users prefer 

lexically similar predicates to be grouped together. ListAlg assumes that grouping can be 

indexed from top to bottom and that users always want predicates in the same order under all 

circumstances. GPRank assumes that users will behave consistently enough that group 

membership can be determined by peer election. 

The next chapter tests the performance of the three proposed algorithms - NonLearner, 

ListAlg, and GPRank - against user preferences. 

 

 



77 
 

CHAPTER SIX USER STUDY II: LEARNING USER PREFERENCES FOR 

GROUPING AND ORDERING 

This chapter tests the grouping and ordering methods proposed in the last chapter against 

user expectations for grouping and ordering triplets in displays of Semantic Web data. This 

chapter addresses the second research question by measuring the ability of the two proposed 

adaptive user interface methods, ListAlg and GPRank, to learn user preferences for grouping 

and ordering. The chapter addresses the first research question by gathering and comparing 

user preferences for grouping and ordering Semantic Web data.  

The user study documented in this chapter uses a drag-and-drop user interface that allows 

users to express their grouping and ordering preferences.  

 

6.1 HYPOTHESES 

Testing the algorithms involves a few questions. Firstly, do the three algorithms have better 

than random performance against user expectations? Secondly, do the two algorithms that 

learn user preferences (ListAlg and GPRank) learn? Thirdly, do the ListAlg and GPRank match 

user preferences more than the NonLearner? Finally, does one learning algorithm learn user 

preferences better than the other?  The following hypotheses explore the above questions: 

 

The experiment silently tests NonLearner performance against random ordering. 

H0: NonLearner is no better than random grouping and ordering when compared to users’ 

preferred grouping and ordering of Semantic Web data. 
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H1: NonLearner is worse than random grouping and ordering when compared to users’ 

preferred grouping and ordering of Semantic Web data. 

H2: NonLearner is better than random grouping and ordering when compared to users’ 

preferred grouping and ordering of Semantic Web data. 

 

This chapter tests the claim from the previous chapter (above) that ListAlg and GPRank can 

learn user preferences. 

GL0: ListAlg does not learn user preferences for grouping/ordering Semantic Web documents. 

GL1: ListAlg does learn user preferences grouping/ordering Semantic Web documents. 

 

GG0: GPRank does not learn user preferences for grouping/ordering Semantic Web 

documents. 

GG1: GPRank does learn user preferences grouping/ordering Semantic Web documents. 

 

There is a computational cost to using the learning algorithms (ListAlg and GPRank) over 

NonLearner, so it is useful to know if the learning algorithms outperform the non-learning 

algorithm. 

JL0: ListAlg is as accurate as NonLearner for predicting user grouping/ordering preferences. 

JL1: ListAlg is more accurate that NonLearner for predicting user grouping/ordering 

preferences. 
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JG0: GPRank is as accurate as NonLearner when predicting user grouping/ordering preferences. 

JG1: GPRank is more accurate than NonLearner when predicting user grouping/ordering 

preferences. 

 

The experiment tests user preferences for grouping and ordering compared with the 

predictions made by ListAlg and GPRank. This gives three possible hypotheses: 

K0: There is no discernible difference between ListAlg and GPRank when learning user 

preferences for grouping and ordering Semantic Web data. 

K1: ListAlg outperforms GPRank when learning user preferences for grouping and ordering 

Semantic Web data. 

K2: GPRank outperforms ListAlg when learning user preferences for grouping and ordering 

Semantic Web data. 

 

6.2 METHODOLOGY 

This section outlines how the hypotheses were investigated. Broadly, the investigation is in the 

form of a user test using a laptop with a mouse. Participants choose which of two example 

group/orderings are closest to their preference. Participants then provide their ideal 

grouping/ordering via a drag and drop interface. The test then applies user preferences to 

another Semantic Web document within a similar topic domain (dataset). The participant 

chooses which prediction is the best, and the difference between each algorithm’s 

grouping/ordering and the user’s grouping/ordering are recorded. 
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The experiment design requires a set of example data and a method to measure the 

differences between the user’s preferred and algorithm calculated grouping and ordering. This 

section discusses the dataset and its design considerations, then the difference measurement 

and then there is more information about the design of the experiment itself. 

 

6.2.1 The three methods 

NonLearner (see 5.1 above) groups pairs of triples based on a lexical distance metric. 

NonLearner does not learn user preferences but may have some use when user preferences 

are unknown.  

ListAlg (see 0 above) is a heuristic approach to combining user preferences for grouping and 

ordering. ListAlg mirrors how a user has grouped and ordered previously encountered 

Semantic Web data. ListAlg then attempts to merge in any new group/order preference 

information. 

GPRank (see 5.3 above) uses pairwise partial orders with two weighted properties: group 

affinity and the top-to-bottom ordering of the pair. Groups anneal by weighted peer election. 

The weightings for group affinity and ordering are adjusted as more user preference data 

becomes available. 

The ability of NonLearner to group and order triples according to user preferences will be a 

baseline measure to compare the performance of ListAlg and GPRank: both learning 

algorithms are expected to perform better than NonLearner. 
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6.2.2 Dataset design 

The experiment’s dataset should emulate Semantic Web conditions, and so the dataset is 

taken from DBPedia, which derives its data from Wikipedia infoboxes. Semantic Web data is 

not perfect; there are spelling errors, missing information and redundant information. An 

imagined scenario is a set of subjects returned in response to a query. These subjects are 

related, usually by a real-world type even if the rdf:type is not the same. The SSRGs in a set 

have some commonality in predicates used to express the data, but there are also be some 

differences in predicate patterns between SSRG. The dataset used in this user study is 

available on Github at https://github.com/Stormrose/GPRank. 

Dataset Diversity is a useful way to measure the relative stability of predicate patterns 

between data sets. Different dataset diversities allow comparison between the performance 

of the GPRank and ListAlg under situations with stable predicate patterns and less stable 

predicate patterns. 

The calculation for dataset diversity is one minus the mean number of unique predicates per 

document in a dataset divided by the total number of unique predicates in the dataset 

(Equation 6.1). The range is [0.0 − 1.0) with lower values representing a more homogeneous 

data set and higher values representing datasets with a greater diversity of predicates per 

document in the dataset. 

𝐷𝑎𝑡𝑎𝑠𝑒𝑡 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 = 1.0 −  
𝑀𝑒𝑎𝑛 𝑢𝑛𝑖𝑞𝑢𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑠 𝑝𝑒𝑟 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑖𝑛 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝑇𝑜𝑡𝑎𝑙 𝑢𝑛𝑖𝑞𝑢𝑒 𝑝𝑟𝑒𝑑𝑖𝑎𝑡𝑒𝑠 𝑖𝑛 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
 

Equation 6.1: Dataset Diversity 

 

This study has five sets of data and one training set. The training set contains three SSRGs 

while the other sets contain 10 SSRGs. The SSRGs within a set share a common theme but 

have variation in the predicate patterns used to express the data.  The training set is biological 



82 
 

data on plants. The datasets are Movies, Historical Events, Political Leaders, Tourist 

Destinations, and Books.  

The data was then manually edited to ensure that each SSRG had between seven and twenty 

triplets so that the triples from a single SSRG could fit onto a laptop screen without scrolling. 

The edits also ensured a spread of dataset diversities as shown in Table 6.1.  

Dataset Diversity 

Plants (training) 0.10 

Movies 0.22 

Historical Events 0.62 

Political Leaders 0.40 

Tourist Destinations 0.75 

Books 0.40 

Table 6.1: Dataset diversity in the second user study 

 

6.2.3 Measuring differences between alternative grouping and ordering 

This study requires measure for the distance of two different grouping/orderings of the same 

set of data. In this case, the distance between the grouping/ordering expressed by an 

algorithm and the user-supplied grouping/ordering. The measure chosen is a modified Kendall 

Tau Distance (Kendall, 1938). The Kendall Tau Distance is also known as the Bubble Sort 

Distance because it represents the number of swap operations a bubble sort would perform to 

change one list into another. The modifications to Kendal Tau Distance and their rationale are 

described in the following paragraphs. 

Kendall Tau Distance measures the distance between two lists but NonLearner, ListAlg and 

GPRank output their data in a grouped and ordered form. So, we flatten the groups into a list 
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such that the top-to-bottom order is preserved. Unique group end markers are added to the 

list.  

Predicates that are not in both lists are removed because this represents a situation where 

that item does not appear in the user model, and so the method cannot group order that item: 

This occurs when an algorithm group/orders a document for which it does not have 

group/order information for all predicates in its user model. 

The Kendall Tau Distance is the minimum number of swap operations required to transform 

one list into the other. The Kendall Tau Distance can be normalised (Equation 6.2) so that 

comparisons can be made between lists of different lengths – in the case of this experiment 

grouping of and ordering of SSRGs that have different numbers of triples. The denominator for 

normalising the Kendal Tau Distance is the maximum number of bubble sort swaps possible on 

a list of that length, which is (n*(n-1))/2. The result of the normalisation calculation is a 

number in the range [0,1] where 0.0 represents that the two lists are in the same order and 

1.0 represents that the lists are in perfect reverse order from each other. Over many repeated 

measures, a randomly ordered list will average a score of 0.5 in comparison to another list of 

the same members.  

