

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the

Act and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right

to be identified as the author of the thesis, and due acknowledgement will be

made to the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

http://researchcommons.waikato.ac.nz/

i

Adaptive User Interfaces for the Semantic Web

A thesis

submitted in fulfilment

of the requirements for the degree

of

Master of Philosophy in Computer Science

at

The University of Waikato

by

Emmanuel King Turner

2018

ii

ABSTRACT

The Semantic Web aims to democratise information by making information open, shareable

and recombinable. However, the amount of Semantic Web data may be so large that simple

listings are not useful, and the variety of data means that templates will be fragile. An adaptive

user interface can modify a display based on user preferences that are learned from user

actions. The thesis is that a Semantic Web browser that groups and orders the data based on

knowledge of user preferences has speed and accuracy that exceed those of alphabetical

ordering. The investigation comprises three user studies.

An adaptive user interface has overheads for learning and recording user preferences. The first

user study indicates that user preferences are diverse enough to justify the overhead of an

adaptive user interface.

The research then proposes two adaptive user interface methods; ListAlg has a top-down user

model, and GPRank has a bottom-up user model. The second user study demonstrates that

both are capable of learning user preferences for grouping and ordering Semantic Web data.

GPRank is both more accurate and preferred by users in a blind selection.

In tasks involving selecting the answer to a question, some participants are faster with GPRank,

and the users that are faster with Alphabetical ordering are not much slower when using

GPRank. There is no difference in the accuracy of users performing information retrieval tasks

when using GPRank or Alphabetical ordering.

iii

TABLE OF CONTENTS

ABSTRACT II

TABLE OF CONTENTS III

LIST OF FIGURES VII

LIST OF TABLES X

LIST OF EQUATIONS XII

 CHAPTER ONE INTRODUCTION 1

1.1 MOTIVATION 2

1.2 PROBLEM STATEMENT AND APPROACH 3

1.3 RESEARCH QUESTIONS 4

1.4 THESIS STRUCTURE 5

 CHAPTER TWO BACKGROUND 8

2.1 HISTORY OF THE SEMANTIC WEB 8

2.2 MACHINE UNDERSTANDABILITY 9

2.3 THE RESOURCE DESCRIPTION FRAMEWORK 11

2.4 ONTOLOGY 15

2.5 ADAPTIVE AND ADAPTABLE USER INTERFACES 17

2.6 SUMMARY 19

iv

 CHAPTER THREE RELATED WORK 20

3.1 LEXICAL APPROACHES 21

3.1.1 DOCUMENT ORDERING 22

3.1.2 ALPHABETICAL ORDERING 26

3.1.3 LEXICAL MATCHING 27

3.2 SEMANTIC APPROACHES 28

3.2.1 PREDICATE MATCHING 28

3.2.2 TYPE MATCHING 30

3.2.3 ONTOLOGICAL REASONING 33

3.3 USER PREFERENCE APPROACHES 34

3.4 SUMMARY 35

 CHAPTER FOUR USER STUDY I: DO USERS AGREE ON THE RELATEDNESS OF TRIPLES? 38

4.1 HYPOTHESES 39

4.2 METHODOLOGY 39

4.2.1 MEASURING AGREEMENT 41

4.2.2 STUDY LOCATION AND TIME. 42

4.2.3 PARTICIPANT DEMOGRAPHICS 42

4.3 RESULTS 44

4.4 DISCUSSION 45

4.5 SUMMARY 46

 CHAPTER FIVE USER PREFERENCES FOR GROUPING AND ORDERING 47

5.1 NONLEARNER 47

5.1.1 FORMING DISPLAYS FROM NONLEARNER 48

v

5.2 LISTALG 51

5.2.1 USER MODEL 51

5.2.2 FORMING DISPLAYS FROM LISTALG 52

5.2.3 INCORPORATING NEW USER PREFERENCES 52

5.2.4 DISCUSSION 59

5.3 GROUPED PAIRWISE RANKING (GPRANK) 61

5.3.1 USER MODEL 62

5.3.2 FORMING DISPLAYS WITH GPRANK 68

5.3.3 INCORPORATING NEW USER PREFERENCES INTO THE GPRANK USER MODEL 70

5.3.4 DISCUSSION 71

5.4 COMPARISON BETWEEN LISTALG AND GPRANK 74

5.4.1 FUTURE RESEARCH: A HYBRID USER MODEL 75

5.5 SUMMARY 76

 CHAPTER SIX USER STUDY II: LEARNING USER PREFERENCES FOR GROUPING AND ORDERING

 77

6.1 HYPOTHESES 77

6.2 METHODOLOGY 79

6.2.1 THE THREE METHODS 80

6.2.2 DATASET DESIGN 81

6.2.3 MEASURING DIFFERENCES BETWEEN ALTERNATIVE GROUPING AND ORDERING 82

6.2.4 TEST SEQUENCE 84

6.2.5 STUDY LOCATION AND TIME 91

6.3 RESULTS 91

6.3.1 PERFORMANCE OF NONLEARNER 94

6.3.2 LISTALG AND GPRANK LEARNING 95

vi

6.3.3 LISTALG AND GPRANK PERFORMANCE VERSUS NONLEARNER 99

6.4 CONCLUSIONS AND SUMMARY 102

 CHAPTER SEVEN USER STUDY III: GPRANK VERSUS ALPHABETICAL ORDERING FOR USER

SPEED AND ACCURACY IN INFORMATION RETRIEVAL TASKS 105

7.1 HYPOTHESES 105

7.2 METHODOLOGY 106

7.2.1 EXPERIMENT DESIGN CONSIDERATIONS 107

7.2.2 EXPERIMENT IMPLEMENTATION 107

7.3 RESULTS 116

7.4 FINDINGS 119

7.4.1 GPRANK MAY BE MORE ACCURATE FOR SOME PARTICIPANTS 121

7.4.2 OTHER FINDINGS 122

7.5 CONCLUSIONS 125

 CHAPTER EIGHT SUMMARY AND CONCLUSIONS 127

8.1 CONCLUSIONS 128

8.2 RECOMMENDATIONS FOR FUTURE RESEARCH 130

REFERENCES 133

APPENDICES 1

APPENDIX ONE: DEMOGRAPHIC QUESTIONNAIRE 2

APPENDIX TWO: PAIRS OF TRIPLES USED TO FORM QUESTIONS IN THE FIRST USER STUDY (CHAPTER FOUR) 2

vii

LIST OF FIGURES

Figure 2.1: An RDF Graph with two nodes (Subject and Object) and Predicate connecting them

... 11

Figure 3.1: Tim Berners-Lee’s FOAF file in Brownsauce. Triples are shown in Document Order.

... 23

Figure 3.2: Berlin from GeoNames in Brownsauce. Triples are shown in Document Order. 23

Figure 3.3: Tim Berners-Lee’s FOAF file in the Quick and Dirty RDF Browse. Triples are shown in

Document Order. .. 24

Figure 3.4: Berlin from GeoNames shown in the Quick and Dirty RDF Browser. Triples are

shown in Document Order. ... 24

Figure 3.5: Tim Berners-Lee’s FOAF file in Disco. Data is shown in document order. [Black zig-

zags denote edits that omit spaces so that the screenshot shows relevant features] 25

Figure 3.6: Berlin from GeoNames in Disco. Triples are shown in document order. [Black zig-

zag denote an edit that omits space so that the screenshot shows relevant features] 26

Figure 3.7: Berlin for DBpedia. Triples are shown in alphabetical order by predicate. 27

Figure 3.8: A screenshot of Falcons Concept Search (Cheng & Qu, 2009) 28

Figure 3.9: Screenshot of a Semantic Web browser that automatically groups triples using

semantic predicate matching based on strings (Seeliger & Paulheim, 2012) 29

Figure 3.10: Exhibit showing keyword search, facets, timeline, and map. (Screenshot of

http://www.simile-widgets.org/exhibit/examples/presidents/presidents.html, taken 19 Jan

2017) ... 31

Figure 3.11: Exhibit showing a timeline overview (left) and a detail view of a person (right). .. 32

Figure 3.12: Marbles’ alternative data presentations (from left to right) Full view, Summary

view, Photo view ... 33

viii

Figure 4.1: Screenshot for the study where the user has given a rating of 1 40

Figure 5.1: User Model for ListAlg ... 51

Figure 6.2: Drag and drop interface for a user to express the grouping and ordering

preferences ... 85

Figure 6.3: Screen for user to select one of two outputs ... 86

Figure 6.4: Screen for Selecting Dataset ... 87

Figure 6.5: Grouping and Ordering Screen showing grouping and ordering by NonLearner 88

Figure 6.6: Grouping and Ordering Screen showing data as grouped and ordered by a

participant ... 88

Figure 6.7: Participant selects the best Grouping/Ordering ... 89

Figure 6.8: Participant can fine tune the grouping and ordering ... 90

Figure 6.9: Algorithm Accuracy over time with +/- One Standard Deviation 96

Figure 6.10: Plot showing the standard deviation of algorithm accuracy reduces as more user

preference data is available .. 97

Figure 6.11: Chart of Change in Participant Drag-and-Drop Operations Over Time 98

Figure 6.12: User Choice of Algorithm by Sequence in the second user study 99

Figure 6.13: Trend of User Operations over time compared with dataset diversity in the second

user study .. 101

Figure 6.14: Percentage predictive disadvantage compared with dataset diversity 102

Figure 7.1: Participant selects a topic domain .. 110

Figure 7.2: Training GPRank with User's preferences for grouping and ordering 111

Figure 7.3: Question screens with advance indication of the display format for the answering

screen (Alphabetical ordering and GPRank) ... 112

Figure 7.4: Answering screen for ABC Ordering ... 113

Figure 7.5: Answering screen for GPRank format ... 113

ix

Figure 7.6: After answering from a GPRank formatted screen, the participant is given the

opportunity to adjust their group-order preferences. ... 114

Figure 7.7: Chart plotting normalised speed advantage by Algorithm and Accuracy 120

Figure 7.8: Chart plotting normalised speed and accuracy advantage. p-values <0.1 and >0.9.

Accuracy outlier removed. .. 121

Figure 7.9: Response Times vs Order of Answering by Algorithm .. 124

x

LIST OF TABLES

Table 4.1: Interpreting inter-rater reliability (Landis & Koch, 1977) .. 42

Table 4.2: Summary of Ratings ... 44

Table 5.1: ListAlg Example - Beginning ... 54

Table 5.2: ListAlg Example - Predicate matches in old and candidate user models 54

Table 5.3: ListAlg Example - Mismatch between predicate in old and candidate user models . 55

Table 5.4: ListAlg Example - Another predicate match ... 55

Table 5.5: ListAlg Example - Another predicate mismatch ... 56

Table 5.6: ListAlg Example - Candidate user model group exhausted .. 56

Table 5.7: ListAlg Example - Pausing for current user model items already in the new user

model .. 57

Table 5.8: ListAlg Example - Another candidate user model group exhausted 58

Table 5.9: ListAlg Example - Implying an empty group in the current user model 58

Table 5.10: ListAlg Example - Line by line ... 59

Table 6.1: Dataset diversity in the second user study .. 82

Table 6.2: Mean and Standard Deviation of Normalised Kendall Tau Closeness by algorithm

and sequence for the second user study .. 91

Table 6.3: Mean Normalised Kendall Tau Closeness by Algorithm, Dataset, and Sequence for

the second user study ... 92

Table 6.4: Mean count of drag and drop operations by dataset and sequence in the second

user study .. 93

Table 6.5: Percentage of times participant choose each algorithm by algorithm and sequence

in the second user study ... 94

Table 6.6: Predictive Disadvantage for Algorithm and Sequence in the second user study 94

xi

Table 6.7: Quartiles for the NonLearner's Normalised Kendall-Tau Closeness in the second user

study .. 95

Table 7.1: Dataset Diversity for the third user study .. 108

Table 7.2: Easy/Hard Question examples for the third user study ... 109

Table 7.3: Time to answer question by Participant and Algorithm in the third user study 117

Table 7.4: Accuracy by Participant and Algorithm in the third user study 118

Table 7.5: Correlation between Dataset Diversity and answering times in the third user study

... 123

Table 7.6: The effect of Easy/Hard question on Answer Time and Accuracy by Algorithm in the

third user study ... 123

Table 7.7: Correlation [-1,+1] of Algorithm Accuracy to Cumulative Questions Answered by

Algorithm in the third user study .. 125

xii

LIST OF EQUATIONS

Equation 5.1: Dice Coefficient for lists .. 49

Equation 5.2: Example of Dice Coefficient for the strings “firstName” and “familyName” 49

Equation 5.3: NonLearner’s hierarchical cluster distance metric extends Dice Coefficient 50

Equation 5.4: Upper bound for iterations in ListAlg ... 59

Equation 5.5: Predicate Diversity for the diversity of predicates in a collection of RDF

documents .. 60

Equation 5.6: GPRankEntry tuple as used in a GPRank based user model 62

Equation 5.7: Example GPRankEntry .. 63

Equation 5.8: First step defining a lookup function for a particular GPRankEntry 64

Equation 5.9: Second step defining a lookup function for a particular GPRankEntry 65

Equation 5.10: Second step defining a lookup function for a particular GPRankEntry 65

Equation 5.11: Dot notation for named members in a GPRankEntry tuple 66

Equation 5.12: a and b cannot be the same in a GPRankEntry tuple ... 66

Equation 5.13: The result of reversing a and b in a GPRankEntry tuple is calculatable 67

Equation 5.14: Deriving a new GPRankEntry tuple from the reversal of a and b 67

Equation 5.15: The undefined GPRankEntry tuple ... 68

Equation 5.16: A GPRankEntry tuple with 0 confirmations is undefined 68

Equation 5.17: The number of user model update operations for ListAlg 75

Equation 5.18: The number of user model update operations for GPRank 75

Equation 6.1: Dataset Diversity ... 81

Equation 6.2: Normalised Kendall-Tau Distance ... 83

0

1

CHAPTER ONE INTRODUCTION

The Semantic Web aims to democratise data by making data open, shareable and

recombinable (Berners-Lee, Hendler, & Lassila, 2001). To achieve these characteristics,

Semantic Web data, different to data on the web, is structured. However, unlike traditional

databases, the structure of Semantic Web data does not have to follow a single predefined

schema. Instead, the data itself contains links to its schema. Semantic Web data is machine-

understandable, and therefore data becomes easily shareable and recombinable.

Semantic Web data is viewable by a Semantic Web browser. The shareable and recombinable

nature of Semantic Web data means that it is not possible to anticipate how users will want to

visualise Semantic Web data. Also, recombination means that the potentially large amount of

data items to display for any single subject may exhaust available screen space if the data is

not filtered.

Taken together, we believe that approaches for building user interfaces for data with a known

structure are inadequate for the Semantic Web. An alternative method is to group and order

data based on user preferences using an adaptive user interface. In an adaptive user interface

for the Semantic Web, the way to display the Semantic Web data would adapt to the user’s

preferences to suit their individual needs.

In this thesis, we propose an adaptive user interface that categorises the Semantic Web data

into groups and orders data according to user preference. Placing similar data items close

together may make it easier for users to locate data items, especially when the number of

data items is extensive. Showing relevant data at the top is a well-established approach, e.g.

for search engine results.

2

In summary, an approach for grouping and ordering Semantic Web data based on user

preferences is developed through this thesis and then evaluated against the established

alphabetical ordering.

1.1 MOTIVATION

This research explores an approach to grouping and ordering Semantic Web data within an

adaptive user interface for a Semantic Web browser. As a motivation for this research

approach, this section briefly outlines the deficiencies of current approaches to displaying

Semantic Web data (further details are given in Chapter 3). The current methods for displaying

Semantic Web data are alphabetical order, source order, graph-based displays, and templates.

Alphabetical ordering of Semantic Web data is used by The Disco Hyperdata Browser (Bizer &

Gauß, 2007). These lists may contain a very large number of items (e.g. the DBPedia data for

Germany1 contains over 200 entries), in which data with similar meanings but different text

(e.g. label, commonName, and name) have different positions in the list. Alphabetical

ordering is therefore not suitable for large lists (Hu, Ma, & Chau, 1999).

Listing data according to the order that data appears in the data source (i.e. source order) is

used in Brownsauce (Steer, 2003). The usefulness of this ordering then depends on the quality

of ordering in the data source. However, it cannot be assumed that the data is deliberately

ordered in the source, as this is not a requirement of Semantic Web standards. Even if the is

deliberately ordered in the source, the ordering may not reflect user’s goals. Finally, because

the Semantic Web encourages recombination of data, it is unclear how to order data that is

combined from multiple data sources.

Graph-based displays show Semantic Web data as a directed graph connected by arcs; it is

used in LodLive (Camarda & Mazzini, 2012). This form of display can be useful for seeing how

1 http://dbpedia.org/Fresource/Germany

3

entities relate to each other. While graph-based displays often use a large proportion of the

screen, they often do not prioritise data display and do not group related data.

Rosenholtz et al. (2009) advocate for displaying data items in groups that match how users

mentally group data. Additionally, users find data quicker when the data is displayed in order

of relevance (e.g. as used in Google Search2). Decisions for grouping and ordering data for

display are made based on prior knowledge of the user and their goals (Johnson, Johnson, &

Zhang, 2005). Since Semantic Web data has dynamic structure and because Semantic Web

data is recombinable then it is impossible for the data publisher to predict user goals.

Therefore, there may be some benefit to deferring, until runtime, display decisions that rely

on knowledge of user goals.

An adaptive user interface can learn about a user’s preferences for data item display at

runtime. It can also adapt to different data schemas. Therefore, we believe an adaptive user

interface approach is suited for displaying Semantic Web data in response to runtime

conditions such as data structure and user preferences. This thesis explores the hypothesis

that a Semantic Web browser that groups and orders the data based on run-time knowledge

of the user and the data has usability benefits that exceed those of alphabetical ordering.