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝐾𝑒𝑛𝑑𝑎𝑙𝑙 𝑇𝑎𝑢 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  
𝑏𝑢𝑏𝑏𝑙𝑒 𝑠𝑜𝑟𝑡 𝑠𝑤𝑎𝑝 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

(
𝑙𝑖𝑠𝑡𝑙𝑒𝑛𝑔𝑡ℎ ∗ (𝑙𝑖𝑠𝑡𝑙𝑒𝑛𝑔𝑡ℎ − 1)

2 )
 

Equation 6.2: Normalised Kendall-Tau Distance 

 

This results in this study are expressed as Normalised Kendall Tau Closeness (Equation 6.3), 

which is calculated by subtracting the Normalised Kendall Tau Distance from 1.0. Higher 

numbers denote two lists are more similar. It is calculated by subtracting the normalised 

Kendall Tau Distance from 1.0. 
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𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝐾𝑒𝑛𝑑𝑎𝑙𝑙 𝑇𝑎𝑢 𝐶𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠 = 1.0 − 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝐾𝑒𝑛𝑑𝑎𝑙 𝑇𝑎𝑢 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

Figure 6.3: Normalised Kendall-Tau Closeness (NKTC) - calculation 

 

The Normalised Kendall Tau Closeness NKTC is used by user study documented in this chapter 

to compare the performance of predictions for grouping and ordering made by NonLearner, 

ListAlg and GPRank against participant supplied grouping/orderings. 

 

6.2.4 Test Sequence 

The sequence of testing for a single participant is as follows. 

The researcher demonstrates the task to the participant. First research demonstrates the drag 

and drop interface for specifying a user’s preferred grouping and ordering. Then the 

researcher shows the screen for selecting between the grouping and ordering created by 

ListAlg and GPRank.  

The participant familiarises themselves with the interface. The researcher needs to be satisfied 

the participant can create groups, remove groups, reorder triplets within a group, move 

triplets into another group and reorder groups. The training round is identical to the research 

rounds except that nothing is recorded, and the round is shorter. The screens for the 

researcher demonstration and participant familiarisation are the same with different titles, so 

only a single set is shown here. 

The drag and drop interface, shown in Figure 6.2, affords the participant a means to express 

their grouping and ordering preferences. Clicking on a triplet, dragging it to its new position 

and releasing the mouse button moves the triplet to the new location. A space, marked with a 

red outline, shows the participant valid drop locations. Dropping a triplet within a group 
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moves the triplet into that group (if not already there) and orders it accordingly. Dropping a 

triplet between, before or after groups creates a new group containing only that triplet. 

Moving all triplets out of a group, leaving the group empty, deletes the group. Finally, the 

participant may change the order of groups by dragging and dropping using the medium grey 

rectangle on the right side of each group. 

 

Figure 6.1: Drag and drop interface for a user to express the grouping and ordering preferences 

 

Once the participant has expressed their preferred grouping and ordering and then pressed 

continue, both ListAlg and GPRank record the preferences into their user models. A new SSRG 

is selected and the ordered by both ListAlg and GPRank. A display is then formed using GPRank 

and ListAlg and the participant selects which grouping/ordering they think is best (Figure 6.3). 

The algorithms are not labelled, and the position of each algorithm is randomised every time 

this screen is displayed so that the participant does not develop a habit of always clicking one 
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side of the screen. In cases where the GPRank and ListAlg output are the same output then the 

selection of a single grouping/ordering is disabled, and the user must click the middle button 

labelled “Both sides appear the same.” 

 

Figure 6.2: Screen for user to select one of two outputs 

 

Following training, the user selects from one of the datasets (Figure 6.4). The participant may 

complete as many or as few datasets as they choose but are only allowed to attempt each 

dataset once. Furthermore, there is a restriction of twenty participants per dataset enforced 

by the programme. This screen will not display buttons for datasets that already have twenty 

participants. 
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Figure 6.3: Screen for Selecting Dataset 

 

If the participant clicks the “End the Research Session” button, then they are shown a thank 

you screen. The participant may choose the order of datasets. The order of documents within 

each set is random for each participant. The first screen a user sees after clicking on an area of 

interest is grouped and ordered using NonLearner (Figure 6.5). The user is invited to drag and 

drop the data on this screen to suit their preferences. The progress bar in the top right corner 

relates to progress through the dataset (Figure 6.6). 
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Figure 6.4: Grouping and Ordering Screen showing grouping and ordering by NonLearner 

 

Figure 6.5: Grouping and Ordering Screen showing data as grouped and ordered by a participant 
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Once the participant is satisfied with the grouping and ordering, they then click the “Continue” 

button. In the background, ListAlg, GPRank add the user’s preferences to their user models, 

and then a new RDF document is randomly selected from the dataset. Each RDF document is 

only encountered once per participant. The RDF data is then grouped and ordered using 

ListAlg and GPRank and then displayed side by side in random order, as in the training (Figure 

6.7). 

 

Figure 6.6: Participant selects the best Grouping/Ordering 

 

The choice test application records the participant’s choice. The participant is then shown the 

drag and drop interface to fine tune the grouping and ordering (Figure 6.8). This screen has 

the grouping and ordering from the side the participant selected. 

Predicates that have not been seen before are placed in a group at the bottom of the 

document. That group has a yellow background to alert the user that these predicates are new. 
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Figure 6.7: Participant can fine tune the grouping and ordering 

 

Once the participant has finished with the drag and drag interface, they click the “Continue” 

button. The user’s ordering is compared using the NKTC with the outputs of ListAlg, GPRank, 

and NonLearner. These NKTCs for each algorithm to the participant supplied data are recorded, 

and the user models for ListAlg and GPRank updated with the new user preference data. Then, 

a new random document is selected, and the test continues repeating from the select which 

side screen until the participant volunteers to end or all documents in the dataset are viewed. 

When a dataset is complete, the user is returned to the dataset selection screen (Figure 6.4) to 

choose another dataset or end the research session. Datasets that the participant has 

previously completed are greyed out and disabled so that no participant may repeat a 

completed dataset. 
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6.2.5 Study location and time 

User testing was carried out during February 2014 in the Waikato area. There was a total of 24 

participants who between them, went through each of the five datasets, twenty times. Almost 

all participants were known to the researcher before the study. 

 

6.3 RESULTS 

Table 6.2 summarises the mean and standard deviation of the normalised NKTC between an 

algorithm and the participant’s grouping/ordering of Semantic Web data. The table is 

organised by Algorithm, Summary Statistic, and Order. The Order is the sequence in which 

participants encounter documents in a data set. GPRank and ListAlg have no entries for the 

first document because their user models are empty until after the first document is grouped 

and ordered by the participant. 

Algorithm Summary 

Stat. 

Order 

0 1 2 3 4 5 6 7 8 9 

NonLearner Mean 0.695 0.674 0.646 0.648 0.643 0.672 0.661 0.655 0.646 0.676 

StdDev 0.123 0.078 0.093 0.093 0.080 0.080 0.100 0.086 0.101 0.081 

            

ListAlg Mean  0.909 0.948 0.948 0.954 0.953 0.959 0.958 0.959 0.956 

StdDev  0.109 0.060 0.063 0.055 0.061 0.052 0.060 0.057 0.053 

            

GPRank Mean  0.909 0.957 0.961 0.963 0.964 0.966 0.968 0.965 0.973 

StdDev  0.109 0.059 0.052 0.050 0.064 0.050 0.051 0.052 0.043 

Table 6.2: Mean and Standard Deviation of Normalised Kendall Tau Closeness by algorithm and sequence for the 
second user study 
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Table 6.3 shows the mean NKTC measures by data set so that it is possible to see if dataset 

diversity affects the ability to learn user preferences. The results are separated into Algorithm, 

Dataset and then in columns by the sequence in which the document is encountered. There is 

no value in the first column for ListAlg and GPRank because their user models are empty until 

after the participant has supplied grouping/ordering information by dragging and dropping 

triplets in the first document they encounter. 