1.2 PROBLEM STATEMENT AND APPROACH

Semantic Web data provides its own schema definition and recombining data from multiple

sources is possible. The amount of Semantic Web data may be so large such that simple

listings will not display data in useful ways. Some existing Semantic Web browsers group

related data together using templates, and these are documented in 3. Seeliger and

Paulheim’s browser (2012) uses lexical similarity to arrange triples into groups (see Section

2 http://www.google.com

http://www.google.com/

4

3.2.1.1 for a more in-depth description). The lexical similarity used in the Seeliger Browser

comes from a single shared lookup source (WordNet). Users may have their own preferences

for which triples should be grouped together, and those preferences may differ from the

preferences expressed by WordNet or other users.

1.3 RESEARCH QUESTIONS

The research investigates the following hypothesis:

A Semantic Web browser with an adaptive user interface that groups and orders data has

speed and accuracy advantages in information retrieval tasks.

In exploring the hypothesis, the following three questions are addressed.

Question 1. Is there sufficient diversity in user preferences for displaying Semantic Web data to

justify an adaptive user interface?

If users have very similar preferences for grouping and ordering Semantic Web data, then it is

not necessary to adapt to user preferences at run-time, and so an adaptive user interface

approach will be unnecessary overhead. Conversely, if users have different preferences for

how data is grouped, then this lends support to investigating adaptive approaches.

5

Question 2. Can an adaptive interface learn user preferences for grouping and ordering

displays of Semantic Web data?

If there is sufficient diversity in user preferences (see Question 1), then it is possible an

adaptive user interface will improve speed and accuracy in information retrieval tasks.

Answering this question involves the exploration of existing approaches to grouping and

ordering data based on user preferences and then the proposal of algorithms suited to

Semantic Web data. Because the algorithms must quickly learn user preferences, then the

proposed algorithms should be tested with real users.

Question 3. Do users perform single screen search tasks quicker and more accurately with an

adaptive user interface that groups and orders Semantic Web data or with data in alphabetical

order?

After identifying an adaptive interface model that can learn user preferences, then the next

step will determine if the adaptive approach improves speed and accuracy in comparison to

alphabetical order. The reason for selecting alphabetical ordering as the comparator is its

familiarity to users and its widespread use.

1.4 THESIS STRUCTURE

This section outlines the structure of this thesis.

Chapter 2 (Background) introduces key Semantic Web and adaptive user interface concepts.

The purpose of this chapter is to aid understanding of this research by providing background

information about Semantic Web concepts and the architecture of adaptive user interfaces.

6

Chapter 3 (Related Work) examines the present state of the art for displaying data in Semantic

Web browsers. The chapter is arranged into categories of the different approaches, and this

demonstrates that the adaptive user interface approach proposed in this research is novel.

Chapter 4 (User study I: Do users agree on the relatedness of triples?) contributes to the first

question by testing the level of agreement between participants regarding the relatedness of

pairs of triples. If participants disagree about the relatedness of triples, then this indicates that

users may have differing preferences for displaying Semantic Web and so an adaptive user

interface may be worth investigating.

Chapter 5 (User Preferences for Grouping and Ordering) presents three methods for grouping

and ordering Semantic Web data for display. Two of the methods are adaptive: they learn user

preferences, and the third method does not learn, and so its purpose is as a control. This

change contributes to the second research question.

Chapter 6 (User Study II: Learning User Preferences for grouping and ordering) tests the ability

of the three methods proposed in the previous chapter to learn user preferences for grouping

and ordering Semantic Web data. This chapter answers the first research question by directly

comparing user preferences for grouping and ordering Semantic Web data. This chapter also

answers the second research question by measuring the ability of the two-proposed adaptive

user interface methods to learn user preferences.

Chapter 7 (User Study III: GPRank versus Alphabetical ordering for user speed and accuracy in

information retrieval tasks) compares the best adaptive user interface algorithm for grouping

and ordering against alphabetical ordering for information retrieval. In this user study,

participants must locate the answer to a given question on a display of Semantic Web data

that is either in alphabetical ordering or Grouped and Ordered according to an adaptive user

7

interface algorithm. The measurements taken are time to answer and answer accuracy. This

chapter directly addresses the third research question.

Chapter 8 (Summary and Conclusions) summarises this thesis in the context of the research

questions. The chapter discusses the limitations of the findings and highlights areas for future

research.

8

CHAPTER TWO BACKGROUND

The Semantic Web describes both a set of technologies and the decentralised platform for

exchanging data in a manner that is open, shareable and recombinable. This chapter

introduces background information about the Semantic Web and adaptive user interfaces that

are relevant to this thesis.

The chapter begins with a short history of the Semantic Web and where the term “Semantic

Web” originates. Following the history is a brief discussion on the role of machine

understandability in enabling data to be open, shareable and recombinable. Then the chapter

discusses how the Semantic Web organises information conceptually into directed graphs that

are expressed as triples. The next section discusses how Semantic Web data is expressed using

ontologies and why ontological information is unreliable for making decisions regarding the

display of Semantic Web data. The final section introduces adaptive and adaptable user

interfaces and their architecture.

2.1 HISTORY OF THE SEMANTIC WEB

The section is a brief history of the Semantic Web and where the term “Semantic Web”

originates. The history provides context to how the Semantic Web differs from the HTML-

based World Wide Web (WWW), and this provides a reference point for understanding the

intent of the Semantic Web.

As early as 1994, Berners-Lee articulated a method for attaching semantics to data to provide

interoperability between systems (Shadbolt, Berners-Lee, & Hall, 2006). The World Wide Web

Consortium (W3C) published the first Semantic Web standards3 in 1997, and these became full

3 http://www.w3.org/TR/WD-rdf-syntax-971002/

9

W3C recommendations4 by 1999 (Shadbolt et al., 2006; Steer, 2003). Soon afterwards work on

servers, stores, ontology languages (e.g. RDFS), and rule-based inference languages (e.g. OWL)

began.

In 2006, Berners-Lee published the linked open data blog post that describes the additional

criteria that make Semantic Web data into linked open data and describes a method for HTTP-

based content negotiation to provide HTML to regular web browsers and Semantic Web data

to Semantic Web consumers. The linked open data standard both enabled and encouraged

interlinking between Semantic Web data. By 2011 linked open data consisted of 295 data sets

with 32 billion triples and 500 million links to other datasets5 and this grew to over 1,000 data

sets in 20146.

Today, the Semantic Web is used in areas such as life sciences, government, and geography.

W3C has a list of Semantic Web usage case studies7 up to 2017. The extent of the Semantic

Web can be seen in the Linking Open Data Cloud Diagram8 which shows known available

Semantic Web data sources as nodes and their interlinks as arcs.

2.2 MACHINE UNDERSTANDABILITY

The Semantic Web achieves machine understandability by attaching semantics to the data.

Machine understandability also enables the Semantic Web data to be recombinable because it

can link data from different domains. This section discusses the meaning of the term

semantics and discusses what it means to be machine understandable in the context of the

Semantic Web.

4 http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
5 http://lod-cloud.net/state/state_2011/
6 http://lod-cloud.net/state/state_2014/
7 http://www.w3.org/2001/sw/sweo/public/UseCases/
8 http://lod-cloud.net/

10

The origin of the term semantics comes from linguistics and describes the relationship

between symbols and meanings. The term semantics originates with Michel Breal’s “Essai de

Sémantique” (Bréal, 1904) which discusses the signification of words. The contemporary usage

of the term semantics comes via Charles W. Morris’ division of semiotic signs into syntax

which are the symbols used, pragmatics which is the usage of signs, and semantics which

relates to meaning (Morris, 1946).

In the Semantic Web, the link between a representation (i.e. data) and the real-world thing to

which the URI refers (i.e. the semantics) is a URI or a literal. A thing is “something in the

world” 9 , and this can be physical and abstract things. For example, the URI

http://dbpedia.org/resource/Germany refers to the country called Germany and, Germany is a

real-world thing. Whenever the same URI is encountered, then a machine can assume that this

refers to the same thing.

The basic unit on the Semantic Web is a triple which contains a reference to a subject thing, an

object thing and a predicate that expresses the nature of the relationship between the subject

and object. Semantic Web data is recombinable because triples can refer to subjects and

objects from different domains.

Since similar types of things may have similar data about them, for example, all countries have

a capital city. The formalisation of similar data structures is called ontology.

9 https://www.w3.org/TR/rdf11-concepts/#resources-and-statements

http://dbpedia.org/resource/Germany

11

2.3 THE RESOURCE DESCRIPTION FRAMEWORK

Semantic Web’s data model is called the Resource Description Framework (RDF)10. RDF can be

represented conceptually as a graph-based model with arcs, the predicates, representing the

relationships between things (nodes). One thing is termed the subject, and the other thing is

termed the object (see Figure 2.1).

Figure 2.1: An RDF Graph with two nodes (Subject and Object) and Predicate connecting them11

Nodes in the Semantic Web can be Uniform Resource Identifier (URI), a blank node or a literal

value. However, only objects can contain literal values: the subject and predicate must be URIs.

URIs are unique addresses that are like a web page address, except that a Semantic Web URI

can refer to any thing that exists in a universe of discourse.

The RDF data format represents the predicate relation between a subject and object as a

three-member tuple which is called a triple. The three tuple members are (subject,

predicate, object)12. For example, the following triple represents that Germany has

the capital city Berlin.

(Germany, capital, Berlin)

The following triple, from the DBpedia dataset, represents that Germany has the capital city

Berlin.

10 http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
11 https://www.w3.org/TR/rdf11-concepts/#fig-an-rdf-graph-with-two-nodes-subject-and-object-and-a-
triple-connecting-them-predicate
12 http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/#section-triples

Subject
Predicate

Object

12

(http://dbpedia.org/resource/Germany,

http://dbpedia.org/ontology/capital,

http://dbpedia.org/resource/Berlin)

URIs may be shortened using a namespace abbreviation for the first part of the URI, a colon

and then the unique part of the URI. Using namespaces makes reading RDF easier. The

DBpedia dataset uses dbr:13 and dbo:14 as namespace abbreviations for things and predicates

respectively. The Germany has-capital Berlin triple can be written in tuple form as:

(dbr:Germany, dbo:capital, dbr:Berlin)

For clarity, further examples of triples will dispense the conventions of tuple syntax by

omitting the brackets and commas. The members of the triple are tab-delimited, and the triple

itself is newline delimited. The Germany has-capital Berlin triple is written as:

dbr:Germany dbo:capital dbr:Berlin

Literal values are used to display labels or to state values. Labels for things are commonly

expressed using the rdfs:label predicate from the rdfs: namespace. For example, the

label of the thing Germany is the literal text “Germany”. This is expressed by the following

triple with the literal text enclosed in double quotes.

dbr:Germany rdfs:label ″Germany″

In practice, it is common for subject URIs to have a triple with an rdfs:label predicate and

this triple will ordinarily have a string literal value as the object. This string literal is displayed

in a user interface as the textual representation of the entity. The following, more complete,

example gives the data for a Semantic Web browser to render that Germany has-capital Berlin

as the string “Germany capital Berlin”. Each of the URIs within the first triple become the

13 http://dbpedia.org/resource/
14 http://dbpedia.org/ontology/

13

subject of a new triple with an rdfs:label predicate and the literal that labels that URI as

the object.

dbr:Germany dbo:capital dbr:Berlin

dbr:Germany rdfs:label ″Germany″

dbo:capital rdfs:label ″capital″

dbr:Berlin rdfs:label ″Berlin″

When triples have the same subject URI, then those triples have data about the same thing.

Triples with the same predicate URI describe the same thing about the subject. Triples with

shared object URIs have the same thing in common.

There is no restriction that prevents a triple from having combinations of members in common

with another triple. It is common for two triples to have the same subject and predicate to

show either members of an unordered list or to specify alternatives. In the following examples

both Angela Merkel and Gerhard Schröder are/were leaders of Germany and, Germany is

called Germany in English (en) and Deutschland German (de).

dbr:Germany dbo:leader dbr:Angela_Merkel

dbr:Germany dbo:leader dbr:Gerhard_Schröder

and

dbr:Germany rdfs:label ″Germany″@en

dbr:Germany rdfs:label ″Deutschland″@de

A collection of triples expresses an RDF Graph15. The set of nodes in the RDF Graph are all the

subjects and objects in the collection of triples. The set of arcs in the RDF Graph are all the

predicates contained in the triples that represent the graph. An RDF Graph is serialised into

15 https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/#section-rdf-graph

14

triples, and these are transmitted, typically using HTTP/S, across the Semantic Web in an RDF

Document.

If an RDF Document is focused around a single subject, then that RDF Document might not

include the rdfs:label information for all of the predicates and objects that are contained

in the RDF Document. For example, the RDF Document returned for Berlin on DBpedia16

includes an rdfs:label triple for Berlin but no rdfs:labels for any other entities

referenced in that RDF Document. Without caching, finding the rdfs:label for each entity

requires another HTTP/S transaction to retrieval the RDF Document for each entity. Compared

to local machine or local network access, HTTP/S transactions across the internet are

comparatively slow – perhaps too slow for a user interface. Since the lookup across the

internet for a single item is comparatively slow and there are many RDF Documents to retrieve,

resolving rdfs:labels in RDF Documents is time expensive. Since rdfs:label lookup is

a common and time expensive operation, some Semantic Web browsers (e.g. Becker & Bizer,

2009; Seeliger & Paulheim, 2012) cache rdfs:label data.

This research will focus on Semantic Web browsers that display data about a single subject at

a time. The hypothetical use case is a user queries for information about a single thing and

receives a list of possible subjects, and then the user then selects a subject from the list of

search results. So, Semantic Web browsers that visualise complete RDF graphs - that may

contain data about many subjects - are not addressed in this research. The search facility is

outside the scope of this research.

The Semantic Web browsers focused on in this thesis show data about a single thing at a time.

Therefore, the underlying RDF Graph need only contain triples that are focused around a

single subject (i.e. the thing of interest). For clarity, these RDF Graphs will be referred to as

Single Subject RDF Graphs (SSRGs).

16 http://dbpedia.org/resource/Berlin

15

Linked open data are an additional set of criteria upon the Semantic Web data standards, and

so the research of this thesis will also apply to linked open data with the caveat that only a

single subject is shown at a time. The user interfaces of interest here focus on subjects rather

than links between many subjects.

2.4 ONTOLOGY

A Semantic Web ontology defines the concepts and relationships used to describe a domain of

knowledge17. RDF Schema18 (RDFS), Web Ontology Language19 (OWL) and Simple Knowledge

Organization System20 (SKOS) are different standards for expressing Semantic Web ontologies.

A typical example of ontological linking is the “type” of a thing is represented as a triple with

an rdf:type21 predicate and an object that links to ontological information. Another form

of ontological linking is found by dereferencing the predicate in a triple. For example,

dereferencing the predicate rdf:type provides ontological information that specifies

rdf:type is a Property defined by the RDF standards and the acceptable types of subjects

are Resources (anything), and the acceptable types of objects are Classes. So, data is linked to

ontology by special triples and predicates. This research focuses on predicates are the basic

unit of ontology.

Just because ontology can be expressed by special triples and through predicates does not

mean that this always happens in practice or that the links to ontology are accurate. There is

no enforcement of ontology on the Semantic Web, and so ontological information is unreliable.

For example, the following example states that Germany is an instance (rdf:type) of the

literal string “Country”, but the ontological information for rdf:type states that any triple

using rdf:type as a predicate will have an object that is an instance of the datatype

17 http://www.w3.org/standards/semanticweb/ontology
18 http://www.w3.org/TR/2014/REC-rdf-schema-20140225/
19 http://www.w3.org/TR/2012/REC-owl2-primer-20121211/
20 http://www.w3.org/TR/2009/REC-skos-reference-20090818/
21 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

16

rdfs:Class. However, these following two triples are valid and represent a valid RDF Graph.

Semantic Web browsers are not expected to reject these triples.

dbr:Germany rdf:type ″Country″

rdf:type rdfs:range rdfs:Class

Ontological freedom exists because Semantic Web data can be expressed in a mixture of

ontologies and there are no restrictions on creating new ontologies. Ontological freedom is an

essential feature of an open Semantic Web because individual data creators can express

information in ways appropriate to their context. There is no centralised social, cultural, or

political viewpoint on is an ideal ontology. For example, the naming of people around the

world follows many different patterns. Therefore, an ontology based on Anglosphere

conventions of first name, middle names, and family name may not properly represent names

from outside the Anglosphere. As a specific example, the Vivo ontology22 (namespace vivo:)

is based on Anglosphere naming and so it is not clear how to encode the Chinese name LIN

Wanzeng (林宛曾). Should LIN Wanzeng be represented as:

<#person1> vivo:familyName ″Lin″

<#person1> vivo:givenName ″Wanzeng″

or

<#person1> vivo:familyName ″Lin″

<#person1> vivo:givenName ″Wan″

<#person1> vivo:middleName ″Zeng″

Semantic Web documents can be thought of as having an individual dynamic ontology that

follows external ontologies to varying degrees. Since Semantic Web documents can contain

triplets from multiple ontologies then, in effect, each Semantic Web document can potentially

22 http://vivoweb.org/ontology/core

17

have a combined ontology that is unique to that document. The problem of multiple

ontologies is compounded when combining multiple data sources, which may be missing some

details. The effect of this is that there are no certain means to predict which ontologies will be

present in an RDF Graph until it is retrieved and read.

When data from multiple sources are combined, especially if the sources do not have

complete data about the same topics, the chances of data not conforming to ontology

increases. Additionally, the ability of Semantic Web data to be recombined increases the

likelihood that data source will be used by a user who has goals from the source’s publisher.

When ontology is static (an equivalent example is a table in a database) then a static data

presentation can adequately display that data to users. However, since ontology is dynamic,

then static approaches to display Semantic Web data are not suitable. Even if the ontological

information was static-enough (i.e. less dynamic), there is still no guarantee that the

ontological information is reliable. Also, recombination means what users will do with data is

not foreseeable, so this means that pre-determined methods for displaying data might not suit

the user. Recombination also means that the Semantic Web is innumerable because it is

impractical to count all the information available on the Semantic Web. The set of triples for a

single subject, once data sources are combined, and inference applied, could potentially be

enormous.

2.5 ADAPTIVE AND ADAPTABLE USER INTERFACES

An adaptive user interface (AUI) self-modifies content, structure and functionality to meet the

needs of individual users (Schneider-Hufschmidt, Malinowski, & Kuhme, 1993). This section

introduces the concept of an AUI, and this is later used to evaluate the adaptiveness of current

Semantic Web browsers.

18

An AUI models a user by learning from user actions and stores what is learnt in a user model.

The part of the AUI that decides how to self-modify based on the user model is called the

recommender (de la Flor, 2004).

A problem in AUI user modelling is that a system begins with no information about a new user

and must rapidly learn from few training cases (Langley, 1999). Langley says that the user’s

time is the “precious resource” and not CPU cycles. This leads Langley to suggest that an AUI

that has high accuracy and learns rapidly is more competitive than an AUI that learns slower,

even if the slower learner has higher accuracy.

Producing an AUI takes more effort than a non-Adaptive User Interface because of the

additional work in producing the action observer, the learner, the user model and the

recommender. However, Kules (2000) suggests that the benefits of an AUI are most likely to

outweigh the costs when amortised over a large number of users. An AUI based Semantic Web

browser would need to capture a broader audience than a domain specific application to

justify the creation of that browser.

There is a related form of modifiable user interface, called an Adaptable User Interface, that

the user modifies using special configuration actions (Oppermann, 1994). The key distinction

between an Adaptive UI and Adaptable UI is that an Adaptable User Interface does not

automatically modify itself in response to normal user interactions and an Adaptive User

Interface self-modifies. More recent work (e.g. Kaufmann et al., 2007) view Adaptable versus

Adaptive UIs as a continuum that measures the degree to which the UI learns from normal

user interactions or uses special configuration actions. All else being equal, a more Adaptive UI

is preferred over a more Adaptable UI because an Adaptive UI does not require extra user

actions for modifications.

19

2.6 SUMMARY

This chapter explained Semantic Web concepts that are relevant to this thesis. Firstly, there

was a brief history of the Semantic Web and the origin of the term semantics. This is to assist

the reader to understand that semantics is the connection between a representation and its

meaning.

The chapter introduced the triple made of a(subject, predicate, object) as the

basic unit of information in an RDF Graph. Then there was a discussion on why this thesis will

restrict its focus to RDF Graphs focused on a single subject. This restricted RDF Graph termed

Single Subject-focused RDF Graph (SSRG).

The chapter then discussed ontology and how the term is used in the context of the Semantic

Web. The chapter then showed how ontology is connected via special triples and by predicate.

Then the discussion moved on to reason that ontological information on the Semantic Web is

dynamic and unreliable and this represents challenges when displaying Semantic Web data

using static presentations.

The final section introduced adaptive user interfaces as interfaces that self-modify in response

to user actions. An AUI observes user actions, learns from these and forms a user model. A

recommender than applies the user model to data to form a display from that data. The AUI

approach is applied to the challenges of displaying Semantic Web data, dynamic and

unreliable ontology, in the rest of this thesis.

20

CHAPTER THREE RELATED WORK

This chapter reviews different approaches to displaying Semantic Web data in Semantic Web

browsers. Approaches to forming data displays are grouped into lexical, semantic and user

preference-based approaches. Lexical approaches base display decisions upon characters

strings. Semantic approaches utilise the semantic information in RDF Graphs to form displays.

User Preference approaches consider knowledge of the user when producing displays of

Semantic Web data.

Dadzie and Rowe (2011) survey many Semantic Web data browsers and evaluate their

interfaces from the perspective of ease of use. The survey of Semantic Web browsers in this

chapter focus primarily on browsers that display data about a single subject at a time, and the

focus of the review is on how the browsers adapt, or not, to different data. While there are

some overlaps in the browsers surveyed, the evaluation criteria are different.

A Semantic Web browser is a type of data viewing software that displays Semantic Web data

and allows the user to follow links through the Semantic Web (D. A. Quan & Karger, 2004). The

primary concerns for producing a suitable display from Semantic Web data are deciding which

triples to display (filtering) and how to arrange the triples on screen (ordering). This section

looks at current approaches to arranging and filtering Semantic Web data in current Semantic

Web browsers, especially approaches that are adaptive.

The approaches to filtering and arranging for display may exploit a combination of three

sources of information: lexical, semantic and user preferences. Lexical approaches operate on

characters within the labels of Semantic Web subjects, objects, and predicates. Semantic

approaches exploit ontological knowledge that is provided in RDF Graphs. User preference

approaches are AUI approaches that learn to filter and arrange data from user interactions.

21

Throughout this chapter, there are screenshots of Semantic Web browsers that illustrate

usage of an approach to displaying data that is being discussed. When the Semantic Web

browser software is publicly available, the screenshots use selected RDF Documents.

Otherwise, the screenshots come from external sources and so show the data used in that

screenshot. Using the same RDF Documents in the example Semantic Web browsers gives a

better basis with which to compare the way each browser displays data. The selected RDF

documents are from different ontologies to highlight how some browsers render Semantic

Web data from different ontologies, differently. The selected RDF documents Tim Berners-

Lee’s FOAF file23 and either Berlin24 from the GeoNames ontology or a test calendar file25 from

W3C.

3.1 LEXICAL APPROACHES

Lexical approaches operate on characters within strings of text themselves. On the Semantic

Web, the text is usually found in the labels of subjects, predicates, and objects in the triples

that make up an RDF Graph. The terms lexical analysis and syntactic analysis are often used

interchangeably. The term “syntactic approaches” comes from the semantic-syntactic-

pragmatic distinction in Charles W. Morris’ triadic division of Semiotic Signs (Morris, 1946).

Lexical algorithms do not take into account the semantic information contained in RDF Graphs.

Lexical algorithms are computationally efficient because they operate only on characters

within strings and do not navigate complex data structures. A lexical algorithm does not

require knowledge of the user. On the Semantic Web, once rdfs:labels are available for

all entities then a lexical algorithm requires no further network transactions.

23 http://www.w3.org/People/Berners-Lee/card
24 http://sws.geonames.org/2950159/about.rdf
25 http://www.w3.org/2002/12/cal/test/bus-hrs.rdf

22

Lexical approaches to filtering and arranging have no external dependencies that require

expensive lookups into the corpus. Lexical approaches also need no user preference data.

Where lexical similarity is a reasonable approximation for conceptual similarity, then lexical

similarity can be a computationally efficient basis to form displays of Semantic Web data.

The main types of lexical approaches are Document Ordering, Alphabetical Ordering and

Lexical Matching.

3.1.1 Document Ordering

Document ordering displays the triples in the order they appear in the source RDF Document.

Brownsauce (Steer, 2003), Disco Hyperdata Browser (Bizer & Gauß, 2007), and the Quick and

Dirty RDF Browser (Gutteridge, 2012) use document ordering (see Figures 3.1, 3.2, 3.3 & 3.4).

The RDF standard does not expect that RDF documents will have triples in a useful order, but it

could be true that a document author (or data source) could supply triples that are

meaningfully ordered. It is unclear how to use RDF Document Ordering when triples are

combined from multiple sources.

23

Figure 3.1: Tim Berners-Lee’s FOAF file in Brownsauce. Triples are shown in Document Order.

Figure 3.2: Berlin from GeoNames in Brownsauce. Triples are shown in Document Order.

24

Figure 3.3: Tim Berners-Lee’s FOAF file in the Quick and Dirty RDF Browse. Triples are shown in Document Order.

Figure 3.4: Berlin from GeoNames shown in the Quick and Dirty RDF Browser. Triples are shown in Document Order.

25

The Disco Hyperdata Browser (Bizer & Gauß, 2007) can simultaneously display RDF triples

from multiple HTTP sources. Disco shows the source of the data using a legend to the right of

the triple (see Figures 3.5 & 3.6).

Figure 3.5: Tim Berners-Lee’s FOAF file in Disco. Data is shown in document order. [Black zig-zags denote edits that
omit spaces so that the screenshot shows relevant features]

.

26

Figure 3.6: Berlin from GeoNames in Disco. Triples are shown in document order. [Black zig-zag denote an edit that
omits space so that the screenshot shows relevant features]

3.1.2 Alphabetical Ordering

Alphabetical ordering is a collation method for ordering a list of strings according to the

ordering of an alphabet, specifically the Latin alphabet and its variants. The default browser

for DBPedia26 (see Figure 3.7) displays triples alphabetically by predicate label, whether that

label is an rdfs:label or heuristically derived from the predicate URI.

26 Live demo: http://dbpedia.org/page/Berlin

27

Figure 3.7: Berlin for DBpedia. Triples are shown in alphabetical order by predicate.

3.1.3 Lexical Matching

Lexical matching use patterns in the triples to make decisions about arranging triples in a

display. Alshukaili, Fernandes, and Paton (2016) use lexical matching as part of a probabilistic

soft logic program that combines RDF graphs.

Falcons (Cheng & Qu, 2009) is a keyword-based Semantic Web search engine (see Figure 3.8).

Filtering and ranking search results is analogous to filtering and ordering triples for display.

Falcons generates a virtual document for each entity in a corpus of Semantic Web data. The

virtual document contains a string derived heuristically from the URI of the entity, and the

string literals associated with the entity; typically the object values of rdfs:label and

rdfs:comment. Keyword searches in Falcon are ranked according to how well the keywords

28

are similar to the virtual documents. Falcons’ keyword search weights terms according to how

often they appear in the corpus of virtual documents; terms that appear less often are given

higher weight than terms that appear more often. Falcons is a lexical approach because the

process of filtering and ordering is lexical.

Figure 3.8: A screenshot of Falcons Concept Search (Cheng & Qu, 2009)

3.2 SEMANTIC APPROACHES

Semantic approaches to displaying Semantic Web data operate on the meanings attached to

data, usually by reference to external sources. The Semantic Web provides facilities for

exploiting semantic information because the semantics are attached to the data, and the

semantics are often formalised into ontologies. Common semantic approaches include

predicate matching, type matching, and ontological reasoning.

3.2.1 Predicate Matching

Predicate Matching forms data into displays by matching predicates in the data with

predicates expected by an ontology. Predicate matching is a semantic approach because

predicates connect Semantic Web data to ontology. The two approaches to predicate

matching are string matching and graph matching.

29

3.2.1.1 String Matching

String matching approaches use the string contents of predicates, or the predicate labels, to

decide how to arrange Semantic Web data in a display. An example of semantic predicate

string matching is Seeliger and Paulheim’s browser (2012) that automatically arranges related

triples into groups (see Figure 3.9). The browser uses the WordNet distance of predicate labels

from pairs of triples as distance metrics for a clustering algorithm. The groups are

automatically labelled by using the nearest ancestor word of all predicates in a group from

WordNet’s tree. If the most common ancestor word is too high level, then the most frequent

predicate label in the group is used instead.

Figure 3.9: Screenshot of a Semantic Web browser that automatically groups triples using semantic predicate
matching based on strings (Seeliger & Paulheim, 2012)

The Quick and Dirty RDF Browser (Gutteridge, 2012) and Marbles (Becker & Bizer, 2009)

recognises some predicates from the Friend of a Friend (FOAF) and GeoNames (GEO)

ontologies and will display triples containing those predicates differently. Specifically, for

certain predicates indicating images, they display the images linked by the object member of

the triple instead of printing the URI as a text string.

30

3.2.1.2 Graph Matching

Graph matching approaches form displays of Semantic Web data by applying transformation

steps which match parts of an RDF graph to style rules. For example, using XLST to transform

an RDF document into a display matching XPath expressions (Pietriga, Bizer, Karger, & Lee,

2006) to spaces in templates. Graph Stylesheets27 (GSS) is a transformation language for

displaying RDF Graphs. GSS is primarily used in IsaViz (W3C, 2007) a tool for visualising RDF

graphs. Another approach, Xenon (D. Quan & Karger, 2004) uses a different RDF-based

stylesheet ontology that matches using SPARQL queries instead of XPath. Stegeman, Ziegler,

Hussein & Gaulke (2012) uses XLST to match the results of a SPARQL query to widgets.

A limitation for Graph Matching is that a given RDF Graph has many representations in

RDF/XML. This means the XLST rules, which match and transform RDF/XML, are sensitive to

the how an RDF Graph is encoded into RDF/XML.

3.2.2 Type Matching

Type Matching approaches select between alternative displays depending on the rdf:type

of the subject being displayed. The most common form of type matching is template based.

Templates are used to arrange and filter triples in Exhibit (Huynh, Karger, & Miller, 2007),

IsaViz (W3C, 2007, p. 3), Marbles (Becker & Bizer, 2009), Tabulator (Berners-Lee et al., 2006),

Haystack (D. Quan, Huynh, & Karger, 2003), and Zitgist DataViewer (OpenLink Software, 2009).

This section discusses the templating systems Exhibit Lens (Huynh et al., 2007), Fresnel

(Pietriga et al., 2006) and Ozone (D. Quan et al., 2003).

27 http://www.w3.org/2001/11/IsaViz/gss/gssmanual.html

31

3.2.2.1 Exhibit Lens

Exhibit (Huynh, Karger, & Miller, 2007) is an HTML/CSS/JSON/Javascript based template

system for browsing a fixed corpus that includes a template system called “Lens.” Exhibit

collections are shown using Views and navigated using Facets. The Exhibit View uses the

Lenses as templates to display individual data items from a collection (see Figures 3.10 & 3.11).

Exhibit works on a fixed corpus of data, and so it is assumed the author of the Exhibit-based

visualisation will invest time in data comprehensiveness, having a stable ontology and

matching visualisation methods to the data. Exhibit, therefore, works on more restrictive

assumptions than the Semantic Web.

Figure 3.10: Exhibit showing keyword search, facets, timeline, and map. (Screenshot of http://www.simile-
widgets.org/exhibit/examples/presidents/presidents.html, taken 19 Jan 2017)

32

Figure 3.11: Exhibit showing a timeline overview (left) and a detail view of a person (right).

3.2.2.2 Fresnel

Fresnel (Pietriga et al., 2006) is a template system for Semantic Web data. Fresnel is supported

by the Semantic Web browsers IsaViz (W3C, 2007), Longwell (MIT, 2005) and Marbles (Becker

& Bizer, 2009). Fresnel achieves some measure of display device independence by

conceptually separating into Fresnel Lenses and Fresnel Formats. Lenses specify how triples

are filtered and ordered for display. Fresnel Formats specify how Lenses are visually presented.

Formats have hooks that are styled using Cascading Stylesheets (CSS). Fresnel templates are

RDF-based and described in the Web Ontology Language (OWL)28.

Fresnel matches triples using SPARQL expressions or the XPath-like Fresnel Selector Language

(FSL). Fresnel supports grouping of Lenses and Formats. Groups allow lens or format

instructions to be attached to groups as a whole. Groups also specify larger units analogous to

a compound widget made of multiple components.

Marbles (Becker & Bizer, 2009) allows the user to switch between different Formats when

these are available. For example, Marbles has switchable data presentations for full data,

photos only or mobile versions (see Figure 3.12). The view is selected depending on the URI

used to access the Marbles browser. No other user interface affordances are given to switch

the view.

28 http://www.w3.org/TR/2012/REC-owl2-overview-20121211/

33

Figure 3.12: Marbles’ alternative data presentations (from left to right) Full view, Summary view, Photo view

3.2.2.3 Ozone

Ozone (D. Quan et al., 2003) is an RDF based user interface ontology for the Haystack

Semantic Web browser. Ozone allows the definition of user interface elements called views. In

Haystack, operations on Semantic Web data can be performed by linking control widgets to

operations (called Adenine). Ozone views are attached to RDF data via the rdfs:Class that

they support. Ozone views have attached requirements for display size so that Haystack can

select the appropriate view compared to the available display space, e.g. full-screen mode or

summary mode. Ozone views can also be embedded by other views to allow reuse.

3.2.3 Ontological Reasoning

Ontological Reasoning extends type matching, based on matching the rdf:type or

rdfs:Class, to reasoning about the ontology of the RDF Graph.

Alshukaili, Fernandes and Paton (2016) have an approach that uses Programmable Soft Logics

(PSL) to combine inferences from lexical, semantic and user preferences to improve keyword

search of Semantic Web data. Their approach focuses on learning about the structure of the

data. While the approach focuses on search results, it is relevant because the search process

34

filters and orders for relevance which is a similar task to filtering and ordering to build a

display.

A PSL program consists of weighted first-order logic assignment rules where the weighting

denotes “more or less likely to be true or false.” Situations are evaluated against the rules and

the weights combined to give an overall likelihood of true/falseness. Alshukaili et al.’s

approach uses a lexical similarity in many rules. Semantic information is gathered by

inferences on the ontology itself, and user preferences are incorporated via user feedback

from previous interactions with the system.

Alshukaili et al.’s approach is robust because the use of PSL means that partial, uncertain and

inductive inferences can be gathered together to build a case for likelihood of similarity. If a

certain form of information (e.g. ontological information about rdf:type) is missing then,

the approach will still produce good results. However, like many semantic approaches on the

Semantic Web, Alshukaili’s approach requires dereferencing many URIs, and that could

translate into many network transactions. Moreover, the user feedback mechanism begins

with no knowledge of user preferences and these will take some time to learn.

3.3 USER PREFERENCE APPROACHES

User preference approaches make decisions about arranging Semantic Web data by

incorporating information about the user. User preferences are a special case of semantic

information but are distinguished from other semantic approaches in that the source of the

information is the user’s conceptual relationship with the data rather than from either the

author of the data, the author of the ontology or some other third party. Marbles (Becker &

Bizer, 2009) allows the user to switch between available views: this is an adaptable approach

but is not adaptive because view switching occurs in response to explicit user actions.