Algorithm Data-set Order 

0 1 2 3 4 5 6 7 8 9 

NonLearner Movies 0.724 0.696 0.675 0.697 0.679 0.691 0.692 0.697 0.694 0.704 

Events 0.613 0.654 0.639 0.616 0.608 0.664 0.622 0.625 0.623 0.658 

Leaders 0.688 0.650 0.619 0.633 0.634 0.658 0.673 0.645 0.615 0.657 

Places 0.705 0.672 0.595 0.609 0.619 0.645 0.599 0.588 0.584 0.652 

Books 0.718 0.673 0.665 0.653 0.644 0.669 0.687 0.683 0.679 0.679 

            

ListAlg Movies  0.928 0.972 0.970 0.971 0.975 0.981 0.991 0.981 0.979 

Events  0.852 0.940 0.924 0.936 0.941 0.956 0.920 0.928 0.938 

Leaders  0.916 0.949 0.971 0.967 0.967 0.971 0.979 0.974 0.977 

Places  0.903 0.935 0.912 0.930 0.927 0.930 0.943 0.945 0.940 

Books  0.942 0.939 0.958 0.955 0.949 0.953 0.954 0.962 0.943 

            

GPRank Movies  0.928 0.985 0.976 0.971 0.982 0.979 0.993 0.987 0.982 

Events  0.851 0.940 0.950 0.951 0.930 0.969 0.943 0.939 0.967 

Leaders  0.916 0.962 0.979 0.975 0.988 0.984 0.992 0.978 0.986 

Places  0.903 0.943 0.933 0.950 0.933 0.932 0.937 0.950 0.961 

Books  0.942 0.950 0.960 0.960 0.982 0.960 0.970 0.969 0.966 

Table 6.3: Mean Normalised Kendall Tau Closeness by Algorithm, Dataset, and Sequence for the second user study 
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The testing interface also counted the number of drag and drop operations performed by 

participants for each document they encountered. It is expected that user familiarity with the 

task of dragging and dropping to express grouping/ordering preferences will cause this 

number to decline over time. However, some of this decrease is also attributable to ListAlg 

and GPRank learning user preferences. Table 6.4 shows the mean number of drag and drop 

operations to transform a document to a participant’s preferred grouping/ordering from an 

algorithm’s prediction. The Order is the number of documents in a dataset encountered by the 

participant. The table is by dataset and order. 

Algorithm Dataset Order 

0 1 2 3 4 5 6 7 8 9 

ALL Movies 23.63 10.05 3.11 4.32 2.00 1.32 2.05 0.74 2.47 1.37 

Events 17.70 12.90 7.20 5.90 4.85 4.60 3.30 3.85 4.85 3.75 

Leaders 20.81 13.95 6.33 4.29 3.57 3.76 3.48 3.24 2.48 2.81 

Places 17.29 11.24 8.90 7.76 9.38 7.76 7.81 8.19 8.76 7.67 

Books 22.05 11.00 6.57 4.05 3.52 2.67 3.76 2.81 2.38 2.24 

Mean 20.30 11.83 6.42 5.26 4.66 4.02 4.08 3.77 4.19 3.57 

Table 6.4:  Mean count of drag and drop operations by dataset and sequence in the second user study 

 

Table 6.5 shows the percentage of times each algorithm is selected as the best representation 

of a participant’s grouping/ordering preferences in a blind selection. The table is organised by 

algorithm and sequence. The both option denotes that the grouping/ordering of ListAlg and 

GPRank were either the same or the user chose to say they were equally good. There is no 

algorithm choice before the first document is displayed because ListAlg and GPRank have 

empty user models. 
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Algorithm Dataset Order 

0 1 2 3 4 5 6 7 8 9 

Both ALL  100 54.81 46.67 42.72 36.63 34.65 38.24 33.33 30.69 

ListAlg  0.00 10.58 19.05 15.53 17.82 24.75 19.61 26.47 18.81 

GPRank  0.00 34.62 34.29 41.75 45.54 40.59 42.16 40.20 50.50 

Table 6.5: Percentage of times participant choose each algorithm by algorithm and sequence in the second user 
study 

 

Table 6.6 shows the amount by which the algorithm that was not selected as best by the 

participant differs from the algorithm the participant selected as having the best 

grouping/ordering. The values are the Normalised Kendall Tau Distance multiplied by one 

hundred so that the values can be read as a percentage difference. The values can be 

interpreted as a percentage of predictive advantage compared to the other algorithm. Higher 

values represent an algorithm that is closer to correct when it is not selected. 

Algorithm Dataset Order 

0 1 2 3 4 5 6 7 8 9 

ListAlg   1.0 4.5 5.4 4.1 3.9 3.8 4.5 4.4 4.7 

GPRank   0.0 4.6 3.2 5.0 3.6 3.7 4.9 4.7 3.8 

Table 6.6: Predictive Disadvantage for Algorithm and Sequence in the second user study 

 

6.3.1 Performance of NonLearner 

NonLearner is used when no user preference information is available. NonLearner’s predictive 

performance is silently measured for NKTC alongside ListAlg and GPRank throughout all 

participant interactions during this study. Since NonLearner does not learn, its performance 

will not change as the participant provides more preference information, so overall summary 

statistics are shown instead of a accuracy broken into the number of SSRGs encountered. 
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Table 6.7 summarises all NKTC values for NonLearner compared with the participant’s 

preferred grouping and order into quartiles. 

Min-0% Quartile 1-25% Median-50% Quartile 3-75% Max-100% 

0.58 0.62 0.66 0.68 0.72 

Table 6.7: Quartiles for the NonLearner's Normalised Kendall-Tau Closeness in the second user study 

 

Randomised groups and orders will tend towards an NKTC of 0.5 and higher values represent 

groupings and ordering that better reflects user preferences. NonLearner scores a median of 

0.66 with a range from 0.58 to 0.72 and an inter-range gap of 0.14. The performance of 

NonLearner is therefore 0.66 with a tolerance of ±0.08. The worst performance of NonLearner 

is greater than random (0.5) by at least the tolerance of ±0.08 so there is evidence to support 

a claim that NonLearner consistently performs better than random. 

 

6.3.2 ListAlg and GPRank Learning 

If ListAlg and GPRank successfully learn user preferences, then their performance should 

become better than both random (NKTC > 0.5) and NonLearner as participants supply more 

preference information to the user models. Figure 6.9 shows the change in the mean NKTC 

from all participants for both ListAlg and GPRank as more documents are encountered. A 

curved trend line is used to indicate change over time. From Figure 6.9, both GPRank and 

ListAlg are higher than random (NKTC > 0.5) and greater than NonLearner’s maximum NKTC of 

0.72). Additionally, the NKTC for GPRank and ListAlg increases from the first to second 

documents, the rate of increase slows until the eighth document, and from there NKTC 

diverges between GPRank and ListAlg.  The improvements in NKTC indicate that ListAlg and 

GPRank are learning as more information about user preferences is available. 
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Figure 6.8: Algorithm Accuracy over time with +/- One Standard Deviation 

 

Figure 6.10 plots the standard deviation of the accuracy of GPRank and ListAlg as the user 

model has data from more documents. If learning is occurring then, the standard deviation is 

expected to begin high and become lower. A higher standard deviation in NKTC indicates less 

consistent predictions while a lower standard deviation indicates that predictive accuracy is 

becoming more consistent. Figure 6.10 shows the standard deviations for GPRank and ListAlg 

begin high and become lower, and this indicates that predictive accuracy becomes more 

accurate as more documents are encountered. This is further indication that both GPRank and 

ListAlg learn. 
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Figure 6.9: Plot showing the standard deviation of algorithm accuracy reduces as more user preference data is 
available 

 

Another indicator that GPRank and ListAlg learn user preferences is that the number of drag-

and-drop operations a participant uses to change from their selected closest algorithm’s 

predicted grouping/ordering to their preferred grouping/ordering should also decrease over 

time. This is a less reliable indicator because the number of drag-and-drop operations might 

decrease because of user fatigue or the user developing more efficient strategies moving data 

into their preferred grouping and ordering. Figure 6.11 shows the mean number of drag and 

drop operations for all participants against the number of documents encountered. The chart 

begins with the first document for which ListAlg and GPRank propose grouping/ordering. A 

curved trend-line indicates that the number of drag-and-drop operations decreases over time 

and this decrease indicates that the algorithms have learned user preferences. 
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Figure 6.10: Chart of Change in Participant Drag-and-Drop Operations Over Time 

 

ListAlg and GPRank both have NKTC values that begin above 0.9 and increase above 0.95 as 

more documents are encountered. The standard deviation of the NKTC also reduces over time 

which indicates that predictions by the algorithms become more consistent as the algorithms 

learn more. The overall number of user drag and drop operations also decreases over time. 

Since both ListAlg and GPRank have an increase in mean NKTC, decreases in the standard 

deviation of the NKTC and decreases in the number of drag and drop operations over time, 

this indicates that ListAlg and GPRank learn user preferences for grouping/ordering Semantic 

Web data. 
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6.3.3 ListAlg and GPRank Performance versus NonLearner 

NonLearner has a median NKTC of 0.66 and a maximum of 0.72. Once ListAlg and GPRank have 

data in their user models, then their lowest NKTC value (0.85 for ListAlg and GPRank) is higher 

than the maximum performance of  NonLearner. Therefore, ListAlg and GPRank both perform 

better than the NonLearner. 

GPRank increases NKTC accuracy quicker and levels off at a slightly higher plateau compared 

to ListAlg. Also, GPRank’s results are more stable over time than ListAlg’s because the range 

between +/- a single standard deviation are lower and continue to narrow. 

While the performance results for ListAlg and GPRank are numerically close in terms of NKTC, 

participants can detect the difference between the two algorithms. 

 

Figure 6.11: User Choice of Algorithm by Sequence in the second user study 
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Figure 6.12 plots the percentage of times that participants selected ListAlg, GPRank or “both 

are the same” (Y-axis) along with the number of documents encountered so far per participant 

(X-axis). An exponential trendline per algorithm is given to aid in understanding how user 

choice of algorithm changes as the more documents are encountered and the algorithms have 

therefore had more user preference data from which to learn user preferences. 

On average, GPRank is favoured over ListAlg when users select algorithm in a blind, side-by-

side choice. From the fourth document onwards GPRank and ListAlg are less likely to produce 

equivalent results, and GPRank leads above the choice of “both.” From the ninth document, 

this advantage has grown to the point where GPRank produces the preferred result more 

often than ListAlg and Both combined. 

The NKTC between algorithm prediction and participant supplied data for both ListAlg and 

GPRank increases as participants progress through the data sets. Learning appears to follow an 

exponential pattern – though the test is too short to see if the algorithms reach a natural 

plateau in the accuracy each achieves. 

The NKTC for NonLearner does not change. This is expected because NonLearner does not 

incorporate user preference information. 

User operations are the number of drag-and-drop operations for the user to alter the best 

algorithm output into the user’s preferred grouping and ordering. The Trend of User 

Operations over time is the Log Estimate of the line slope that tracks User Operations as more 

documents are encountered. A smaller Trend of User Operations over time indicates that the 

user operations reduce much quicker as more documents are encountered. Figure 6.13 shows 

that datasets with higher predicate diversity per document take longer for the user operations 

to reduce. 
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Figure 6.12: Trend of User Operations over time compared with dataset diversity in the second user study 

 

The predictive disadvantage is the amount of error between the most accurate of ListAlg and 

GPRank and the least accurate. When plotted against data-set diversity (Figure 6.14) this 

suggests that ListAlg has a greater predictive disadvantage compared to GPRank as dataset 

diversity grows. In contrast, GPRank has an almost flat predictive disadvantage as dataset 

diversity grows. The means that GPRank is consistently more accurate than ListAlg, and 

GPRank is more accurate with greater dataset diversity. 
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Figure 6.13: Percentage predictive disadvantage compared with dataset diversity 

 

6.4 CONCLUSIONS AND SUMMARY 

This section addresses the hypotheses from the start of the user study and then discusses 

these outcomes with reference to the first and second research questions. 

NonLearner has a minimum performance (0.58) that is better than random (0.5) by at least 

some tolerance, here the gap between median and min/max performance. Therefore, H0 and 

H1 are rejected, and H2 is accepted. 

H2: NonLearner is better than random grouping and ordering when compared to user’s 

preferred grouping and ordering of Semantic Web data. 
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Both ListAlg and GPRank show increases in mean NKTC, decreasing in the standard deviation 

of the NKTC and decreasing in the number of drag and drop operations over time and this is 

evidence that ListAlg and GPRank learn user preferences for grouping/ordering Semantic Web 

data. Therefore, GL0 and GG0 are rejected, and GL1 and GG1 are accepted. 

GL1: ListAlg does learn user preferences grouping/ordering Semantic Web documents. 

GG1: GPRank does learn user preferences grouping/ordering Semantic Web documents. 

 

The minimum NKTC of ListAlg and GPRank are both better than NonLearner’s maximum NKTC. 

Therefore, JL0 and JG0 are rejected, and JL1 and JG1 are accepted. 

JL1: ListAlg is more accurate that NonLearner when predicting user grouping/ordering 

preferences. 

JG1: GPRank is more accurate than NonLearner when predicting user grouping/ordering 

preferences. 

 

Although the predictive accuracy of GPRank and ListAlg are numerically close in terms of NKTC, 

users are quickly able to discern a difference. In a side-by-side blind selection, users quickly 

choose GPRank more often than ListAlg. GPRank is (on average) either equal or selected more 

often than ListAlg from the beginning, and GPRank’s is selected more often as more 

documents are encountered. Therefore, there are grounds to reject K0 and K1 and accept K2. 

K2: GPRank outperforms ListAlg when learning user preferences for grouping and ordering 

Semantic Web data. 
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The NonLearner, ListAlg and GPRank perform better than random (NKTC of 0.5). The two 

learning algorithms match user preferences to a greater degree than NonLearner (JL1, JG1). 

The two learning algorithms learn user preferences and the evidence for this is that ListAlg’s 

and GPRank’s accuracy in predicting a user’s preferences for grouping and ordering triples in 

an SSRG increases as more documents are encountered (GL1 and GG1). 

GPRank more accurately predicts user preferences for grouping and ordering than ListAlg (K2). 

Also, GPRank has a lower predictive disadvantage meaning that GPRank predicts more 

consistently and GPRank’s predictive disadvantage is less affected by dataset diversity than 

ListAlg. 

The second research question is: Can an adaptive interface learn, from a few interactions, user 

preferences for grouping and ordering displays of Semantic Web data? 

GPRank is an example of an adaptive user interface method that fulfils the requirements to 

answer this question in the affirmative. GPRank is the best choice (over NonLearner and 

ListAlg) for a method for an AUI that groups and orders triples from an SSRG because GPRank 

has the best ability to predict user preferences when encountering a new SSRG, has the best 

ability to learn user preferences for grouping and ordering and is less affected by dataset 

diversity. 

This chapter presents evidence that GPRank is a good candidate for constructing grouped and 

ordered displays of Semantic Web data based on learning user preferences. The next chapter 

(below) tests whether a display of triples that are grouped and ordered by GPRank has speed 

and accuracy advantages over an Alphabetical ordered display for users selecting data on a 

screen. 
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CHAPTER SEVEN USER STUDY III: GPRANK VERSUS ALPHABETICAL 

ORDERING FOR USER SPEED AND ACCURACY IN INFORMATION 

RETRIEVAL TASKS 

This chapter compares GPRank, an adaptive user interface method for grouping and ordering 

triples in an SSRG against Alphabetical ordering for information retrieval speed and accuracy. 

This chapter directly addresses the third research question. 

Alphabetical ordering is a suitable baseline for comparison with an AUI because Alphabetical 

ordering is used in many of the Semantic Web browsers reviewed in Chapter Three, and has 

broad usage in information systems in general as so is familiar to users. 

The testing is a user study where users click on the answer to a question that is located on a 

single screen of data. 

7.1 HYPOTHESES 

For this experiment, Information retrieval is the retrieval of a single data item from a screen 

display of data items without scrolling. This restricted definition is to reduce the timing 

overheads associated with searching for a Semantic Web document and navigating within that 

RDF Document. The hypotheses are grouped into speed and accuracy, each having a null 

hypothesis representing no detectable advantage to either algorithm and a hypothesis where 

GPRank has an advantage over Alphabetical order. 

 

Are participants faster when carrying out information retrieval tasks from Semantic Web 

displays formed by Alphabetical ordering or GPRank? 
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H0: Grouping and ordering data for display using GPRank has no difference in information 

retrieval speed compared to Alphabetical ordering. 

H1: Grouping and ordering data for display using GPRank has faster information retrieval than 

Alphabetical ordering. 

 

Are participants more accurate when carrying out information retrieval tasks from Semantic 

Web displays formed by Alphabetical ordering or GPRank? 

G0: Grouping and ordering data for display using GPRank has no effect on accuracy for 

information retrieval tasks compared to Alphabetical ordering. 

G1: Grouping and ordering data for display using GPRank results in more accurate information 

retrieval than Alphabetical ordering. 

 

7.2 METHODOLOGY 

A useful test will emulate close to real-world usage scenarios. Semantic Web browsers are not 

commonly in use and programs that work with data (e.g. booking systems) are usually 

customised to suit the data schema and the workflows for their usage context. An imagined 

approximation of a future usage scenario is an information retrieval task in response to a 

question. In this situation, a user has results returned from a customised query. The unstable 

ontology concept means that the returned data may not follow a recognisable schema but will 

have a usable pattern of predicates shared across similar queries. This section discusses the 

experiment design and data gathering. 
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7.2.1 Experiment Design Considerations 

The research assumes that scenario to be information lookup and measures this by having 

participants answer supplied questions. In a normal information lookup scenario, a user would 

expect to locate the document that held the answer. The experiment eliminates locating the 

document as a variable by supplying the Semantic Web document that contains the answer. 

Therefore, this experiment focuses on the retrieval of a triplet from a single screen display of 

an SSRG, without scrolling. The databank and question templates are available on Github at 

https://github.com/Stormrose/GPRank. 

A test app (HTML/JS) allows participants to answer questions from supplied data by clicking on 

the answer. Participants are instructed to go as quickly and as accurately as they can because 

the time taken to find then click the answer and whether the question was answered correctly 

are both recorded. Participants answer enough questions so that there is sufficient data to 

establish reasonably accurate measurements of an individual’s speed and accuracy for both 

Alphabetical ordered and GPRank displays. 