35

3.4 SUMMARY

Lexical approaches to grouping and ordering have the advantage that they operate quickly

with no external dependencies that require expensive lookups into the corpus. Lexical

approaches also need no user preference data. Common lexical approaches are to leave triples

in the order they appear in the RDF Document, Alphabetical ordering or String Similarity.

Where lexical similarity is a reasonable approximation for conceptual similarity, then string

similarity can be a computationally efficient way to group triples for display.

Semantic approaches exploit knowledge of semantics to make decisions about filtering and

ordering for display. Semantic approaches include matching; which matches at the level of

predicate and templates that match at the level of ontology. Semantic approaches will work

efficiently if the program has high-speed access to its entire corpus, such as if the corpus is

entirely contained (enclosed) on a single server. An enclosed corpus is a reasonable

assumption for a search engine because a search engine can only be expected to search for

items which it knows (i.e. in its corpus). However, the Semantic Web is closed in any practical

sense. Enclosure might be achieved if network access to the corpus has speed increases to the

level they are comparable to local corpus access. Until this happens, approaches that rely on

semantic approaches may be too slow to be of practical use.

Templates are a semantic approach for displaying Semantic Web data that operates at the

level of ontology. Templates are more likely to filter and arrange displays of Semantic Web

data in ways that make more sense to users. However, templates are selected based on the

rdf:type or rdfs:class of the subject. Semantic Web has unstable ontologies because

the presence of a triple matching a particular subject and predicate cannot be relied upon. A

user could write templates to suit their needs, however in practice template writing may be

too time-consuming.

36

Under the right conditions – stable predicate patterns, known ontology and some match with

user goals – templates can work well because users learn where a particular template places

the data for which they are looking. Templates often display the most useful data more

prominently and display conceptually related data in groups.

A common goal of arranging data into a display is to place conceptually related data in close

proximity. In a template, it is the template’s designer that applies their estimations of

conceptual proximity when they design the template. Seeliger and Paulheim’s browser (2012)

groups triples using a clustering algorithm that groups by the semantic similarity of predicate

labels. Alshukaili, Fernandes and Paton’s approach (2016) combines lexical, semantic and

ontological information using a probabilistic soft logic program to select data that is related.

However, where semantic information is available, stable and known, then it should be made

use of when forming displays of Semantic Web data. As discussed earlier, User Preferences are

a special case of semantic information where the user preferences are stored where the

Semantic Web browser can access them quickly. A Semantic Web-browser can also cache

certain useful semantic information for quick access. There is a strong case to cache

rdfs:label. Additionally, if other ontological information was cached, then it could be used

to reason for the purposes of display. The caveat is that ontologies on the Semantic Web are

unstable and so ontological information might not be available or reliable. Also, ontological

information does not necessarily represent the user's view on how data should be displayed.

37

Other semantic web browsers exist with similar features to those above. Notably, Dipper29,

Sig.ma (Tummarello et al., 2010) and URI Burner30 as surveyed in Dadzie and Rowe (2011).

There are no current Semantic Web browsers that use an AUI and so the use of an AUI is novel.

While some Semantic Web browsers do self-modify in response to the data (e.g. Marbles), to

qualify as an AUI, the Semantic Web browser must self-modify in response to the user.

29 http://api.talis.com/stores/iand-dev1/items/dipper.html and http://notes.3kbo.com/talis
30 http://linkeddata.uriburner.com

38

CHAPTER FOUR USER STUDY I: DO USERS AGREE ON THE

RELATEDNESS OF TRIPLES?

This chapter explores the first research question by studying the extent to which human

raters agree on the relatedness of triples. If users do not agree on the relatedness of

triples, this will provide support for the argument that users may have different

preferences for the display of triples.

Question 1. Is there sufficient diversity in user preferences for displaying Semantic Web

data to justify the overhead of an adaptive user interface that learns how to group and

order?

The chapter is structured as follows: The user study’s introduction and hypothesis,

methodology, the results of the user study, and conclusions.

The study described here was originally part of a larger study that investigated lexical

algorithms for predicting the relatedness of pairs of triples. However, only the part of that

study relevant to this thesis is described in this chapter.

This study measures the agreement between multiple raters regarding the relatedness of

triples. Relatedness means to be associated or connected. In Single Subject RDF Graph

(SSRGs), relatedness is most strongly expressed in the similarity in meanings of the

predicate. For example, firstName and familyName are related because they refer to

information about a user’s name, whereas firstName and dateOfConstruction

are unrelated because the first refers to information about a name and the second to

information about time.

39

4.1 HYPOTHESES
The hypotheses are:

H0: Raters do not give the same ratings when asked to rate the relatedness of triples

H1: Raters give the same ratings when asked to rate the relatedness of triples

4.2 METHODOLOGY

The study compares the participant ratings for the relatedness of two triples with the

same subject. There were twenty participants and each participant rated fifty pairs of

triples.

Participants were recruited by personal contact. Almost all participants were

acquaintances of the researcher before the study. Participants complete a demographic

questionnaire which is summarised in “Participant Demographics” (see Section 4.2.3).

Participants also give informed consent. A copy of the demographic questionnaire is in

Appendix One.

Participant performed the rating tasks on an iPad2 running a custom HTML web app. Each

participant first completed five familiarisation ratings and then rated fifty pairs of triples.

Of the fifty pairs, forty asked about the relatedness of pairs of triples and ten asked about

the extent to which a pair of triples contain the same. The databank of triples used in this

user test is available on GitHub at https://github.com/Stormrose/GPRank.

Figure 4.1 shows the screen for a rating task. A guiding question is at the near the top of

the screen. The pair of triples have a common subject, and so this subject is integrated as

part of the question and bolded (e.g. subject The Beatles). Underneath the question is the

predicate and object for a pair of triples. Each triple is shown with a colon separating the

40

predicate (left) from the object (right), for example, “pastMembers: Pete Best”

represents a triple with the subject “The Beatles”, the predicate “pastMembers”

and the object “Pete Best”. Underneath the pair of triples is the rating slider. Labels

appear on the ends of the slider to guide the participant. The slider snaps to five positions

and defaults to the left-most position. There are approximately 2 centimetres between

choices on the slider. The five positions on the slider are encoded as the whole numbers {0,

1, 2, 3, 4}. The left of the slider corresponds to a value of 0, and the rightmost end of the

slider corresponds to a rating value of 4. The numbers were not labelled on the slider.

Instead, the sliders are labelled on the two ends, as explained below.

Figure 4.1: Screenshot for the study where the user has given a rating of 1

Figure 4.1 shows where a participant has moved the slider one position from the left and

this is encoded as a rating of 1 out of {0,1,2,3,4}.

Participants give relatedness ratings for forty pairs of triples. The question for participants

is: To what degree do these two snippets give related information about SubjectX? For this

41

category of questions, the slider ends are labelled “Totally unrelated” and “Very strongly

related”. The pairs of triples used in the relatedness questions are listed in Appendix Two

and have the question numbers 10 to 49.

Additionally, participants give ratings for ten pairs of triples based on the extent to which

the two triples contain the same information. The question presented to participants is:

To what extent do these two snippets provide the same information about SubjectX? For

this category of questions, the slider ends are labelled “Completely different” and “Exactly

the same”. The pairs of triples used in these types of questions are listed in Appendix Two

and have the question numbers 0 to 9.

After supplying a rating, the participant presses the continue button to move to the next

rating task. The slider was reset to the left (corresponding to a value of zero out of five) for

each question. At the bottom of the screen, there is a progress bar that shows how much

of the study has been completed. The participant has a forced break of a few seconds

every ten questions.

Participants rated the same fifty pairs of triples, but each participant encounters the pairs

of triples in an individually random order. Participant responses were stored on the iPad2

using HTML local storage.

4.2.1 Measuring Agreement

This study uses inter-rater reliability to measure the reliability of the agreement between

raters for the rating tasks in this study. Inter-rater reliability is a statistical measure of the

reliability of the agreement amongst different raters.

42

The ratings given by participants are encoded as ordinal numbers, so although the ratings

are made on a ranked scale, the difference between the ranks is not quantifiable.

Krippendorff’s Alpha Reliability Coefficient (Krippendorff, 2004), henceforth referred to as

α, is a measure of inter-rater reliability for multiple raters and ordinal data. Krippendorff’s

α is a real number between 0 and 1 with zero representing perfect disagreement and 1

representing perfect agreement between the raters. This study will interpret α using the

scales from Landis and Koch (1977), which is given in Table 4.1.

Range Agreement

 0 to .20 Slight

.21 to .40 Fair

.41 to .60 Moderate

.61 to 80 Substantial

.81 to 1 Near Perfect

Table 4.1: Interpreting inter-rater reliability (Landis & Koch, 1977)

4.2.2 Study Location and Time.

The study was carried out between the 3rd and 14th of June 2012 in the Waikato area.

Twenty people participated in the study.

4.2.3 Participant Demographics

Participants were asked to complete a demographic questionnaire to give an overall

indication of demographic biases that may exist in the participant pool. The results are not

analysed by demographic attribute. A copy of the questionnaire is in Appendix One. The

demographic questions ask about participant gender, age, ethnicity, first languages,

profession, and education level. Participants are not required to respond to any questions

43

and could supply multiple answers so the numbers of responses might not equal the

number of participants. A summary of the participant demographic attributes follows.

There were seven female and 13 male participants. There was one participant aged 15 –

19 years, 11 aged 20 – 24, two aged 25 - 29, two aged 30 – 39 and four aged 40 – 50.

Genders and age bands are taken from those used by Statistics New Zealand.

 Participant ethnicity included New Zealand European (10), Asian (5), New Zealander or

Kiwi (3), European (3), Maori (1) and White (1). Three participants listed dual ethnicities.

Ethnicity labels are supplied by the participants.

Seventeen participants had English as a first language, and three participants did not list

English as a first language. Other first languages included five Asian languages and one

European language. Two participants listed more than one first language. The participants

supply language names. Since this user study is primarily a language task, participants

without English as a first language (3) may have found completing the user study more

difficult.

Participant profession included 11 graphic designers, two educators, two from other

design/media professions, one business person, an individual in the IT industry and three

who did not specify a profession. Participants could specify more than one profession.

Professions categories are self-nominated by the participants.

Participant education levels varied from 3 with Masters, seven with post-graduate

qualifications, four at Bachelors, 5 in tertiary education at an unspecified level and one

who did not specify an education level. Participants self-nominated their level of

education.

44

4.3 RESULTS
Table 4.2 shows the number of ratings at a given value for each question. Each row

represents one of the fifty questions. The second to sixth columns contain the number of

participants giving the rating at the column heading for the question indicated in the first

column.

Question# Rating (Number of Raters)

0 1 2 3 4

0 18 0 1 1 0

1 14 1 3 2 0

2 8 6 4 2 0

3 2 6 4 8 0

4 4 6 6 3 1

5 4 5 3 5 3

6 1 1 2 9 7

7 0 1 3 11 5

8 0 0 1 14 5

9 0 0 6 11 3

10 10 7 3 0 0

11 11 3 2 3 1

12 15 3 2 0 0

13 11 3 4 1 1

14 0 2 2 5 11

15 4 8 2 2 4

16 0 1 2 8 9

17 0 1 1 3 15

18 0 0 0 3 17

19 0 0 1 6 13

20 6 5 7 2 0

21 5 6 3 3 3

22 13 2 2 2 1

23 4 5 4 7 0

24 14 6 0 0 0

Question# Rating (Number of Raters)

0 1 2 3 4

25 4 5 4 6 1

26 3 5 4 5 3

27 5 7 2 3 3

28 6 7 3 2 2

29 1 0 5 8 6

30 3 7 5 4 1

31 9 6 4 1 0

32 6 5 6 2 1

33 12 1 0 0 7

34 7 5 3 4 1

35 7 2 8 3 0

36 0 0 1 5 14

37 3 1 0 3 13

38 2 1 3 10 4

39 4 0 0 10 6

40 16 4 0 0 0

41 16 2 2 0 0

42 15 2 1 1 1

43 11 5 2 2 0

44 4 4 3 6 3

45 6 4 7 3 0

46 1 0 3 5 11

47 3 5 4 3 5

48 3 0 2 8 7

49 3 1 1 8 7

Table 4.2: Summary of Ratings

45

For half of the questions (25 out of 50 questions), half of the participants (10 or more of 20

participants) gave the same rating. The greatest number of participants agreeing on a single

rating for a single question is 18 participants agreeing on a rating of 0 for question number 0.

More than two-thirds of the participants (14 or more out of 20 participants) gave the same

rating in 11 questions of 50. Questions number 5 and 26 had the lowest agreement (measured

as having 3, 4 or 5 participants supplying each of the possible ratings).

For half of the questions about related pairs (20 questions of 40), half of the participants (10

or more out of 20 participants) gave the same rating. The greatest number of participants

agreeing on a single rating for a single question about related pairs is 17 participants agreeing

on a rating of 0 for question number 18.

More than two-thirds of the participants (14 or more out of 20 participants) gave the same

rating in 3 questions regarding related pairs out of 10 questions. Question number 5 had the

lowest agreement out of all the pairs being rated for identical information.

The Krippendorff α for all questions is 0.449 and this, on the scale from Landis and Koch (1977),

indicates a moderate level of inter-rater reliability.

4.4 DISCUSSION

Half the participants were aged in their early twenties, and there were no participants older

than fifty years of age. Most participants were first language speakers of English, over half are

graphic designers, and almost all have specified some degree of tertiary education. This may

have introduced some bias into the results.

46

There is a moderate level of reliability in the agreement between raters (0.449), and so the

null hypothesis H0 is rejected, and H1 accepted with the caution that the reliability of

agreement is moderate.

H1: Raters give the same ratings when asked to rate the relatedness of triples

The moderate level of agreement demonstrates that raters differ on how they interpret the

relatedness of triples. This indicates that users may have different expectations for how triples

are arranged in a display. However, this implication rests on the assumption that relatedness

of triples and proximity in a display of triples are linked.

The moderate level of inter-rater agreement provides support for answering the first research

question in the affirmative; that there is sufficient diversity in user preferences for displaying

Semantic Web data to justify the overhead of an adaptive user interface.

4.5 SUMMARY
The chapter documented a user study that addressed the first research question to justify an

adaptive user interface approach to displaying Semantic Web data. The user study tested how

twenty participants rated the relatedness of fifty pairs of triples on an ordinal scale from 0 to 4.

There is only a moderate level of inter-rater agreement between participants, and this

indicates that an adaptive user interface approach that learns individual user preferences may

give better individual results. Two user preference learning algorithms are proposed in

Chapter Five Chapter Five User preferences for grouping and ordering and then tested in

Chapter Six User Study II: Learning user preferences for grouping and ordering.

47

CHAPTER FIVE USER PREFERENCES FOR GROUPING AND ORDERING

This chapter proposes three methods for forming grouped and ordered displays of Semantic

Web data (called NonLearner, ListAlg, and GPRank); the three methods are tested in the

following chapter. NonLearner does not learn user preference but is used as a baseline to

compare the other two methods. ListAlg uses a top-down user model and GPRank a bottom-

up user model.

The chapter is structured with a section for each of the three methods: NonLearner, ListAlg,

and GPRank. The description of each the methods first gives an overview and then defines the

user model, how grouping and ordering decisions are made using the user model, how the

method learns new user preferences, and then a discussion on the approach. Then there is a

discussion that compares ListAlg and GPRank. The chapter is then summarised to

contextualise key parts of this chapter within the thesis.

5.1 NONLEARNER

NonLearner does not learn user preferences but instead makes grouping decisions based on

lexical similarity. The input is an SSRG represented as a list of triples, and the output are the

triples grouped and ordered. NonLearner provides a baseline against which to compare the

two learning methods. It could be argued that random results should be the baseline, but

should NonLearner perform better than randomness then the adaptive algorithms must also

out perform NonLearner. A Javascript implementation of NonLearner is available on Github at

https://github.com/Stormrose/GPRank.

NonLearner uses a similar rationale to that in Alshukaili (2016): that nothing is known about

how to group items, then lexical methods provide an acceptable fallback. Falcons (Cheng & Qu,

https://github.com/Stormrose/GPRank

48

2009) also extends lexical similarity to work with triples and uses a clustering algorithm to

group similar triples together.

Since NonLearner does not learn, then it does not require a user model or a method for

incorporating user preference information into a user model. Accordingly, the description of

NonLearner focuses on how NonLearner groups and orders a list of triples that represent and

SSRG.

5.1.1 Forming Displays from NonLearner

An SSRG that is represented as a list of triples is grouped and ordered using the following steps:

1. hierarchical clustering

2. collapsing into groups and orders

3. eliminating redundant triples.

Each of these steps is now described.

5.1.1.1 Hierarchical Clustering

NonLearner groups triples from an SSRG using a hierarchical clustering algorithm. The input to

this step is an SSRG represented as a list of triples. The output of hierarchical clustering is a

tree with weights at each of the nodes and the triples at the leaf nodes.

Another clustering algorithm used in lexical clustering is k-means. Hierarchical clustering does

not require a starting estimate of the number of groups in the data whereas k-means

clustering requires an estimate. The number of clusters/groups may vary between SSRGs, so a

universal estimate is of limited usefulness.

The clustering algorithm uses a pairwise distance metric to decide which triples to group

together. The distance metric used in NonLearner is an extension of the Dice Coefficient (Dice,

49

1945; Sørensen, 1948). The Dice Coefficient is a value between 0 and 1, expressing the

similarity of two lists of samples (with duplicate entries permitted). A zero value means that

the lists are not similar and a one value means that the lists are the same. We assume the

existence of two ordered lists, X and Y. The cardinality |X| of a list is the number of elements it

contains. The intersection between two lists contains all elements that occur in both lists

(allowing for repeated elements). Then the Dice Coefficient is defined in Equation 5.1:

dice(𝑋, 𝑌) =
2|𝑋 ∩ 𝑌|

|𝑋| + |𝑌|

Equation 5.1: Dice Coefficient for lists

The Dice Coefficient for string similarity is calculated by first decomposing the strings into

case-sensitive lists of bigrams (strings of two characters). For example, we consider the two

strings “firstName” and “familyName”, which are converted into the following two lists of

bigrams: {"fi","ir","rs","st","tN","Na","am","me"} and

{"fa","am","mi","il","ly","yN","Na","am","me"}. For this example, the

Dice Cofficient is calculated as follows (see Equation 5.2):

𝑑𝑖𝑐𝑒("firstName","familyName") =
2 | {"Na","𝑎𝑚","𝑚𝑒"} |

8 + 9
=

6

17
= 0.35

Equation 5.2: Example of Dice Coefficient for the strings “firstName” and “familyName”

The distance metric between two triples, t1 and t2, used in NonLearner is one minus the

average between the Dice Coefficients of the predicate and objects (see Equation 5.3).