7.2.2 Experiment Implementation 

The testing application is built in HTML/JavaScript and delivered via a web server. The 

researcher briefed each participant in person. Either the researcher or the participant supplied 

the testing equipment, and so it is not possible to control for the differences in computer 

setups. Differences in computer setup will have affected the raw experiment results. The 

mouse moves differently depending on individual settings and screen size/resolution. 

However, the participants completed their contributions in single sessions. The effect is that 

raw speed is incomparable among participants without some form of normalisation. Timing is 

normalised using Wilcoxon-Mann-Whitney Rank Sum and accuracy is normalised using an 

accuracy difference between GPRank and Alphabetical order. 
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This test uses data from multiple topic-domains. The topic domains are the same as in the 

previous chapter; Movies, Tourist Destinations, Historical Events, Political Leaders, and Books.  

This study reuses the Semantic Web data from Chapter Five (see 6.2.1) and extends the 

dataset with additional RDF documents from DBPedia. An HTML/JS based program is used to 

verify that the spread in dataset diversity. Dataset diversity is one minus the mean number of 

unique triplets per document divided by the total number of unique predicates in the 

document set. The dataset diversity in this user study (Table 7.1) is broadly the same as the 

data set used in Chapter Five (see Table 6.1) except that Political leaders dataset was 

increased in dataset diversity by 0.13 to give better coverage of the dataset diversity range. 

Dataset Diversity 

Plants (training) 0.10 

Movies 0.26 

Historical Events 0.64 

Political Leaders 0.53 

Tourist Destinations 0.76 

Books 0.41 

Table 7.1: Dataset Diversity for the third user study 

 

The experiment randomly generates questions from templates combined with the Semantic 

Web documents. In total, there are over 900 possible questions, of which an individual 

participant could encounter a maximum of 81 because participants can only encounter each 

SSRG once. Showing each SSRG only once means that all SSRGs remain are equally unfamiliar 

to the user.  

Some questions include a word that matches the predicate in the answer and some questions 

do not. These questions are called Easy and Hard respectively. In the following example (Table 
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7.2), the word species is used in both the question “To which species does Banana belong?” 

and in the predicate label that indicates the answer “species.” The hard question does not 

include a word match between the question wording and the answer predicate. Solving hard 

questions requires more background knowledge from the participant. The analysis 

distinguishes between Easy and Hard questions to determine if GPRank or Alphabetical 

ordering have an advantage. GPRank may have an advantage if users group similar meaning 

predicates together. 

Type Example Question Example Answer Predicate 

Easy To which species does Banana belong? species 

Hard Where was Helen Clark educated? alma mater 

Table 7.2: Easy/Hard Question examples for the third user study 

 

The selection of display algorithm (GPRank or Alphabetical ordering) is also randomised for 

each question to avoid bias that a specific order would introduce. There is no guarantee that 

an equal number of questions are attempted per participant and algorithm, so the results 

report the N sizes for both algorithms. 

The results are saved to HTML5 LocalStorage in CSV format and then copied to a CSV file. The 

format of the save includes SetID, Participant ID and then a series of four values, one per 

question, representing: DocumentID, QuestionTemplateID, Algorithm (independent) and the 

dependent variables: Did the participant answer correctly and in what time measured in 

milliseconds. 

 

The sequence of the experiment is Topic Domain Selection, Training Phase and Experimental 

Phase. An explanation of what occurs in each phase follows. 
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Topic Domain Selection 

The participant selections a topic domain (Figure 7.1). This choice represents a Set of Semantic 

Web documents and questions. 

 

Figure 7.1: Participant selects a topic domain 

 

Training Phase 

The participant trains their group-order preferences for five documents so that GPRank is 

primed with some initial user preference data (Figure 7.2). Testing in Chapter Five showed that 

GPRank achieves good user preference tracking after five documents. 
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Figure 7.2: Training GPRank with User's preferences for grouping and ordering 

 

7.2.2.1 Experimental Phase 

First participants see the question screen (Figure 7.3). Participants are asked a question and 

told whether the next screen will be ABC of Learned (GPRank) orders. The participant clicks 

the next button when they are ready. 
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Figure 7.3: Question screens with advance indication of the display format for the answering screen (Alphabetical 
ordering and GPRank) 

 

Then participants see the answer screen. The experiment repeats the question at the top of 

the screen. The data is shown in either Alphabetical ordering (Figure 7.4) or GPRank (Figure 

7.5). Participants click what they believe is the correct answer. Timing and accuracy (in/correct 

answer) are recorded from the time the Answer Screen is shown until the click occurs. 



113 
 

 

Figure 7.4: Answering screen for ABC Ordering 

 

 

Figure 7.5: Answering screen for GPRank format 
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If the answer screen was GPRank, then the participant is given an opportunity to alter 

grouping and orderings (Figure 7.6). 

 

Figure 7.6: After answering from a GPRank formatted screen, the participant is given the opportunity to adjust their 
group-order preferences. 

 

There is forced rest of a few seconds after several questions. The Rest Screen reminds 

participants that they can pause on any Question Screen, but not on Answer Screens. 

The participant continues until they volunteer to end the set early or the set runs out of 

documents from which to generate questions. The experiment then shows the Topic Domain 

Selection Screen. 

The experiment shows a progress bar always at the top right of the screen. Like previous 

experiments (see Chapters 4 and 6), participants have the flexibility on how long they spend 

doing this user test. Participants have the option to end their session at any time, after or 

during a set. Participants do not have to complete a set for their data to be recorded and 

useful: partial completions still yield useful data. 
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The data gathering was carried out in the third quarter of 2015. The researcher approached 

participants from among personal contacts. There were thirty participants.  

A summary of the participant demographic attributes follows to illuminate any sampling 

biases that may have occurred. The study results are not analysed demographically. The 

demographic information includes Gender, Age bands, Ethnicity/s, First Languages, Profession, 

and Education. Participants are not required to respond to any questions and could supply 

multiple answers so the numbers of responses for each demographic question may not equal 

the number of participants. Ethnicity is categorised according to labels nominated by the 

participants themselves. The summary omits ethnicities with one response to protect the 

identity of the participants. 

There were 13 female and 17 male participants. There is one participant aged 15-19, 17 

participants aged 20-24, one participant aged 25-29, 4 participants aged 30-39, 2 participants 

aged 40-49, 2 participants aged 50-59, one participant aged 60-64 and one participant aged 65 

or older. Participant ethnicity includes NZ European (8), European (5), New Zealander (4), 

Chinese (4), Maori (3), Pakeha (2), and three other participants, each from different ethnicities.  

Twenty-four participants gave English as their first language. Three participants are first 

language Cantonese speakers and there are three participants each giving Chinese, French, or 

Spanish as their first language. 

Participant professions include seventeen graphic designers, five educators, four computer 

scientists, twelve students and one retired person. Participant education levels included 

twelve students, four participants holding bachelors and six holding masters. 
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7.3 RESULTS 

The results are processed in a combination of Sci-Py Python, R (R-Studio) and Excel because 

each made certain aspects of the analysis easier. The raw data has timing and correctness data 

for nearly 2000 questions answered, so this chapter shows only the aggregated results. Due to 

differences in testing computers, the results are not directly comparable between participants. 

Normalised measures by participant allow for comparison. 

Wilcoxon-Mann-Whitney Rank Sum gives a p-value in the range [0.0 – 1.0] is used to compare 

the probability that timings with one algorithm are quicker than the other for each participant. 

High p-values (1.0) represent quicker times with Alphabetical ordering, while lower p-values 

(0.0) represent quicker times with GPRank. The amount the p-value diverges from 0.5 

indicates certainty. 

Accuracy Delta is the difference between an individual participant’s accuracy under GPRank 

and Alphabetical ordering. The experiment calculates accuracy as the percentage of correct 

answers for each algorithm, and then the Accuracy Delta is calculated by subtracting the 

accuracy percentage for GPRank from the accuracy percentage for Alphabetical ordering. 

The Participant IDs used here are not the same as the participant numbers used during data 

capture to protect participant privacy. The order of participants below is randomised so that it 

is different to the order of participation during data collection. 

The following table (Table 7.3) shows timing data by participant and algorithm. Timing data is 

skewed to the right, so the median is a better measure of centrality than the arithmetic mean. 

The median is indicatory only because centrality does not measure spread. The p-value 

column (Wilcoxon-Mann-Whitney p-value) is the measure of the probability that the 

participant performs faster with one algorithm than the other. The N column states the 
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numbers of questions answered by the participant given as the number for each algorithm and 

then the total. 