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑀𝑒𝑡𝑟𝑖𝑐: Triple × Triple → [0, 1]

50

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑀𝑒𝑡𝑟𝑖𝑐(𝑡1, 𝑡2)

= 1.0

−
𝑑𝑖𝑐𝑒(𝑡1. 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒, 𝑡2. 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒) + 𝑑𝑖𝑐𝑒(𝑡1. 𝑜𝑏𝑗𝑒𝑐𝑡, 𝑡2. 𝑜𝑏𝑗𝑒𝑐𝑡)

2

Equation 5.3: NonLearner’s hierarchical cluster distance metric extends Dice Coefficient

The implementation of NonLearner uses the hcluster() method from the javascript library

clusterfck[sic]31 to perform the hierarchical clustering. NonLearner combines items when they

are 90% similar.

5.1.1.2 Collapsing into Groups and Orders

The tree structure given by the hierarchical clustering algorithm is converted into a balanced

tree of height 2. The tree nodes at level one become groups, and the leaves become triples

within that group. All other depth information is discarded. NonLearner cannot order groups

or their member triples because hierarchical clustering has no concern for the order of the

triples. At this point, NonLearner has constructed a set of groups containing triples, where the

triples within each group are lexically similar.

31 https://github.com/harthur/clusterfck

51

5.2 LISTALG

ListAlg attempts to learn user preferences for grouping and ordering triples by recording how

users group and order predicates. Since ListAlg is a learning algorithm for an adaptive user

interface it has a user model, a procedure for grouping and ordering a list of triples, a

procedure for bringing new user preference information into a user model and these are

discussed below. ListAlg is based on taking a data model that supports a grouped and ordered

view and extending this data model with a set of heuristic rules to store user preferences. A

Javascript implementation of ListAlg is available on GitHub at

https://github.com/Stormrose/GPRank.

5.2.1 User Model

ListAlg’s user model is an ordered list of groups in which each group is an ordered list of

predicates (see Figure 5.1). Each predicate is unique within the user model.

Figure 5.1: User Model for ListAlg

The structure of the ListAlg user model has a close relationship to how triples would be

grouped and ordered for display; that is, the ListAlg user model is itself stored as ordered

groups containing ordered predicates.

User Model Groups Predicates

52

5.2.2 Forming Displays from ListAlg

ListAlg creates a display from an RDF document by placing triples into display groups that

correspond to groups in the user model. The order within groups also follows order within

groups in the user model.

If ListAlg encounters predicates with triples for which it has no user preference information,

then the UI should take this into account and encourage the user to place those triples

according to their preference. An example implementation would be to place triples with no

user preference information into a single group and then to display this group differently to

draw user attention to these triples.

5.2.3 Incorporating New User Preferences

ListAlg attempts to merge information about new preferences from a candidate grouping and

ordering into the user model using a series of heuristic rules. The input to this process is a

current user model and new preference data, and this produces a new user model. The new

preference data is represented as triples that are grouped and ordered, for example, taken

from a grouped and ordered display that the user a rearranged via drag and drop. The process

for incorporating the user preferences is described below. A worked example follows to

demonstrate the process and aid understanding.

ListAlg extracts the predicates from the new preference data and places them into an empty

ListAlg user model (candidate user model) such that the grouping and ordering of the

predicates correspond to the grouping and ordering of the triples that contain those

predicates from the new preference data. The remainder of the process merges two ListAlg

user models to produce a new user model that would replace the current user model.

53

ListAlg iterates over the predicates in both the current and candidate user models together in

depth first order from the first predicate in the first group. If the predicates from the

candidate user model and the current user model are the same, then ListAlg appends the

predicate to the corresponding group in the new user model.

If predicates differ then the predicates from the candidate user model are appended into the

corresponding group in the new user model until either a predicate from the candidate user

model matches the predicate from the current user model, or there are no further predicates

in that group within the candidate user model.

Another way to explain this is that transferring predicates from the current user model into

the new pauses when there is a mismatch with the candidate user model. If the iteration of a

candidate user model group has ended then predicates from the current user model are

appended.

Predicates from the current user model are only appended into the corresponding group in

the new user model if the predicate is not already present and does not exist elsewhere in the

new or candidate user models. This restriction preserves the requirement that predicates only

appear once in the new user model.

The following step-by-step example demonstrates ListAlg’s procedure for incorporating new

preference data. The examples use a JSON-like notation where square brackets represent

ordered lists. The outer square brackets enclose a ListAlg user model. The inner square

brackets contain groups of predicates. Strings within the groups represent predicates. Strings

are unquoted for clarity. At the end of the examples, there is a condensed summary of the

example with each step represented on a single line.

54

The process removes predicates from the old and candidate user models as the algorithm adds

predicates to the new user model. The new user model begins empty (see Table 5.1).

Current User Model Candidate User Model New User Model

[

 [

 predicateA,

 predicateB,

 predicateC,

 predicateD

], [

 predicateE,

 predicateF

]

]

[

 [

 predicateA,

 predicateE,

 predicateB,

 predicateG

], [

 predicateD

], [

 predicateH

]

]

[

]

Table 5.1: ListAlg Example - Beginning

ListAlg transfers the first predicate directly into the new user model because the first predicate

in the current user model and the candidate user model match (see Table 5.2).

Current User Model Candidate User Model New User Model

[

 [

 predicateA,

 predicateB,

 predicateC,

 predicateD

], [

 predicateE,

 predicateF

]

]

[

 [

 predicateA,

 predicateE,

 predicateB,

 predicateG

], [

 predicateD

], [

 predicateH

]

]

[

 [

 predicateA

]

]

Table 5.2: ListAlg Example - Predicate matches in old and candidate user models

55

The predicate from the candidate user model is added to the new user model because there is

a mismatch between the current predicate in the current user model and the candidate user

model (see Table 5.3).

Current User Model Candidate User Model New User Model

[

 [

 predicateB,

 predicateC,

 predicateD

], [

 predicateE,

 predicateF

]

]

[

 [

 predicateE,

 predicateB,

 predicateG

], [

 predicateD

], [

 predicateH

]

[

 [

 predicateA,

 predicateE

]

]

Table 5.3: ListAlg Example - Mismatch between predicate in old and candidate user models

The predicate from the current user model and the candidate user model match again, so they

are both appended to the corresponding group in the new user model which, in this case, is

predicateB (see Table 5.4).

Current User Model Candidate User Model New User Model

[

 [

 predicateB,

 predicateC,

 predicateD

], [

 predicateE,

 predicateF

]

]

[

 [

 predicateB,

 predicateG

], [

 predicateD

], [

 predicateH

]

[

 [

 predicateA,

 predicateE,

 predicateB

]

]

Table 5.4: ListAlg Example - Another predicate match

56

The predicates from the current user model and the candidate user model do not match, so

ListAlg adds the predicate from the candidate user model to the new user model (see Table

5.5).

Current User Model Candidate User Model New User Model

[

 [

 predicateC,

 predicateD

], [

 predicateE,

 predicateF

]

]

[

 [

 predicateG

], [

 predicateD

], [

 predicateH

]

[

 [

 predicateA,

 predicateE,

 predicateB,

 predicateG

]

]

Table 5.5: ListAlg Example - Another predicate mismatch

The first group in the candidate user model is exhausted of all predicates, so the remaining

predicates from the first group of the current user model are appended to the first group in

the new user model in order. However, predicates from the current user model that remain in

either the new or candidate user models are not appended to the new user model. In this

example, ListAlg appends predicateC to the first group of the new user model, but ListAlg

ignores predicateD (for now) because predicateD appears in the candidate user model (see

Table 5.6).

Current User Model Candidate User Model New User Model

[

 [

 predicateC,

 predicateD

], [

 predicateE,

 predicateF

]

]

[

 [

], [

 predicateD

], [

 predicateH

]

[

 [

 predicateA,

 predicateE,

 predicateB,

 predicateG,

 predicateC

]

]

Table 5.6: ListAlg Example - Candidate user model group exhausted

57

ListAlg skips predicateE in the current user model because predicateE already exists in the new

user model (in the first group). PredicateF and predicateD do not match, so ListAlg adds

predicateD from the candidate user model to the corresponding (second) group in the new

user model (see Table 5.7).

Current User Model Candidate User Model New User Model

[

 [

], [

 predicateE,

 predicateF

]

]

[

 [

], [

 predicateD

], [

 predicateH

]

[

 [

 predicateA,

 predicateE,

 predicateB,

 predicateG,

 predicateC

], [

 predicateD

]

]

Table 5.7: ListAlg Example - Pausing for current user model items already in the new user model

The second group in the candidate user model is now exhausted of predicates. ListAlg appends

the remaining predicates from the second group of the current user model to the second

group of the new user model in order. In this case, ListAlf appends predicateF to the second

group in the new user model. If a group in the current user model was exhausted of predicates

and the corresponding group in the candidate user model had remaining predicates, then

ListAlg would append the remaining predicates from the candidate user model to the

corresponding group in the new user model (see Table 5.8).

58

Current User Model Candidate User Model New User Model

[

 [

], [

 predicateF

]

]

[

 [

], [

], [

 predicateH

]

[

 [

 predicateA,

 predicateE,

 predicateB,

 predicateG,

 predicateC

], [

 predicateD,

 predicateF

]

]

Table 5.8: ListAlg Example - Another candidate user model group exhausted

When there is no corresponding group between the current user model or the candidate user

model, then that is treated as if there was an empty group there instead. In the following case,

there is no third group in the current user model, so ListAlg treats the situation as if there was

an empty group in the current user model. ListAlf inserts predicateH to a third group in the

new user model. The merge is complete and the new user model is stable because ListAlg has

processed all predicates in both the current and candidate user models (see Table 5.9).

Current User Model Candidate User Model New User Model

[

 [

], [

]

]

[

 [

], [

], [

 predicateH

]

[

 [

 predicateA,

 predicateE,

 predicateB,

 predicateG,

 predicateC

], [

 predicateD,

 predicateF

], [

 predicateH

]

]

Table 5.9: ListAlg Example - Implying an empty group in the current user model

59

Table 5.10 shows the current user model and candidate user models in their original states

and the new user model when ListAlg has merged the old and candidate user models. The

table shows an overview of the whole process. Extra line breaks aid following the process

step-by-step from top to bottom.

Current User Model Candidate User Model New User Model

[

 [

 predicateA,

 predicateB,

 predicateC,

 predicateD

], [

 predicateE,

 predicateF

]

]

[

 [

 predicateA,

 predicateE,

 predicateB,

 predicateG

], [

 predicateD

], [

 predicateH

]

]

[

 [

 predicateA,

 predicateE,

 predicateB,

 predicateG,

 predicateC

], [

 predicateD,

 predicateF

], [

 predicateH

]

]

Table 5.10: ListAlg Example - Line by line

5.2.4 Discussion

ListAlg’s user model is a compact format and runs in O(n) (linear) time because the

integration process iterates over current user model and candidate user models in tandem.

That is, the number of operations required to produce a new user model will never be greater

than the count of predicates in the old and candidate models added together (see Equation

5.4).

𝐿𝑖𝑠𝑡𝐴𝑙𝑔 𝑟𝑢𝑛𝑠 𝑖𝑛 𝑂(𝑛) 𝑡𝑖𝑚𝑒, 𝑤ℎ𝑒𝑟𝑒 𝑛

< |𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑠 𝑖𝑛 𝑜𝑙𝑑 𝑢𝑠𝑒𝑟 𝑚𝑜𝑑𝑒𝑙|

+ |𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑠 𝑖𝑛 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑢𝑠𝑒𝑟 𝑚𝑜𝑑𝑒𝑙|

Equation 5.4: Upper bound for iterations in ListAlg

60

ListAlg can use predicates that are URIs, so ListAlg does not incur network delays

dereferencing labels or risk the inaccuracies introduced by using a heuristic derivation of

predicate labels. This gives ListAlg an advantage over methods that use label data, such as

NonLearner.

ListAlg can match user preferences where the diversity of predicates seen across different RDF

documents is low. The calculation for Predicate Diversity is one minus the mean number of

unique predicates per document encountered divided by the total number of unique

predicates encountered in all documents (see Equation 5.5).

𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 = 1.0 −
𝑀𝑒𝑎𝑛 𝑈𝑛𝑖𝑞𝑢𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑅𝐷𝐹 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑈𝑛𝑖𝑞𝑢𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑅𝐷𝐹 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛

Equation 5.5: Predicate Diversity for the diversity of predicates in a collection of RDF documents

When Predicate Diversity is low, then the patterns of groups will not change much. ListAlg may

not reflect user preferences when there are groups missing in the candidate user model that

are present in the current user model. Missing groups are more likely to occur when the

Predicate diversity is high.

ListAlg also assumes that users will always want predicates in the same order. While this might

be the case, it is possible that a user may prefer the same predicate placed differently in

different situations. For example, a user prefers the dc:comment predicate displayed in one

place for movies and in another place for historic events. ListAlg cannot cater for this level of

sophistication.

61

During preliminary self-testing by the researcher, predicates in groups lower in the order

tended to frequently move around groups when predicate diversity was high due to ListAlg

not dealing with missing groups in candidate user models.

Whether ListAlg is sufficient for real-world SSRGs is tested in the next chapter. If ListAlg

performs well according to user expectations, then ListAlg’s memory compactness and O(n)

computation may suit constrained computation environments.

5.3 GROUPED PAIRWISE RANKING (GPRANK)

Group Pairwise Ranking (GPRank) is a supervised learning method learning user preferences

for grouping and ordering triples. GPRank is supervised learning because a supervisor (the user)

guides the learning by providing their preferred grouping and ordering. The difference

between ListAlg and GPRank is that ListAlg’s balanced tree user model is a top-down method

and GPRank’s pairwise user model is a bottom-up method.

GPRank is pairwise: all decisions are made based upon pairs of predicates. GPRank decides

group membership using weighted voting between pairs of triples. GPRank orders group

members using pairwise comparisons with accommodation for partial orders. GPRank must

support partial orders because user preference information is incomplete. GPRank orders

groups by comparing the sorting order of each predicate in one group versus every other

predicate in the other group. GPRank was influenced by other sorting algorithms that are

pairwise and support partial orders and extends these to support grouping Semantic Web data.

Additional influences are Bayes (Bayes & Price, 1763) and simulated annealing (Kirkpatrick,

1984). The differences to Bayes are discussed in Section 5.3.4.

GPRank incorporates new preference data by adjusting the weights between pairs.

62

Since GPRank is a learning algorithm for an adaptive user interface it has a user model, a

procedure for grouping and ordering a list of triples, a procedure for bringing new user

preference information into a user model and these are discussed below. A Javascript

implementation of GPRank is available on GitHub at https://github.com/Stormrose/GPRank.

5.3.1 User Model

The user model for GPRank (see Equation 5.6) stores two predicates (a and b) and the values

which associate between them: order, group and confirmations. The GPRank user

model for a single user is of type 𝑢𝑠𝑒𝑟𝑔𝑟𝑜𝑢𝑝𝑟𝑎𝑛𝑘𝑠, that is, a set of GPRankEntries.

𝐺𝑃𝑅𝑎𝑛𝑘𝐸𝑛𝑡𝑟𝑦 ∶= (𝒂, 𝒃, 𝑜𝑟𝑑𝑒𝑟, 𝑔𝑟𝑜𝑢𝑝, 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠)

𝑎 ∈ 𝑅𝐷𝐹𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑠

𝑏 ∈ 𝑅𝐷𝐹𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑠

𝑜𝑟𝑑𝑒𝑟 ∈ [0,1] ∈ ℝ, the confidence that 𝑎 is ordered higher than 𝑏

𝑔𝑟𝑜𝑢𝑝 ∈ [0,1] ∈ ℝ, the confidence that 𝑎 and 𝑏 are members of the same group.

𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠 = ℕ0, the count of confirmations for this tuple.

𝑢𝑠𝑒𝑟𝑔𝑟𝑜𝑢𝑝𝑟𝑎𝑛𝑘𝑠 ∶= { 𝑥 | 𝑥 ∈ 𝐺𝑃𝑅𝑎𝑛𝑘𝐸𝑛𝑡𝑟𝑦 }

Equation 5.6: GPRankEntry tuple as used in a GPRank based user model

Each relation (a,b) stores an ordering weight (order) in the range [0-1], a group

membership affinity in the range [0-1] and a count of the number of user confirmations

this relation has. Logically a usergroupranks forms a sparse table with all predicates

present on both axes. Order values less than 0.5 represent the probability that the first

63

predicate in the relation is ordered before the second predicate. Order values greater than 0.5

represent the probability that the second predicate is ordered before the first predicate. The

divergence of the order value from 0.5 indicates the strength – further from 0.5 being a

stronger indication. The group affinity value works similarly with lower group affinity values

representing the likelihood that the two predicates in the relation are not in the same group

and higher values representing that the two predicates are in the same group.

In the following example, shown in Equation 5.7, for the predicates firstName and

familyName, gprank is low (0.15) which indicates that triples containing the predicate

familyName should be ordered after triples containing the predicate firstName, the

group affinity is high (0.95) so triples containing these two predicates should be in the same

group and there are four confirmations of this information.