 

Participant ABC Timing 

Median (ms) 

GPRank Timing 

Median (ms) 

p-value for H0/H1 N (nABC + 

nGPRank = N) 

u01 2512 2275 0.077 40+35 = 75 

u02 4284 3523 0.340 20+25 = 45 

u03 2465 1793 0.010 36+30 = 66 

u04 3540 3431 0.073 43+38 = 81 

u05 4705 3377 0.069 13+18 = 31 

u06 2296 2924 0.843 34+47 = 81 

u07 7720 15945 0.991 38+28 = 66 

u08 2343 1886 0.104 11+14 = 25 

u09 2152 1963 0.386 33+27 = 60 

u10 3352 2446 0.072 21+20 = 41 

u11 2924 2508 0.292 42+39 = 81 

u12 3112 3681 0.932 42+39 = 81 

u13 2052 2200 0.196 28+12 = 40 

u14 1760 1820 0.440 45+36 = 81 

u15 3408 3205 0.346 27+24 = 51 

u16 2048 1889 0.266 14+26 = 40 

u17 2624 1943 0.076 43+38 = 81 

u18 2968 3066 0.436 45+36 = 81 

u19 2454 3277 0.927 26+20 = 46 

u20 6607 4228 0.024 30+21 = 51 

u21 2480 2333 0.236 41+40 = 81 

u22 3603 2525 0.000 34+47 = 81 

u23 3599 2770 0.007 43+38 = 81 

u24 1693 1669 0.468 40+41 = 81 

u25 3291 2515 0.024 40+41 = 81 

u26 3183 2618 0.214 42+39 = 81 

u27 2952 3122 0.468 29+31 = 60 

u28 1511 2065 0.761 41+40 = 81 

u29 1791 1974 0.447 36+45 = 81 

u30 1400 1766 0.955 43+38 = 81 

Table 7.3: Time to answer question by Participant and Algorithm in the third user study 
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Table 7.4 shows the per participant, per algorithm accuracy when retrieving information 

displayed in Alphabetical order or GPRank. The Delta column is the GPRank accuracy minus 

the Alphabetical order accuracy. The N column is the number of questions answered by each 

participant. The N column contains the Alphabetical order N, the GPRank N, and a total N. 

Participant ABC Accuracy (%) GPRank Accuracy 

(%) 

Accuracy Delta for 

G0/G1 

N (nABC + 

nGPRank = N) 

u01 100% 97% -3% 40+35 = 75 

u02 95% 88% -7% 20+25 = 45 

u03 83% 97% 13% 36+30 = 66 

u04 91% 92% 1% 43+38 = 81 

u05 69% 94% 25% 13+18 = 31 

u06 85% 77% -9% 34+47 = 81 

u07 92% 93% 1% 38+28 = 66 

u08 82% 64% -18% 11+14 = 25 

u09 85% 96% 11% 33+27 = 60 

u10 90% 100% 10% 21+20 = 41 

u11 90% 95% 4% 42+39 = 81 

u12 95% 92% -3% 42+39 = 81 

u13 89% 100% 11% 28+12 = 40 

u14 89% 97% 8% 45+36 = 81 

u15 93% 88% -5% 27+24 = 51 

u16 93% 88% -4% 14+26 = 40 

u17 84% 95% 11% 43+38 = 81 

u18 82% 83% 1% 45+36 = 81 

u19 96% 90% -6% 26+20 = 46 

u20 83% 86% 2% 30+21 = 51 

u21 95% 98% 2% 41+40 = 81 

u22 88% 91% 3% 34+47 = 81 

u23 95% 92% -3% 43+38 = 81 

u24 98% 90% -7% 40+41 = 81 

u25 95% 90% -5% 40+41 = 81 

u26 83% 77% -6% 42+39 = 81 

u27 97% 100% 3% 29+31 = 60 

u28 85% 90% 5% 41+40 = 81 

u29 94% 93% -1% 36+45 = 81 

u30 98% 95% -3% 43+38 = 81 

Table 7.4: Accuracy by Participant and Algorithm in the third user study 
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7.4 FINDINGS 

The following graph (Figure 7.7) plots participants on with normalised values for which 

algorithm has an advantage for timing (Y-Axis) versus Accuracy (X-Axis). The p-value of ABC vs 

GPRank timings is used to provide a normalised measure of which algorithm has a speed 

advantage. A lower y-axis value represents timings in favour of GPRank while a high y-axis 

value represents timings in favour of Alphabetical ordering. The middle ground means that no 

determination of timing advantage can be made. The absolute middle (0.5) means that the 

data is indistinguishable from a coin-toss. 

The X-Axis represents the relative accuracy advantage of GPRank compared to Alphabetical 

ordering. Sub-zero scores represent that Alphabetical ordering has an accuracy advantage for 

that particular participant, while positive X-Axis values represent an accuracy advantage for 

GPRank. The band between -10% is considered noise. 

The trend line is the linear correlation between Algorithm timing advantage and Accuracy. The 

right-downwards slope indicates that participants are both more accurate and quicker with 

their preferred algorithm.  
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Figure 7.7: Chart plotting normalised speed advantage by Algorithm and Accuracy 

 

From 30 participants, ten are faster with GPRank, and four are faster with Alphabetical 

ordering (10% p-values). 

There is a band with no participants that lies between 0.5 to 0.75. The sample size is too small 

to investigate what this means without further research. There are 6 participants with scores 

above 0.75. 

There are 24 participants lower than 0.5, of which 10 have a strong advantage with GPRank. 

This indicates that the remaining 14 participants may have a speed advantage with GPRank, 

but the speeds with either algorithm are close enough not to declare a winner. Participants in 

the 0.10 to 0.5 p-value range have close median times with either algorithm, so it is unlikely 

that display algorithm affects timing much for these participants. 
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Participants who have a timing advantage with GPRank have lower accuracy with Alphabetical 

Order than the converse: those who have a timing advantage with Alphabetical Order have 

accuracy less affected when encountering GPRank. 

7.4.1 GPRank may be more Accurate for Some Participants 

The following graph (Figure 7.8) plots only the participants with a p-value of less than 0.1 or 

greater than 0.9 and removes the participant with a 25% accuracy advantage with GPRank as 

an outlier (25% is higher than the third quartile boundary plus 1.5 times the interquartile 

range of Accuracy Deltas). 

 

Figure 7.8: Chart plotting normalised speed and accuracy advantage. p-values <0.1 and >0.9. Accuracy outlier 
removed. 

 

Ignoring the accuracies between -10% and +10% as noise, there is a cluster of three 

participants who have a significantly higher accuracy advantage with GPRank. However, the N 

value is too small to read much into this without further research. 
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7.4.2 Other Findings 

While not part of the main research aims for this chapter, a large dataset contains other 

opportunities for quantitative exploration. This section contains analysis that is interesting but 

does not directly answer the hypothesis. 

7.4.2.1 The Effect of Set Diversity 

Set diversity is a measure of how diverse the predicate labels are within a document set. The 

dataset diversity formula is the same as that in the previous chapter. The calculation for set 

diversity is one minus the mean number of unique predicates per document divided by the 

total number of unique predicates in a set. The number is in the range [0.0 – 1.0) with 0.0 

representing the least diverse set (the same predicates in all documents) and 1.0 representing 

the most diverse set (no predicates are repeated in between documents). 

There is no linear correlation (Pearson) between set diversity and time to answer. There was a 

moderate correlation (0.49) in incorrect answers as set diversity increased. There was no 

significant difference between GPRank and Alphabetical ordering when correlating time to 

answer with set diversity. Set diversity has a small (-0.27) negative correlation with accuracy as 

set diversity increased, but there was no difference between the accuracy of GPRank and 

Alphabetical ordering. (see Table 7.5) 
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Set Diversity Pearson Correlation vs ABC Ordering GPRank Combined 

Time to answer correctly * * +0.04 

Time to answer incorrectly * * +0.49 

All Times to Answer +0.06 +0.12 +0.09 

Accuracy -0.27 -0.27 -0.27 

* times to answer in/correctly not calculated per algorithm 

Table 7.5: Correlation between Dataset Diversity and answering times in the third user study 

 

7.4.2.2 The Effect of Easy / Hard Questions 

Easy questions contain the answer’s predicate label in the question text. Hard questions do 

not contain the answer’s predicate label in the question text. Hard questions take longer to 

answer and have approximately 5% lower accuracy, but the results are similar for both 

GPRank and Alphabetical ordering (Table 7.6).  

Question 

Type 

ABC Ordering 

(timing mean ms) 

GPRank 

(timing mean ms) 

ABC Ordering 

(accuracy %) 

GPRank 

(accuracy %) 

N (nABC + 

nGPRank = N) 

Easy 3747 3624 92% 93% 636 + 627 = 

1263 

Hard 5049 5285 86% 87% 370 + 341 = 711 

Table 7.6: The effect of Easy/Hard question on Answer Time and Accuracy by Algorithm in the third user study 

 

7.4.2.3 The Effect of Participants Learning the Task 

Participants may become more accustomed to a task as the user test progresses. Document 

order, question order, and the ordering in with the two display algorithms were used are all 
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randomised to reduce any bias that becoming accustomed to the task may introduce. 

However, viewing this information by algorithm may show whether GPRank or Alphabetical 

ordering become more learnable for users. 

The following graph (see Figure 7.9) shows that participant response times for correct answers 

improve the more questions a participant answers. GPRank and Alphabetical ordering have a 

similar rate of improvement. 