𝐺𝑃𝑅𝑎𝑛𝑘𝐸𝑛𝑡𝑟𝑦("𝑓𝑎𝑚𝑖𝑙𝑦𝑁𝑎𝑚𝑒", "𝑓𝑖𝑟𝑠𝑡𝑁𝑎𝑚𝑒", 0.15, 0.95,4)

Equation 5.7: Example GPRankEntry

In order to support an open-world assumption 𝑎, 𝑏, 𝑜𝑟𝑑𝑒𝑟 and 𝑔𝑟𝑜𝑢𝑝 attributes can also have

a value that is 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 and the 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠 attribute can also be 0 or infinite. The

above specifications (see Equation 5.6) represent the usual case for brevity. The open-world

assumption is so that GPRank’s user model properly reports when information is incomplete

and does not assume default values that might mislead a display algorithm.

To be thorough in the conceptual definition, technically the composite candidate key for user

model entries is (a, b and confirmations) together. However, the order and group

affinity for the most recent confirmation value is the most useful, so GPRank discards data

from earlier confirmations. Thus, (a, b) is treated as the composite candidate key.

64

5.3.1.1 A Lookup Function

It is useful to define a function for referring to a GPRankEntry tuple from within a

usergroupranks (ugr) by its compound primary key (a, b). This function is used in

explanations later in the chapter and for understanding how GPRank’s user model operates.

By definition, tuple attributes are functionally dependent upon the primary key. The lookup

function will always return a single tuple of type GPRankEntry. The open world cases,

where tuples are returned for combinations of a and b that are not explicitly stored by the

implementation, are discussed later.

Defining the lookup function, gpr, (Equation 5.10) has several steps. Firstly, the function

gprb (Equation 5.8) returns a single member usergroupgranks set. The function gpra

(Equation 5.9) extracts the single set member returned by gprb to return a GPRankEntry

tuple. For readability, gpra is partially composed with the current user’s user model (type

usergroupranks, a set of GPRankEntries) to define the gpr lookup function. Finally,

dot notation is used to access the value of attributes in the GPRankEntries (Equation 5.11).

The gprb function will always return a set with exactly one member. The chapter discusses

the open world cases where parameters are unknown later.

𝑔𝑝𝑟𝑏: 𝑢𝑠𝑒𝑟𝑔𝑟𝑜𝑢𝑝𝑟𝑎𝑛𝑘𝑠 × 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 × 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 → 𝑢𝑠𝑒𝑟𝑔𝑟𝑜𝑢𝑝𝑟𝑎𝑛𝑘𝑠

𝑔𝑝𝑟𝑏〈𝑢𝑔𝑟, 𝑎, 𝑏〉 ∶= { 𝑥 | 𝑥 ∈ (𝐺𝑃𝑅𝑎𝑛𝑘𝐸𝑛𝑡𝑟𝑦 ∩ 𝑢𝑔𝑟) ∧ 𝑥. 𝑎 = 𝑎 ∧ 𝑥. 𝑏 = 𝑏 }

∀𝑎∀𝑏: |𝑔𝑝𝑟𝑏〈𝑢𝑔𝑟, 𝑎, 𝑏〉| = 1

Equation 5.8: First step defining a lookup function for a particular GPRankEntry

The lookup function gpr returns a single GPRankEntry tuple, but gprb always returns a

single member set. So, the definition for the intermediate function gpra borrows square

65

bracket notation with an ordinal parameter from C-Style computer programming languages. In

this case, the ordinal parameter 1 means the first, and in this case only, member.

 𝑔𝑝𝑟𝑎: 𝑢𝑠𝑒𝑟𝑔𝑟𝑜𝑢𝑝𝑟𝑎𝑛𝑘𝑠, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 → 𝐺𝑃𝑅𝑎𝑛𝑘𝐸𝑛𝑡𝑟𝑦

 𝑔𝑝𝑟𝑎(𝑢𝑔𝑟, 𝑎, 𝑏) ∶= 𝑔𝑝𝑟𝑏(𝑢𝑔𝑟, 𝑎, 𝑏)[1]

Equation 5.9: Second step defining a lookup function for a particular GPRankEntry

For the sake of brevity, the parameter ugr will usually be omitted when it refers to the user

model for the current user. This partial function is called gpr and will normally be written

without the partial subscript. To use terminology from functional programming, this step binds

the user model parameter to a function and returns a new function. gpr always returns a

single GPRankEntry – it inherits this property from grpa.

𝑔𝑝𝑟 ∶= 𝑝𝑎𝑟𝑡𝑖𝑎𝑙(𝑔𝑝𝑟𝑎, 𝑢𝑔𝑟): 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 × 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 → 𝐺𝑃𝑅𝑎𝑛𝑘𝐸𝑛𝑡𝑟𝑦

𝑔𝑝𝑟𝑝𝑎𝑟𝑡𝑖𝑎𝑙(𝑎, 𝑏) ∶= 𝑔𝑝𝑟𝑎(𝑢𝑔𝑟, 𝑎, 𝑏) ugr is bound as the first parameter.

Equation 5.10: Second step defining a lookup function for a particular GPRankEntry

For readability, this research writes the partial function without the partial subscript

e.g. 𝑔𝑝𝑟(𝑎, 𝑏) without the partial function subscript.

66

Dot notation accesses the value of a named attribute in the GPRankEntry tuples, such as

those returned by 𝑔𝑝𝑟(𝑎, 𝑏).

𝑔𝑝𝑟(𝑎, 𝑏). 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒

where attribute is one of: a, b, order, group, confirmations

e.g. 𝑔𝑝𝑟(𝑎, 𝑏). 𝑜𝑟𝑑𝑒𝑟

𝐺𝑃𝑅𝑎𝑛𝑘𝐸𝑛𝑡𝑟𝑦(𝐶ℎ𝑒𝑒𝑠𝑒, 𝐶ℎ𝑎𝑙𝑘, 1.0, 1.0, 5). 𝑎 = 𝐶ℎ𝑒𝑒𝑠𝑒

Equation 5.11: Dot notation for named members in a GPRankEntry tuple

5.3.1.2 Constraints and Assertions

There are constraints and assertions that stem from the design of GPRank’s user model and its

open world assumption. The undefined tuple and when confirmations are zero support the

open world assumption. The predicate reversal constraint makes the user model indifferent to

the order in which predicates pairs are assigned to a and b for lookup. The constraint that a

and b cannot be the same is because GPRank cannot order pairs of triples that have the same

predicate.

5.3.1.2.1 Constraint: 𝑎 and 𝑏 cannot be the same

When 𝑎 = 𝑏 then order is undefined, 𝑔𝑟𝑜𝑢𝑝 is the same (1.0) and 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠 are

infinite (see Equation 5.12). This means that there is no ordering information but the two

predicates are always members of the same group. The implementation used in this research

avoids this situation so the definition below is included for conceptual completeness.

∀𝑥 (𝑥 ∈ 𝐺𝑃𝑅𝑎𝑛𝑘𝐸𝑛𝑡𝑟𝑦 ∧ 𝑥. 𝑎 = 𝑥. 𝑏

→ 𝐺𝑃𝑅𝑎𝑛𝑘𝐸𝑛𝑡𝑟𝑦(𝑥. 𝑎, 𝑥. 𝑎, 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑, 1.0, ∞))

Equation 5.12: a and b cannot be the same in a GPRankEntry tuple

67

5.3.1.2.2 Constraint: Predicate Reversal

Given any 𝐺𝑃𝑅𝑎𝑛𝑘𝐸𝑛𝑡𝑟𝑦 within a particular 𝑢𝑠𝑒𝑟𝑔𝑟𝑜𝑢𝑝𝑟𝑎𝑛𝑘𝑠 (user model) another

𝐺𝑃𝑅𝑎𝑛𝑘𝐸𝑛𝑡𝑟𝑦 can be calculated which is its reverse (Equation 5.13). In this calculation, the 𝑎

and 𝑏 predicates are swapped, the order is subtracted from one and the 𝑔𝑟𝑜𝑢𝑝 and

𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠 are transferred as they are. When the predicates are swapped then the

gprank (ordering) is inverted but the group affinity and confirmations remain the same. The

term u is given here to emphasise that the inversion is relevant within only a single user model.

∀𝑢∀𝑥: (𝑢 ∈ 𝑢𝑠𝑒𝑟𝑔𝑟𝑜𝑢𝑝𝑟𝑎𝑛𝑘𝑠 ∧ 𝑥 ∈ (𝐺𝑃𝑅𝑎𝑛𝑘𝐸𝑛𝑡𝑟𝑦 ∩ 𝑢)

→ 𝐺𝑃𝑅𝑎𝑛𝑘𝐸𝑛𝑡𝑟𝑦(𝑥. 𝑏, 𝑥. 𝑎, (1.0 − 𝑥. 𝑜𝑟𝑑𝑒𝑟), 𝑥. 𝑔𝑟𝑜𝑢𝑝, 𝑥. 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠))

Equation 5.13: The result of reversing a and b in a GPRankEntry tuple is calculatable

Which encapsulates the following shown in Equation 5.14:

𝑔𝑝𝑟(𝑎, 𝑏). 𝑜𝑟𝑑𝑒𝑟 = 1.0 − 𝑔𝑝𝑟(𝑏, 𝑎). 𝑜𝑟𝑑𝑒𝑟

𝑔𝑝𝑟(𝑎, 𝑏). 𝑔𝑟𝑜𝑢𝑝 = 𝑔𝑝𝑟(𝑏, 𝑎). 𝑔𝑟𝑜𝑢𝑝

𝑔𝑝𝑟(𝑎, 𝑏). 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠 = 𝑔𝑝𝑟(𝑏, 𝑎). 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠

Equation 5.14: Deriving a new GPRankEntry tuple from the reversal of a and b

5.3.1.2.3 Statement: The undefined tuple

When a 𝐺𝑃𝑅𝑎𝑛𝑘𝐸𝑛𝑡𝑟𝑦 tuple referred to by the predicates 𝑎, 𝑏 does not exist in the

implementation of a particular 𝑢𝑠𝑒𝑟𝑔𝑟𝑜𝑢𝑝𝑟𝑎𝑛𝑘𝑠 then an undefined tuple is returned to

satisfy the constraint that gprb(a,b) must always return a single GPRankEntry (Figure

5.15). This supports the open world assumption.

68

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑𝑔𝑝𝑟𝑎𝑛𝑘𝑡𝑢𝑝𝑙𝑒 ∶= 𝐺𝑃𝑅𝑎𝑛𝑘𝐸𝑛𝑡𝑟𝑦(𝑎, 𝑏, 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑, 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑, 0)

∀𝑎∀𝑏: (|𝑔𝑝𝑟〈𝑎, 𝑏〉| = 0 → 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑𝑔𝑝𝑟𝑎𝑛𝑘𝑡𝑢𝑝𝑙𝑒)

Equation 5.15: The undefined GPRankEntry tuple

In situations where 𝑎 = 𝑏 then the “𝑎 cannot be the same as 𝑏” rule takes precedence

because the same predicates are in the same group and this is unaffected by the number of

confirmations. When the predicates are not the same and are also not stored in the user

model, then nothing can be inferred about the GPRankEntry except that confirmations are

zero.

5.3.1.2.4 Statement: Confirmations as zero

To complete the open world assumption, a further rule is needed to define what happens

when 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠 are zero. This is called the undefined tuple. The meaning is that when

confirmations are zero, then order and group affinity are always undefined (Equation 5.16).

∀𝑥: (𝑥 ∈ 𝐺𝑃𝑅𝑎𝑛𝑘𝐸𝑛𝑡𝑟𝑦 ∧ 𝑥. 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠 = 0 → 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑𝑔𝑝𝑟𝑎𝑛𝑘𝑡𝑢𝑝𝑙𝑒)

Equation 5.16: A GPRankEntry tuple with 0 confirmations is undefined

5.3.2 Forming Displays with GPRank

GPRank forms displays by using pairwise comparisons of predicates to organise triples into

ordered groups and then order within those groups. An overview of the process follows:

1. Group: Assign triples to groups

2. Order Groups: sort the groups into preferred order

3. Order Triples: sort the triples within groups into preferred order

69

GPRank must perform the first step before the others, but steps 2 & 3 can be performed in

either order – or even in parallel.

5.3.2.1 Step One - Grouping

The grouping stage uses a weighted peer election to decide which predicates are grouped

together. The group weighting is the weighted average of the group affinity values for the

candidate predicate and the current members of the group. However, weights are also

adjusted by confirmations to favour the newest user preference information. The

implementation starts each predicate in a group by itself and then uses simulated annealing

(Kirkpatrick, 1984) to move predicates into more suitable groups.

The basic process is to iterate over all predicates looking for the change that would give the

strongest result in a weighted peer election. In the first iteration, since all groups contain a

single predicate, this will be equivalent to moving the predicates with the highest group

affinity value into the same group. The value of the peer-election value is then assigned to the

simulated annealing target. This has the effect of reducing the annealing target value over

time. Further iterations merge groups when the peer election strength is stronger than the

annealing target. The grouping process ends when the annealing target reduces to 0.5.

5.3.2.2 Step Two – Ordering Groups

GPRank orders groups by a weighted comparison of the order probability between all

predicates in one group against all predicates in the other group. This results in a value that

can be used in a sorting algorithm. It is possible that there are no relations in the user model

that contain predicates from both groups; in this case, there is no group ordering information

so the algorithm that does the group sorting must work with partial orders. The

implementation used by this research is an exhaustive matrix sort, but any pairwise sort that

supports partial orders will work.

70

5.3.2.3 Step Three – Ordering Predicates Within Groups

To ordering triples within groups, GPRank uses comparisons of the pairwise ordering weights

(order) from the user model. This step is the most sensitive to partial orders because

information about the relations between might be incomplete and only the predicates from a

single group can contribute ordering information. The implementation used in this research is

an exhaustive matrix sort, but any pairwise sort that supports partial orders will work.

5.3.2.4 Resolving Conflicts Between .gprank and grouprank()

A situation may arise when using GPRank where a higher ordered triple to ends up in a lower

ordered group. This rule resolves the inconsistency.

The order of the group takes precedence over the order of triples. If two triples are in the

same display-group then they are ordered using the value of the order attribute from the

𝐺𝑃𝑅𝑎𝑛𝑘𝐸𝑛𝑡𝑟𝑦 found in the user model, otherwise, they are ordered according to the order of

the groups to which they belong.

Implementations of GPRank can avoid this situation by first ordering the groups of triples and

then ordering triples within groups.

5.3.3 Incorporating New User Preferences into the GPRank User Model

Incorporating new user preference information into a GPRank user model from grouped and

ordered triples begins by tagging predicates with their group number into an ordered list. The

gathering process can extract this information from a grouped and ordered set of triples, such

as that provided by the user from a drag and drop interface.

GPRank compares each predicate in the new preference data to every other predicate in the

new preference data. If the predicates are the same, then the loop continues – there is no

need to compare a predicate with itself. If the predicates are not in alphabetical order, then

71

the loop continues because the information from this predicate pair will be recorded when the

predicates are in alphabetical order. Otherwise, if the predicates are different and in

alphabetical order, then GPRank retrieves the relation, with the two predicates as primary-key,

from the current user model.

If the implementation does not an existing record for gpr(a,b), then a new record is

created with the starting values for order and group affinity set at either 0.3333 or 0.6667

and confirmations is set to one. Higher ordering values indicate a greater likelihood that

the predicate in the first index is ordered before the predicate in the second index. Higher

group affinity means that the two predicates are likely to be in the same display group. These

two numbers have a range [0.0 – 1.0] with 0.5 being the midpoint denoting no

information or no particular preference.

If this is an existing relation, then the confirmations are incremented by one. If the

ordering in the incoming user preference information places the first predicate earlier than

the second, then the order value is moved halfway between its current value and 1.0. If the

ordering is instead the other way, then the order value is moved halfway between its current

value and 0.0. If the predicates are members of the same group, then the group affinity value

is moved halfway between its current value and 1.0 otherwise if the predicate in the new

preference information is not in the same group then the group affinity value is moved

halfway between its current value and 0.0. The number of confirmations is increased by

one, and the relation is saved back into the user model. The process repeats until all

predicates in the new preference information have been processed against each other and

each iteration updates the user model as above.

5.3.4 Discussion

This section discusses some of the considerations that underlie GPRank. The first topic

examines why GPRank is based upon predicates patterns and not ontological information from

72

RDF. The next section examines the GPRank weight adjustment formula and why it differs

from Bayes (Bayes & Price, 1763).

GPRank does not use ontological reasoning because detecting when users might want a

predicate displayed in a different place also has some challenges as described in here. At first

glance, rdf:type seems to be a good basis for ontological reasoning – an algorithm could

associate different display preferences with different values of rdf:type. However, this

would rely on rdf:type being present in each SSRG and introduces challenges when

multiple rdf:type triples are present in an SSRG. This might be made more deterministic if

rdf:type entries were resolved to find their rdfs:class and rdfs:subClassOf

values but that would come at the cost of numerous network operations and rely on the

dereferenced RDF data being both available and of useful quality. These requirements are

presumptive and so a solution should not rely upon them.

GPRank adjusts half-way between the current order or group affinity values and 0.0 or 1.0,

and this has advantages over Bayes (Bayes & Price, 1763) that are discussed below.

The effect of halfway weighing is that new preference information has an immediate effect.

For example, if the current value of group affinity for two predicates is 0.94 and the incoming

preference data does not have the two predicates in the same group, then the new group

affinity value will become 0.47. The effect is a signal to GPRank’s display process that these

two predicates would prefer to be in different groups, but this preference is weak because the

weighting is close to 0.5. When the number of samples is high, Bayes requires more contrary

samples to change to reflect a change in user preferences.

GPRank’s move-half-way weight adjustment enables predicates that are displayed in different

groups depending on which other predicates are around. The grouping process uses simulated

73

annealing to create groups where the members maximise their pairwise group affinity. With

each iteration, the predicate to group affinities are recalculated and the highest chosen again.

A group’s affinity to a predicate is the average of the group member predicate’s affinities with

that predicate. The effect of this is that predicates that are sometimes in the same group as

another predicate and sometimes not when both are present will have group-affinity values

close to 0.5. Such predicate pairs will have less effect on grouping decisions because the

weighting value has less effect on the group-average that forms a predicate-to-group affinity.

Predicates that are consistently placed in the same group, or consistently placed in different

groups, will develop values that tend towards 0.0 or 1.0. This has more effect upon the

weighted average for predicate-to-group affinity.

In addition, the averages for predicate-group affinity is weighted by the number of

confirmations. The strength of the weighting becomes stronger as more confirmations are

received. The strength is currently capped at six confirmations based on a preliminary

investigation by the researcher. The confirmation-based weighting could the subject of more

robust further research.

The previous paragraphs discuss the effect of the move-half-way weight adjustment on group

affinity. The weight adjustment also affects the ordering of groups because the pairwise value

used to decide which group is order before the other is also weighted based on comparing the

pairwise ordering values of all members in both groups. Predicate pairs that are ordered

consistently will develop strong order values (closer to 0.0 or 1.0), and predicate pairs that

are inconsistently ordered will have order ordering values that converge on 0.5.

In summary, GPRank’s weight adjustment encapsulates both a pairwise preference and a

weighting for how much effect the grouping and ordering decisions should place upon that

preference. This enables displays where predicates are displayed in different groups in

different circumstances.

74

5.4 COMPARISON BETWEEN LISTALG AND GPRANK

This section discusses when ListAlg or GPRank might be a more suitable choice for a particular

context. The discussion compares the projected processing and storage overheads between

ListAlg and then proposes a future investigation into a hybrid user model that combines the

advantages of ListAlg and GPRank. This discussion is to round out the understanding of ListAlg

and GPRank.

In GPRank, the number of loop iterations will be the square of the number of predicates in the

incoming user preference data. However, the number of operations to the user model will be

the number of predicates in the incoming preference data squared minus itself, or n * (n –

1). This is because predicates that are equal are skipped and the two predicates in the loop

only affect the user model when the first is alphabetically earlier than the second. The number

of updates to the user model is not affected by the current size of the user model. In ListAlg,

the number of updates to the user model is always less than the number of predicates in the

current user model plus the number of predicates in the incoming preference data. More

precisely, the number of user model updates in ListAlg will be the number of unique

predicates in the union of the current user model and the incoming preference data.

While it may appear that ListAlg’s linear scaling model will have fewer user model updates,

thus being more efficient, in real-world usage this will only remain true up to a point. The

number of predicates in a document is expected to remain relatively stable while the number

of predicates contained in the user model is expected to grow as the user encounters more

diverse content.

There eventually becomes a point where GPRank is more efficient (fewer user model updates)

for incorporating new user preference information when user models become sufficiently

75

large. This cross-over point is when ListAlgUMUpdateCount (Equation 5.17) is equal to

GPRankUMUpdateCount (Equation 5.18).

𝐿𝑖𝑠𝑡𝐴𝑙𝑔𝑈𝑀𝑈𝑝𝑑𝑎𝑡𝑒𝐶𝑜𝑢𝑛𝑡

∶= | 𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑠𝐼𝑛𝐼𝑐𝑜𝑚𝑖𝑛𝑔𝑈𝑠𝑒𝑟𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐷𝑎𝑡𝑎

∪ 𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑠𝐼𝑛𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑖𝑠𝑡𝐴𝑙𝑔𝑈𝑠𝑒𝑟𝑀𝑜𝑑𝑒𝑙 |

Equation 5.17: The number of user model update operations for ListAlg

𝐺𝑃𝑅𝑎𝑛𝑘𝑈𝑀𝑈𝑝𝑑𝑎𝑡𝑒𝐶𝑜𝑢𝑛𝑡 ∶= |𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑠𝐼𝑛𝐼𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑈𝑠𝑒𝑟𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐷𝑎𝑡𝑎|

∗ (|𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑠𝐼𝑛𝐼𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑈𝑠𝑒𝑟𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐷𝑎𝑡𝑎| − 1)

Equation 5.18: The number of user model update operations for GPRank

The uniqueness constraint in the union operation for ListAlgUMUpdateCount means that the

actual crossover point where GPRank’s update process has fewer user model update

operations than ListAlg is guaranteed once the number of predicates in the user model is at

least the number of predicates in the incoming user preference data squared and then plus

twice itself.

5.4.1 Future research: a hybrid user model

Although GPRank has a higher computational cost and its user model takes more storage than

ListAlg, it is possible to improve GPRank’s efficiency by looking for fragments for which

ListAlg’s assumptions hold (same grouping and order all the time) and then treating those

fragments as if they were predicates within GPRank. This is an area for further research that

may improve the efficiency of GPRank implementations.

76

5.5 SUMMARY

This chapter presented three algorithms for forming displays of Semantic Web data.

NonLearner uses hierarchical clustering with a lexical distance metric. ListAlg uses heuristics to

learn user preferences in a way that is space and computationally efficient. GPRank uses

pairwise measures of group affinity and ordering between predicates.

The extent to which NonLearner reflects user preference is the extent to which users prefer

lexically similar predicates to be grouped together. ListAlg assumes that grouping can be

indexed from top to bottom and that users always want predicates in the same order under all

circumstances. GPRank assumes that users will behave consistently enough that group

membership can be determined by peer election.

The next chapter tests the performance of the three proposed algorithms - NonLearner,

ListAlg, and GPRank - against user preferences.

77

CHAPTER SIX USER STUDY II: LEARNING USER PREFERENCES FOR

GROUPING AND ORDERING

This chapter tests the grouping and ordering methods proposed in the last chapter against

user expectations for grouping and ordering triplets in displays of Semantic Web data. This

chapter addresses the second research question by measuring the ability of the two proposed

adaptive user interface methods, ListAlg and GPRank, to learn user preferences for grouping

and ordering. The chapter addresses the first research question by gathering and comparing

user preferences for grouping and ordering Semantic Web data.

The user study documented in this chapter uses a drag-and-drop user interface that allows

users to express their grouping and ordering preferences.

6.1 HYPOTHESES

Testing the algorithms involves a few questions. Firstly, do the three algorithms have better

than random performance against user expectations? Secondly, do the two algorithms that

learn user preferences (ListAlg and GPRank) learn? Thirdly, do the ListAlg and GPRank match

user preferences more than the NonLearner? Finally, does one learning algorithm learn user

preferences better than the other? The following hypotheses explore the above questions:

The experiment silently tests NonLearner performance against random ordering.

H0: NonLearner is no better than random grouping and ordering when compared to users’

preferred grouping and ordering of Semantic Web data.

78

H1: NonLearner is worse than random grouping and ordering when compared to users’

preferred grouping and ordering of Semantic Web data.

H2: NonLearner is better than random grouping and ordering when compared to users’

preferred grouping and ordering of Semantic Web data.

This chapter tests the claim from the previous chapter (above) that ListAlg and GPRank can

learn user preferences.

GL0: ListAlg does not learn user preferences for grouping/ordering Semantic Web documents.

GL1: ListAlg does learn user preferences grouping/ordering Semantic Web documents.

GG0: GPRank does not learn user preferences for grouping/ordering Semantic Web

documents.

GG1: GPRank does learn user preferences grouping/ordering Semantic Web documents.

There is a computational cost to using the learning algorithms (ListAlg and GPRank) over

NonLearner, so it is useful to know if the learning algorithms outperform the non-learning

algorithm.

JL0: ListAlg is as accurate as NonLearner for predicting user grouping/ordering preferences.

JL1: ListAlg is more accurate that NonLearner for predicting user grouping/ordering

preferences.

79

JG0: GPRank is as accurate as NonLearner when predicting user grouping/ordering preferences.

JG1: GPRank is more accurate than NonLearner when predicting user grouping/ordering

preferences.

The experiment tests user preferences for grouping and ordering compared with the

predictions made by ListAlg and GPRank. This gives three possible hypotheses:

K0: There is no discernible difference between ListAlg and GPRank when learning user

preferences for grouping and ordering Semantic Web data.

K1: ListAlg outperforms GPRank when learning user preferences for grouping and ordering

Semantic Web data.

K2: GPRank outperforms ListAlg when learning user preferences for grouping and ordering

Semantic Web data.

6.2 METHODOLOGY

This section outlines how the hypotheses were investigated. Broadly, the investigation is in the

form of a user test using a laptop with a mouse. Participants choose which of two example

group/orderings are closest to their preference. Participants then provide their ideal

grouping/ordering via a drag and drop interface. The test then applies user preferences to

another Semantic Web document within a similar topic domain (dataset). The participant

chooses which prediction is the best, and the difference between each algorithm’s

grouping/ordering and the user’s grouping/ordering are recorded.

80

The experiment design requires a set of example data and a method to measure the

differences between the user’s preferred and algorithm calculated grouping and ordering. This

section discusses the dataset and its design considerations, then the difference measurement

and then there is more information about the design of the experiment itself.

6.2.1 The three methods

NonLearner (see 5.1 above) groups pairs of triples based on a lexical distance metric.

NonLearner does not learn user preferences but may have some use when user preferences

are unknown.

ListAlg (see 0 above) is a heuristic approach to combining user preferences for grouping and

ordering. ListAlg mirrors how a user has grouped and ordered previously encountered

Semantic Web data. ListAlg then attempts to merge in any new group/order preference

information.

GPRank (see 5.3 above) uses pairwise partial orders with two weighted properties: group

affinity and the top-to-bottom ordering of the pair. Groups anneal by weighted peer election.

The weightings for group affinity and ordering are adjusted as more user preference data

becomes available.

The ability of NonLearner to group and order triples according to user preferences will be a

baseline measure to compare the performance of ListAlg and GPRank: both learning

algorithms are expected to perform better than NonLearner.

81

6.2.2 Dataset design

The experiment’s dataset should emulate Semantic Web conditions, and so the dataset is

taken from DBPedia, which derives its data from Wikipedia infoboxes. Semantic Web data is

not perfect; there are spelling errors, missing information and redundant information. An

imagined scenario is a set of subjects returned in response to a query. These subjects are

related, usually by a real-world type even if the rdf:type is not the same. The SSRGs in a set

have some commonality in predicates used to express the data, but there are also be some

differences in predicate patterns between SSRG. The dataset used in this user study is

available on Github at https://github.com/Stormrose/GPRank.

Dataset Diversity is a useful way to measure the relative stability of predicate patterns

between data sets. Different dataset diversities allow comparison between the performance

of the GPRank and ListAlg under situations with stable predicate patterns and less stable

predicate patterns.

The calculation for dataset diversity is one minus the mean number of unique predicates per

document in a dataset divided by the total number of unique predicates in the dataset

(Equation 6.1). The range is [0.0 − 1.0) with lower values representing a more homogeneous

data set and higher values representing datasets with a greater diversity of predicates per

document in the dataset.

𝐷𝑎𝑡𝑎𝑠𝑒𝑡 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 = 1.0 −
𝑀𝑒𝑎𝑛 𝑢𝑛𝑖𝑞𝑢𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑠 𝑝𝑒𝑟 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑖𝑛 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝑇𝑜𝑡𝑎𝑙 𝑢𝑛𝑖𝑞𝑢𝑒 𝑝𝑟𝑒𝑑𝑖𝑎𝑡𝑒𝑠 𝑖𝑛 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

Equation 6.1: Dataset Diversity

This study has five sets of data and one training set. The training set contains three SSRGs

while the other sets contain 10 SSRGs. The SSRGs within a set share a common theme but

have variation in the predicate patterns used to express the data. The training set is biological

82

data on plants. The datasets are Movies, Historical Events, Political Leaders, Tourist

Destinations, and Books.

The data was then manually edited to ensure that each SSRG had between seven and twenty

triplets so that the triples from a single SSRG could fit onto a laptop screen without scrolling.

The edits also ensured a spread of dataset diversities as shown in Table 6.1.

Dataset Diversity

Plants (training) 0.10

Movies 0.22

Historical Events 0.62

Political Leaders 0.40

Tourist Destinations 0.75

Books 0.40

Table 6.1: Dataset diversity in the second user study

6.2.3 Measuring differences between alternative grouping and ordering

This study requires measure for the distance of two different grouping/orderings of the same

set of data. In this case, the distance between the grouping/ordering expressed by an

algorithm and the user-supplied grouping/ordering. The measure chosen is a modified Kendall

Tau Distance (Kendall, 1938). The Kendall Tau Distance is also known as the Bubble Sort

Distance because it represents the number of swap operations a bubble sort would perform to

change one list into another. The modifications to Kendal Tau Distance and their rationale are

described in the following paragraphs.

Kendall Tau Distance measures the distance between two lists but NonLearner, ListAlg and

GPRank output their data in a grouped and ordered form. So, we flatten the groups into a list

83

such that the top-to-bottom order is preserved. Unique group end markers are added to the

list.

Predicates that are not in both lists are removed because this represents a situation where

that item does not appear in the user model, and so the method cannot group order that item:

This occurs when an algorithm group/orders a document for which it does not have

group/order information for all predicates in its user model.

The Kendall Tau Distance is the minimum number of swap operations required to transform

one list into the other. The Kendall Tau Distance can be normalised (Equation 6.2) so that

comparisons can be made between lists of different lengths – in the case of this experiment

grouping of and ordering of SSRGs that have different numbers of triples. The denominator for

normalising the Kendal Tau Distance is the maximum number of bubble sort swaps possible on

a list of that length, which is (n*(n-1))/2. The result of the normalisation calculation is a

number in the range [0,1] where 0.0 represents that the two lists are in the same order and

1.0 represents that the lists are in perfect reverse order from each other. Over many repeated

measures, a randomly ordered list will average a score of 0.5 in comparison to another list of

the same members.

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝐾𝑒𝑛𝑑𝑎𝑙𝑙 𝑇𝑎𝑢 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝑏𝑢𝑏𝑏𝑙𝑒 𝑠𝑜𝑟𝑡 𝑠𝑤𝑎𝑝 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

(
𝑙𝑖𝑠𝑡𝑙𝑒𝑛𝑔𝑡ℎ ∗ (𝑙𝑖𝑠𝑡𝑙𝑒𝑛𝑔𝑡ℎ − 1)

2)

Equation 6.2: Normalised Kendall-Tau Distance

This results in this study are expressed as Normalised Kendall Tau Closeness (Equation 6.3),

which is calculated by subtracting the Normalised Kendall Tau Distance from 1.0. Higher

numbers denote two lists are more similar. It is calculated by subtracting the normalised

Kendall Tau Distance from 1.0.

84

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝐾𝑒𝑛𝑑𝑎𝑙𝑙 𝑇𝑎𝑢 𝐶𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠 = 1.0 − 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝐾𝑒𝑛𝑑𝑎𝑙 𝑇𝑎𝑢 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

Figure 6.3: Normalised Kendall-Tau Closeness (NKTC) - calculation

The Normalised Kendall Tau Closeness NKTC is used by user study documented in this chapter

to compare the performance of predictions for grouping and ordering made by NonLearner,

ListAlg and GPRank against participant supplied grouping/orderings.

6.2.4 Test Sequence

The sequence of testing for a single participant is as follows.

The researcher demonstrates the task to the participant. First research demonstrates the drag

and drop interface for specifying a user’s preferred grouping and ordering. Then the

researcher shows the screen for selecting between the grouping and ordering created by

ListAlg and GPRank.

The participant familiarises themselves with the interface. The researcher needs to be satisfied

the participant can create groups, remove groups, reorder triplets within a group, move

triplets into another group and reorder groups. The training round is identical to the research

rounds except that nothing is recorded, and the round is shorter. The screens for the

researcher demonstration and participant familiarisation are the same with different titles, so

only a single set is shown here.

The drag and drop interface, shown in Figure 6.2, affords the participant a means to express

their grouping and ordering preferences. Clicking on a triplet, dragging it to its new position

and releasing the mouse button moves the triplet to the new location. A space, marked with a

red outline, shows the participant valid drop locations. Dropping a triplet within a group

85

moves the triplet into that group (if not already there) and orders it accordingly. Dropping a

triplet between, before or after groups creates a new group containing only that triplet.

Moving all triplets out of a group, leaving the group empty, deletes the group. Finally, the

participant may change the order of groups by dragging and dropping using the medium grey

rectangle on the right side of each group.

Figure 6.1: Drag and drop interface for a user to express the grouping and ordering preferences

Once the participant has expressed their preferred grouping and ordering and then pressed

continue, both ListAlg and GPRank record the preferences into their user models. A new SSRG

is selected and the ordered by both ListAlg and GPRank. A display is then formed using GPRank

and ListAlg and the participant selects which grouping/ordering they think is best (Figure 6.3).

The algorithms are not labelled, and the position of each algorithm is randomised every time

this screen is displayed so that the participant does not develop a habit of always clicking one

86

side of the screen. In cases where the GPRank and ListAlg output are the same output then the

selection of a single grouping/ordering is disabled, and the user must click the middle button

labelled “Both sides appear the same.”

Figure 6.2: Screen for user to select one of two outputs

Following training, the user selects from one of the datasets (Figure 6.4). The participant may

complete as many or as few datasets as they choose but are only allowed to attempt each

dataset once. Furthermore, there is a restriction of twenty participants per dataset enforced

by the programme. This screen will not display buttons for datasets that already have twenty

participants.

87

Figure 6.3: Screen for Selecting Dataset

If the participant clicks the “End the Research Session” button, then they are shown a thank

you screen. The participant may choose the order of datasets. The order of documents within

each set is random for each participant. The first screen a user sees after clicking on an area of

interest is grouped and ordered using NonLearner (Figure 6.5). The user is invited to drag and

drop the data on this screen to suit their preferences. The progress bar in the top right corner

relates to progress through the dataset (Figure 6.6).

88

Figure 6.4: Grouping and Ordering Screen showing grouping and ordering by NonLearner

Figure 6.5: Grouping and Ordering Screen showing data as grouped and ordered by a participant

89

Once the participant is satisfied with the grouping and ordering, they then click the “Continue”

button. In the background, ListAlg, GPRank add the user’s preferences to their user models,

and then a new RDF document is randomly selected from the dataset. Each RDF document is

only encountered once per participant. The RDF data is then grouped and ordered using

ListAlg and GPRank and then displayed side by side in random order, as in the training (Figure

6.7).