 

Figure 7.9: Response Times vs Order of Answering by Algorithm 
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There was no effect on accuracy as users progressed through the questions for either GPRank 

or Alphabetical ordering (Table 7.7). Accuracy overall appears to be unaffected by the length 

of the study (up to 81 questions per participant). 

Alphabetical Order -0.02 

GPRank -0.03 

Table 7.7: Correlation [-1,+1] of Algorithm Accuracy to Cumulative Questions Answered by Algorithm in the third 
user study 

 

7.5 CONCLUSIONS 

From thirty participants, one-third show a speed advantage with GPRank, and four have a 

speed advantage with Alphabetical ordering. There are 20% (10 - 4 = 6) more participants that 

have a speed advantage with GPRank compared to Alphabetical ordering. Therefore, H0 is 

rejected, and H1 is accepted.  

H1: Grouping and ordering data for display using GPRank results in faster information retrieval 

than Alphabetical ordering. 

 

From thirty participants there are four (inc. one outlier) that show an accuracy advantage with 

GPRank over Alphabetical ordering. Participants tended to be more accurate with the 

algorithm with which they were also fastest. Therefore, there are no adequate grounds to 

reject the null hypothesis G0 and accept G1. 

G0: Grouping and ordering data for display using GPRank has no effect on accuracy for 

information retrieval tasks compared to Alphabetical ordering. 
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As a set becomes more complex then times to answer incorrectly increase. There is a weak 

correlation that indicates accuracy decreases as set diversity increases. Both GPRank and 

Alphabetical ordering perform similarly in this regard. 

Hard questions take longer to answer and are have ~5% lower accuracy. GPRank and 

Alphabetical ordering perform similarly for timing and accuracy under Easy/Hard questions. 

Participants become quicker at answering questions, and their accuracy is unaffected over the 

duration of an 81 questions test. 

 

The accepted hypotheses are: 

H1: Grouping and ordering data for display using GPRank has faster information retrieval than 

Alphabetical ordering. 

G0: Grouping and ordering data for display using GPRank has no effect on accuracy for 

information retrieval tasks compared to Alphabetical ordering. 

Since GPRank, compared to Alphabetical ordering, enables more participants to be faster with 

equivalent accuracy, then GPRank is a better alternative than Alphabetical ordering for 

forming displays of Semantic Web data. 

The next chapter examines the conclusions from this chapter in the context of the wider thesis.
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CHAPTER EIGHT SUMMARY AND CONCLUSIONS 

This chapter discusses the research considering the overall research aims. The chapter begins 

with a restatement of the research questions and moves onto a summary of the research. 

After the summary is a discussion of the findings and implication of the research. The chapter 

ends with recommendations for application of the findings and suggestions for future research. 

This thesis examines if a Semantic Web browser with an adaptive user interface may improve 

speed and accuracy information retrieval tasks. The Semantic Web presents a unique 

challenge for the display of data because the Semantic Web does not have fixed ontologies 

and users may have different preferences for how data is grouped and ordering when 

displayed. The hypothesis is that: 

A Semantic Web browser with an adaptive user interface that groups and orders data has 

speed and accuracy advantages in information retrieval tasks.  

 

We address the thesis by answering the following questions:  

Question 1. Is there sufficient diversity in user preferences for displaying Semantic Web data to 

justify the overhead of an adaptive user interface that learns how to group and order? 

The first user study (see Chapter Four) investigates the inter-rater agreement for participants 

who are asked to rank the relatedness of pairs of Semantic Web triples. The results are that 

participants have a moderate amount of agreement about the relatedness of pairs of triples 

and this indicates that user preferences for grouping and ordering data are diverse enough to 

justify the overhead of an adaptive user interface. 
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Question 2. Can an adaptive interface learn, from a few interactions, user preferences for 

grouping and ordering displays of Semantic Web data? 

Chapter Five describes two adaptive user interface methods, ListAlg and GPRank, that are 

subsequently tested in the second user study in Chapter Six. Both ListAlg and GPRank are 

capable of learning user preferences for grouping and ordering Semantic Web data. GPRank is 

more accurate at predicting user preference than GPRank. Although the absolute difference is 

slight, participants reliably select GPRank’s predictions over ListAlg in a blind selection. 

Question 3. Do users perform single screen search tasks quicker and more accurately with an 

adaptive user interface that groups and orders Semantic Web data or with data in alphabetical 

order? 

The third user study in Chapter Seven tests whether users are faster and more accurate 

finding the answer to a question in a screen of data arranged using an adaptive user interface 

based upon GPRank or with Alphabetical ordering. Some participants are faster with GPRank, 

and the users that are faster with Alphabetical ordering are not much slower when using 

GPRank. There are a smaller group of users who perform information retrieval tasks more 

quickly with Alphabetical ordering. There is no difference in the accuracy of users performing 

information retrieval tasks when using GPRank or Alphabetical ordering. 

 

8.1 CONCLUSIONS 

For about a quarter of users, GPRank (an adaptive user interface algorithm) resulted in 

increased speed in information retrieval tasks compared to Alphabetical ordering. For most 

users, the performance was about the same. Users were no less accurate using GPRank than 

when using Alphabetical ordering. 
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The performance of GPRank is then evidence that an adaptive user interface that groups and 

orders data can improve speed in information retrieval tasks. Some users are faster with 

GPRank and no less accurate than Alphabetical ordering. Therefore, the hypothesis is accepted: 

A Semantic Web browser with an adaptive user interface that groups and orders data has 

improves speed in information retrieval tasks. 

The user tests (Chapters Six and Seven) use single screens of data that did not scroll. It is not 

known how GPRank and Alphabetical ordering will perform relative to each other if the display 

includes scrolling. 

The second and third user studies use Semantic Web data from five topic areas, and the 

results might not be generalisable outside those topics. 

There are advantages for more users in using AUIs based upon GPRank and using GPRank has 

few disadvantages for those more used to Alphabetical Ordering. For those that prefer 

alphabetical order, the drag-and-drop system used to express user preferences for grouping 

and ordering can detect when a user is consistently arranging data in alphabetical order and 

offer to always to do alphabetical ordering. 

GPRank makes decisions based on pairs of triplets. GPRank works when the assumptions 

underlying the unstable ontologies hold. The key assumption is that predicates within an SSRG 

are not reliably predictable until the SSRG is retrieved. Schema information – such as that 

contained in rdf:type, RDFS, and OWL – cannot be relied upon to be present or accurate. 

Resolving schema information may take several slow network transactions. 

This research views unstable ontologies as a fundamental property of the Semantic Web, and 

therefore GPRank is suitable within this scope. If there is a more limited situation where 

Semantic Web technology is used for a dataset with high data quality, enforced schema and a 

narrow set of user goals, then other user interfaces may be more appropriate than an AUI 
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based upon GPRank. In that situation, the ontologies are stable, and the dataset is more like a 

traditional database though delivered on the Semantic Web platform. In this situation, 

templating or traditional database forms are probably a better approach. The research places 

this situation out of scope, but it is discussed here so that the limitations of GPRank are 

properly defined. 

8.2 RECOMMENDATIONS FOR FUTURE RESEARCH 

During this research area for further investigation were discovered. This section summarises 

avenues for future research. 

GPRank might be generalisable to any situation with supervised learning for grouping and 

ordering with pairwise, partial orders. The implementation in this research focuses on 

grouping and ordering predicates for forming displays of Semantic Web data. Whether GPRank 

is generalizable can be the subject of further research. 

GPRank was not user tested on scrolling displays. A future investigation could test the effects 

of scrolling displays on speed and accuracy for information retrieval tasks. 

GPRank has a higher computational cost per iteration, and its user model is larger than ListAlg. 

It is possible to improve GPRank’s efficiency by looking for fragments for which ListAlg’s 

assumptions hold (the user prefers the same grouping and order all the time) and then 

treating those fragments as if they were a single item within GPRank. This should be a simple 

extension for ordered predicates within a single group. However, the approach could be 

extended to include groups and their members also. A successful implementation would 

improve the efficiency (space and computation) of GPRank. 

If ListAlg’s assumptions hold for parts of the group/ordering preferences for individual users, 

then it follows that the predicate patterns might be stable enough to support a partial-
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templating system. Further research could look at mixing partial-templates into a GPRank 

created display. Since templates represent a fixed perspective on how data should be 

displayed, then there is the danger that the template enforces its form of life on the user. 

Research in this direction should carefully balance the benefits of templates versus the 

potential imposition of a dominant form of life: user preferences should be easily expressible 

and take priority.  

GPRank weights group affinity by the number of confirmations. The strength of the weighting 

becomes stronger as more confirmations are received. GPRank currently caps the strength at 

six confirmations based on a preliminary investigation by the researcher. However, the exact 

tuning of confirmation based weighting should the subject of more robust investigation. 

ListAlg and GPRank appear to plateau following an exponential trend. However, the user study 

in Chapter Five (above) was too short to determine if the trend continues. A user test with 

more documents per participant will show if GPRank outperforms ListAlg in terms of the 

predictive accuracy of the algorithm as measured by Normalised Kendall Tau Distance. 

There is a missing third quartile in the p-values for algorithm timing in the third user study (7 

above). Care should be taken not to infer too much from this, but further research could 

determine if this indicates that preference for Alphabetical ordering is a learned behaviour. 

There was a cluster of three participants in the third user study (Chapter 7 above) for whom 

GPRank gives a significant accuracy advantage over Alphabetical ordering. Further research 

with more participants could identify if this is a distinct group of users and look at the 

composition of that group of participants. 

GPRank’s user model has the same boot-strapping problem common to all algorithms that 

learn from user preferences. The boot-strapping problem is because user preferences are 

unknown in the beginning. Addressing the boot-strapping problem could be the subject of 
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further exploration. This research proposed uses the NonLearner algorithm when the user 

model is empty. NonLearner performs at 0.6, which is better than random (0.5) and so any 

bootstrapping approach has a low bar to outperform NonLearner.  

The field of social recommenders/collaborative filtering could provide bootstrapping 

information based on the preferences of other users. Incorporating the preferences of others 

can become implied templating by the masses, and so this researcher urges caution that social 

filters are sophisticated enough that grouping/ordering decisions respect plurality in the forms 

of life that these decisions embody. 

GPRank tracks grouping and ordering decisions only. The research assumed that filtering 

decisions – deciding which triplets do not get shown – is made before GPRank is activated. 

Filtering may also remove triplets that are redundant; that is, the triplet contains information 

that is already in another triplet. Filtering redundant triplets can result in a situation where the 

filtering process removes triplet-A because it is redundant compared to triplet-B and the user 

model has no knowledge of triplet-B but does have a knowledge of triplet-A. More research 

could investigate ways to allow the display algorithm to utilise its knowledge of triplet-A to 

inform display decisions about triplet-B until there is explicit information for triplet-B. This 

specific situation is distinct to the partial bootstrapping problem because there is already 

potentially useful information in the user model. 

GPRank incorporates new user preference information from a grouped and ordered display 

without any regard for the actions a user took to group and order that display. The effect of 

this is that Group/Ordering acts of commission are weighted equally to acts of omission. If a 

user is unsatisfied with a grouping and ordering but does not act to correct it, then GPRank will 

learn an incorrect grouping and ordering. Further research could be done to see if user actions 

that are explicit (e.g. reordering two triplets) should have more effect on GPRank’s learning 

than when the user has not acted. 
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APPENDIX ONE: DEMOGRAPHIC QUESTIONNAIRE 

All three user studies use the same demographic questionnaire. The questionnaire is on the 

next page. 
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Demographic Questionnaire 

Project Title 

<The title of the user study>. 

 

 

 

 

 

Participant Number: 

 

 

 

 

Supplying any demographic detail is optional. 

 

 

 

Gender:   Female  Male 

(Circle one) 

 

 

 

 

Age:   15–19 20–24 25-29 30–39 40–49 50–59 60–64 65+ 

(Circle one) 

 

 

 

 

Ethnicity:            

(List all that apply) 

 

 

 

 

First Languages:          

(List all that apply) 

 

 

 

 

Profession/Education:          

(List all that apply) 

 

 

 

 

 

Researcher: Emmanuel King Turner / eturner@waikato.ac.nz / +64 7 838 4627 

Supervisor: <name> /  <email> / <telephone> 

 

mailto:eturner@waikato.ac.nz
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APPENDIX TWO: PAIRS OF TRIPLES USED TO FORM QUESTIONS IN THE FIRST USER STUDY (CHAPTER FOUR) 

 

Question 

# 

Subject 

(both triples) 

Left Triple 

Predicate 

Left Triple 

Object 

Right Triple 

Predicate 

Right Triple 

Object 

0 Patea (town) comment Patea is the third-largest town in South 

Taranaki, New Zealand... 

thumbnail http://upload.wikimedia.org/wikipedia/comm

ons/thumb/7/76/Patea,_Taranaki,_New_Zeala

nd... 

1 Patea (town) lattitudeMinutes 45 name Patea 

2 Patea (town) subject Category:South Taranaki District lattitudeSeconds 26 

3 Steven Spielberg 

(filmmaker) 

birthYear 1946-01-01 00:00:00 birthDate 1946-12-18 

4 Steven Spielberg 

(filmmaker) 

alternativeNames Steven Allan Spielberg, Stephen 

Spielberg 

surname Spielberg 

5 Steven Spielberg 

(filmmaker) 

shortDescription Academy Award winning American film 

director and producer 

occupation Film director, producer, screenwriter 

6 Steven Spielberg 

(filmmaker) 

description Academy Award-winning American film 

director and producer 

shortDescription Academy Award winning American film 

director and producer 

7 Steven Spielberg 

(filmmaker) 

name Steven Spielberg birthName Steven Spielberg 

8 Steven Spielberg 

(filmmaker) 

name Steven Spielberg birthName Steven Allan Spielberg 
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9 Steven Spielberg 

(filmmaker) 

name Steven Spielberg surname Spielberg 

10 Athens (city) country Greece aprLowC 10 

11 The Beatles activeYearsEndYear 1970-01-01 00:00:00 pastMembers Pete Best 

12 Steven Spielberg 

(filmmaker) 

wikiPageExternalLink http://www.empireonline.com/features/

spielbergat60/60.asp 

birthYear 1946-01-01 00:00:00 

13 Patea (town) subdivisionType District subdivisionType Country 

14 Patea (town) longitude 174.4766693115234 longitudeDegrees 174 

15 Barbie (doll) name Barbara Milli Roberts surname Roberts 

16 Peter Jackson 

(filmmaker) 

name Sir Peter Jackson name Jackson, Peter 

17 Peter Jackson 

(filmmaker) 

name Peter Jackson name Jackson, Peter 

18 Steven Spielberg 

(filmmaker) 

name Steven Spielberg name Spielberg, Steven 

19 Peter Jackson 

(filmmaker) 

name Peter Jackson name Sir Peter Jackson 

20 Patea (town) subject Category:South Taranaki District longitudeDegrees 174 

21 Patea (town) longitude 174.4766693115234 subdivisionName Taranaki Region 

22 Steven Spielberg 

(filmmaker) 

networth 3.0E9 religion Judaism 
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23 Patea (town) Longitude East-West E longitudeSeconds 36 

24 Patea (town) coordinatesDisplay inline,title coordinatesRegion NZ 

25 Steven Spielberg 

(filmmaker) 

label Steven Spielberg alternativeNames Steven Allan Spielberg, Stephen Spielberg 

26 Patea (town) subdivisionType District subdivisionType Region 

27 Patea (town) subdivisionName Taranaki Region subdivisionName New Zealand 

28 Patea (town) subject Category:Populated places in New 

Zealand 

subject Category:South Taranaki District 

29 Patea (town) subdivisionName South Taranaki District subdivisionName Taranaki Region 

30 Patea (town) comment Patea is the third-largest town in South 

Taranaki, New Zealand... 

populationTotal 1143 

31 Patea (town) Longitude East-West E subdivisionName Taranaki Region 

32 Patea (town) country New Zealand longitudeSeconds 36 

33 Patea (town) wikiPageExternalLink http://www.stjospatea.school.nz wikiPageExternalLink http://72.14.253.104/search?q=cache:Ogv_p7

3ng-IJ:www.stdc.co.nz/pdf/patea... 

34 Athens (city) areaCode 21 areaUrban 412 

35 Patea (town) subdivisionName South Taranaki District subdivisionType Country 

36 Peter Jackson 

(filmmaker) 

name Sir Peter Jackson name Peter Jackson 

37 Athens (city) capitalOf Greece capital Greece 
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38 Oregon (state) country USA incountry USA 

39 Barbie (doll) name Barbara Millicent Roberts name Barbara Milli Roberts 

40 Patea (town) wikiPageUsesTemplat

e 

http://dbpedia.org/resource/Template:I

nfobox_settlement 

longitudeSeconds 36 

41 Patea (town) country New Zealand wikiPageUsesTempla

te 

http://dbpedia.org/resource/Template:Infobox

_settlement 

42 Patea (town) comment Patea is the third-largest town in South 

Taranaki, New Zealand... 

longitude 174.4766693115234 

43 Athens (city) aprPrecipitationMm 31 areaMunicipality 39 

44 Steven Spielberg 

(filmmaker) 

birthName Steven Allan Spielberg birthYear 1946-01-01 00:00:00 

45 Patea (town) country New Zealand geometry POINT(174.477 -39.7572) 

46 Patea (town) label Patea name Patea 

47 Patea (town) country New Zealand subdivisionName New Zealand 

48 Patea (town) comment Patea is the third-largest town in South 

Taranaki, New Zealand... 

abstract Patea is the third-largest town in South 

Taranaki, New Zealand... 

49 Patea (town) label Patea englishName Patea 
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