Figure 6.6: Participant selects the best Grouping/Ordering

The choice test application records the participant’s choice. The participant is then shown the

drag and drop interface to fine tune the grouping and ordering (Figure 6.8). This screen has

the grouping and ordering from the side the participant selected.

Predicates that have not been seen before are placed in a group at the bottom of the

document. That group has a yellow background to alert the user that these predicates are new.

90

Figure 6.7: Participant can fine tune the grouping and ordering

Once the participant has finished with the drag and drag interface, they click the “Continue”

button. The user’s ordering is compared using the NKTC with the outputs of ListAlg, GPRank,

and NonLearner. These NKTCs for each algorithm to the participant supplied data are recorded,

and the user models for ListAlg and GPRank updated with the new user preference data. Then,

a new random document is selected, and the test continues repeating from the select which

side screen until the participant volunteers to end or all documents in the dataset are viewed.

When a dataset is complete, the user is returned to the dataset selection screen (Figure 6.4) to

choose another dataset or end the research session. Datasets that the participant has

previously completed are greyed out and disabled so that no participant may repeat a

completed dataset.

91

6.2.5 Study location and time

User testing was carried out during February 2014 in the Waikato area. There was a total of 24

participants who between them, went through each of the five datasets, twenty times. Almost

all participants were known to the researcher before the study.

6.3 RESULTS

Table 6.2 summarises the mean and standard deviation of the normalised NKTC between an

algorithm and the participant’s grouping/ordering of Semantic Web data. The table is

organised by Algorithm, Summary Statistic, and Order. The Order is the sequence in which

participants encounter documents in a data set. GPRank and ListAlg have no entries for the

first document because their user models are empty until after the first document is grouped

and ordered by the participant.

Algorithm Summary

Stat.

Order

0 1 2 3 4 5 6 7 8 9

NonLearner Mean 0.695 0.674 0.646 0.648 0.643 0.672 0.661 0.655 0.646 0.676

StdDev 0.123 0.078 0.093 0.093 0.080 0.080 0.100 0.086 0.101 0.081

ListAlg Mean 0.909 0.948 0.948 0.954 0.953 0.959 0.958 0.959 0.956

StdDev 0.109 0.060 0.063 0.055 0.061 0.052 0.060 0.057 0.053

GPRank Mean 0.909 0.957 0.961 0.963 0.964 0.966 0.968 0.965 0.973

StdDev 0.109 0.059 0.052 0.050 0.064 0.050 0.051 0.052 0.043

Table 6.2: Mean and Standard Deviation of Normalised Kendall Tau Closeness by algorithm and sequence for the
second user study

92

Table 6.3 shows the mean NKTC measures by data set so that it is possible to see if dataset

diversity affects the ability to learn user preferences. The results are separated into Algorithm,

Dataset and then in columns by the sequence in which the document is encountered. There is

no value in the first column for ListAlg and GPRank because their user models are empty until

after the participant has supplied grouping/ordering information by dragging and dropping

triplets in the first document they encounter.

Algorithm Data-set Order

0 1 2 3 4 5 6 7 8 9

NonLearner Movies 0.724 0.696 0.675 0.697 0.679 0.691 0.692 0.697 0.694 0.704

Events 0.613 0.654 0.639 0.616 0.608 0.664 0.622 0.625 0.623 0.658

Leaders 0.688 0.650 0.619 0.633 0.634 0.658 0.673 0.645 0.615 0.657

Places 0.705 0.672 0.595 0.609 0.619 0.645 0.599 0.588 0.584 0.652

Books 0.718 0.673 0.665 0.653 0.644 0.669 0.687 0.683 0.679 0.679

ListAlg Movies 0.928 0.972 0.970 0.971 0.975 0.981 0.991 0.981 0.979

Events 0.852 0.940 0.924 0.936 0.941 0.956 0.920 0.928 0.938

Leaders 0.916 0.949 0.971 0.967 0.967 0.971 0.979 0.974 0.977

Places 0.903 0.935 0.912 0.930 0.927 0.930 0.943 0.945 0.940

Books 0.942 0.939 0.958 0.955 0.949 0.953 0.954 0.962 0.943

GPRank Movies 0.928 0.985 0.976 0.971 0.982 0.979 0.993 0.987 0.982

Events 0.851 0.940 0.950 0.951 0.930 0.969 0.943 0.939 0.967

Leaders 0.916 0.962 0.979 0.975 0.988 0.984 0.992 0.978 0.986

Places 0.903 0.943 0.933 0.950 0.933 0.932 0.937 0.950 0.961

Books 0.942 0.950 0.960 0.960 0.982 0.960 0.970 0.969 0.966

Table 6.3: Mean Normalised Kendall Tau Closeness by Algorithm, Dataset, and Sequence for the second user study

93

The testing interface also counted the number of drag and drop operations performed by

participants for each document they encountered. It is expected that user familiarity with the

task of dragging and dropping to express grouping/ordering preferences will cause this

number to decline over time. However, some of this decrease is also attributable to ListAlg

and GPRank learning user preferences. Table 6.4 shows the mean number of drag and drop

operations to transform a document to a participant’s preferred grouping/ordering from an

algorithm’s prediction. The Order is the number of documents in a dataset encountered by the

participant. The table is by dataset and order.

Algorithm Dataset Order

0 1 2 3 4 5 6 7 8 9

ALL Movies 23.63 10.05 3.11 4.32 2.00 1.32 2.05 0.74 2.47 1.37

Events 17.70 12.90 7.20 5.90 4.85 4.60 3.30 3.85 4.85 3.75

Leaders 20.81 13.95 6.33 4.29 3.57 3.76 3.48 3.24 2.48 2.81

Places 17.29 11.24 8.90 7.76 9.38 7.76 7.81 8.19 8.76 7.67

Books 22.05 11.00 6.57 4.05 3.52 2.67 3.76 2.81 2.38 2.24

Mean 20.30 11.83 6.42 5.26 4.66 4.02 4.08 3.77 4.19 3.57

Table 6.4: Mean count of drag and drop operations by dataset and sequence in the second user study

Table 6.5 shows the percentage of times each algorithm is selected as the best representation

of a participant’s grouping/ordering preferences in a blind selection. The table is organised by

algorithm and sequence. The both option denotes that the grouping/ordering of ListAlg and

GPRank were either the same or the user chose to say they were equally good. There is no

algorithm choice before the first document is displayed because ListAlg and GPRank have

empty user models.

94

Algorithm Dataset Order

0 1 2 3 4 5 6 7 8 9

Both ALL 100 54.81 46.67 42.72 36.63 34.65 38.24 33.33 30.69

ListAlg 0.00 10.58 19.05 15.53 17.82 24.75 19.61 26.47 18.81

GPRank 0.00 34.62 34.29 41.75 45.54 40.59 42.16 40.20 50.50

Table 6.5: Percentage of times participant choose each algorithm by algorithm and sequence in the second user
study

Table 6.6 shows the amount by which the algorithm that was not selected as best by the

participant differs from the algorithm the participant selected as having the best

grouping/ordering. The values are the Normalised Kendall Tau Distance multiplied by one

hundred so that the values can be read as a percentage difference. The values can be

interpreted as a percentage of predictive advantage compared to the other algorithm. Higher

values represent an algorithm that is closer to correct when it is not selected.

Algorithm Dataset Order

0 1 2 3 4 5 6 7 8 9

ListAlg 1.0 4.5 5.4 4.1 3.9 3.8 4.5 4.4 4.7

GPRank 0.0 4.6 3.2 5.0 3.6 3.7 4.9 4.7 3.8

Table 6.6: Predictive Disadvantage for Algorithm and Sequence in the second user study

6.3.1 Performance of NonLearner

NonLearner is used when no user preference information is available. NonLearner’s predictive

performance is silently measured for NKTC alongside ListAlg and GPRank throughout all

participant interactions during this study. Since NonLearner does not learn, its performance

will not change as the participant provides more preference information, so overall summary

statistics are shown instead of a accuracy broken into the number of SSRGs encountered.

95

Table 6.7 summarises all NKTC values for NonLearner compared with the participant’s

preferred grouping and order into quartiles.

Min-0% Quartile 1-25% Median-50% Quartile 3-75% Max-100%

0.58 0.62 0.66 0.68 0.72

Table 6.7: Quartiles for the NonLearner's Normalised Kendall-Tau Closeness in the second user study

Randomised groups and orders will tend towards an NKTC of 0.5 and higher values represent

groupings and ordering that better reflects user preferences. NonLearner scores a median of

0.66 with a range from 0.58 to 0.72 and an inter-range gap of 0.14. The performance of

NonLearner is therefore 0.66 with a tolerance of ±0.08. The worst performance of NonLearner

is greater than random (0.5) by at least the tolerance of ±0.08 so there is evidence to support

a claim that NonLearner consistently performs better than random.

6.3.2 ListAlg and GPRank Learning

If ListAlg and GPRank successfully learn user preferences, then their performance should

become better than both random (NKTC > 0.5) and NonLearner as participants supply more

preference information to the user models. Figure 6.9 shows the change in the mean NKTC

from all participants for both ListAlg and GPRank as more documents are encountered. A

curved trend line is used to indicate change over time. From Figure 6.9, both GPRank and

ListAlg are higher than random (NKTC > 0.5) and greater than NonLearner’s maximum NKTC of

0.72). Additionally, the NKTC for GPRank and ListAlg increases from the first to second

documents, the rate of increase slows until the eighth document, and from there NKTC

diverges between GPRank and ListAlg. The improvements in NKTC indicate that ListAlg and

GPRank are learning as more information about user preferences is available.

96

Figure 6.8: Algorithm Accuracy over time with +/- One Standard Deviation

Figure 6.10 plots the standard deviation of the accuracy of GPRank and ListAlg as the user

model has data from more documents. If learning is occurring then, the standard deviation is

expected to begin high and become lower. A higher standard deviation in NKTC indicates less

consistent predictions while a lower standard deviation indicates that predictive accuracy is

becoming more consistent. Figure 6.10 shows the standard deviations for GPRank and ListAlg

begin high and become lower, and this indicates that predictive accuracy becomes more

accurate as more documents are encountered. This is further indication that both GPRank and

ListAlg learn.

0.90

0.92

0.94

0.96

0.98

1.00

1 2 3 4 5 6 7 8 9 10

N
o

rm
al

is
e

d
 K

e
n

d
al

l T
au

 C
lo

se
n

e
ss

Documents Encountered

Algorithm accuracy as more documents encountered

ListAlg

GPRank

97

Figure 6.9: Plot showing the standard deviation of algorithm accuracy reduces as more user preference data is
available

Another indicator that GPRank and ListAlg learn user preferences is that the number of drag-

and-drop operations a participant uses to change from their selected closest algorithm’s

predicted grouping/ordering to their preferred grouping/ordering should also decrease over

time. This is a less reliable indicator because the number of drag-and-drop operations might

decrease because of user fatigue or the user developing more efficient strategies moving data

into their preferred grouping and ordering. Figure 6.11 shows the mean number of drag and

drop operations for all participants against the number of documents encountered. The chart

begins with the first document for which ListAlg and GPRank propose grouping/ordering. A

curved trend-line indicates that the number of drag-and-drop operations decreases over time

and this decrease indicates that the algorithms have learned user preferences.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

1 2 3 4 5 6 7 8 9 10

St
d

D
e

v
o

f
N

o
rm

al
is

e
d

 K
e

n
d

al
 T

au
 C

lo
se

n
e

ss

Documents Encountered

Standard deviation of algorithm accuracy over
documents encountered

ListAlg GPRank

98

Figure 6.10: Chart of Change in Participant Drag-and-Drop Operations Over Time

ListAlg and GPRank both have NKTC values that begin above 0.9 and increase above 0.95 as

more documents are encountered. The standard deviation of the NKTC also reduces over time

which indicates that predictions by the algorithms become more consistent as the algorithms

learn more. The overall number of user drag and drop operations also decreases over time.

Since both ListAlg and GPRank have an increase in mean NKTC, decreases in the standard

deviation of the NKTC and decreases in the number of drag and drop operations over time,

this indicates that ListAlg and GPRank learn user preferences for grouping/ordering Semantic

Web data.

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9 10

M
ea

n
 d

ra
g

an
d

 d
ro

p
 o

p
er

at
io

n
s

Documents Encountered

Change in participant drag-and-drop operations over
documents encountered

99

6.3.3 ListAlg and GPRank Performance versus NonLearner

NonLearner has a median NKTC of 0.66 and a maximum of 0.72. Once ListAlg and GPRank have

data in their user models, then their lowest NKTC value (0.85 for ListAlg and GPRank) is higher

than the maximum performance of NonLearner. Therefore, ListAlg and GPRank both perform

better than the NonLearner.

GPRank increases NKTC accuracy quicker and levels off at a slightly higher plateau compared

to ListAlg. Also, GPRank’s results are more stable over time than ListAlg’s because the range

between +/- a single standard deviation are lower and continue to narrow.

While the performance results for ListAlg and GPRank are numerically close in terms of NKTC,

participants can detect the difference between the two algorithms.

Figure 6.11: User Choice of Algorithm by Sequence in the second user study

0%

25%

50%

75%

100%

1 2 3 4 5 6 7 8 9 10

A
lg

o
ri

th
m

 S
e

le
ct

e
d

 %
ag

e

Number of Documents Encountered

User choice of ListAlg or GPRank over
documents encountered

ListAlg GPRank Both

100

Figure 6.12 plots the percentage of times that participants selected ListAlg, GPRank or “both

are the same” (Y-axis) along with the number of documents encountered so far per participant

(X-axis). An exponential trendline per algorithm is given to aid in understanding how user

choice of algorithm changes as the more documents are encountered and the algorithms have

therefore had more user preference data from which to learn user preferences.

On average, GPRank is favoured over ListAlg when users select algorithm in a blind, side-by-

side choice. From the fourth document onwards GPRank and ListAlg are less likely to produce

equivalent results, and GPRank leads above the choice of “both.” From the ninth document,

this advantage has grown to the point where GPRank produces the preferred result more

often than ListAlg and Both combined.

The NKTC between algorithm prediction and participant supplied data for both ListAlg and

GPRank increases as participants progress through the data sets. Learning appears to follow an

exponential pattern – though the test is too short to see if the algorithms reach a natural

plateau in the accuracy each achieves.

The NKTC for NonLearner does not change. This is expected because NonLearner does not

incorporate user preference information.

User operations are the number of drag-and-drop operations for the user to alter the best

algorithm output into the user’s preferred grouping and ordering. The Trend of User

Operations over time is the Log Estimate of the line slope that tracks User Operations as more

documents are encountered. A smaller Trend of User Operations over time indicates that the

user operations reduce much quicker as more documents are encountered. Figure 6.13 shows

that datasets with higher predicate diversity per document take longer for the user operations

to reduce.

101

Figure 6.12: Trend of User Operations over time compared with dataset diversity in the second user study

The predictive disadvantage is the amount of error between the most accurate of ListAlg and

GPRank and the least accurate. When plotted against data-set diversity (Figure 6.14) this

suggests that ListAlg has a greater predictive disadvantage compared to GPRank as dataset

diversity grows. In contrast, GPRank has an almost flat predictive disadvantage as dataset

diversity grows. The means that GPRank is consistently more accurate than ListAlg, and

GPRank is more accurate with greater dataset diversity.

y = 2.9338x - 1.972
R² = 0.941

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

D
at

as
et

 D
iv

er
si

ty

Trend of User Operations as more documents encountered (LogEst)

Data set diversity versus trend of user operations as more
documents encountered

102

Figure 6.13: Percentage predictive disadvantage compared with dataset diversity

6.4 CONCLUSIONS AND SUMMARY

This section addresses the hypotheses from the start of the user study and then discusses

these outcomes with reference to the first and second research questions.

NonLearner has a minimum performance (0.58) that is better than random (0.5) by at least

some tolerance, here the gap between median and min/max performance. Therefore, H0 and

H1 are rejected, and H2 is accepted.

H2: NonLearner is better than random grouping and ordering when compared to user’s

preferred grouping and ordering of Semantic Web data.

y = 2.4947x + 3.2573
R² = 0.3321

y = 0.2825x + 4.0932
R² = 0.0023

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

%
 p

re
d

ic
ti

ve
 d

is
ad

va
n

ta
ge

Dataset Diversity

Predictive disadvantage compared with data set diversity

ListAlg

GPRank

103

Both ListAlg and GPRank show increases in mean NKTC, decreasing in the standard deviation

of the NKTC and decreasing in the number of drag and drop operations over time and this is

evidence that ListAlg and GPRank learn user preferences for grouping/ordering Semantic Web

data. Therefore, GL0 and GG0 are rejected, and GL1 and GG1 are accepted.

GL1: ListAlg does learn user preferences grouping/ordering Semantic Web documents.

GG1: GPRank does learn user preferences grouping/ordering Semantic Web documents.

The minimum NKTC of ListAlg and GPRank are both better than NonLearner’s maximum NKTC.

Therefore, JL0 and JG0 are rejected, and JL1 and JG1 are accepted.

JL1: ListAlg is more accurate that NonLearner when predicting user grouping/ordering

preferences.

JG1: GPRank is more accurate than NonLearner when predicting user grouping/ordering

preferences.

Although the predictive accuracy of GPRank and ListAlg are numerically close in terms of NKTC,

users are quickly able to discern a difference. In a side-by-side blind selection, users quickly

choose GPRank more often than ListAlg. GPRank is (on average) either equal or selected more

often than ListAlg from the beginning, and GPRank’s is selected more often as more

documents are encountered. Therefore, there are grounds to reject K0 and K1 and accept K2.

K2: GPRank outperforms ListAlg when learning user preferences for grouping and ordering

Semantic Web data.

104

The NonLearner, ListAlg and GPRank perform better than random (NKTC of 0.5). The two

learning algorithms match user preferences to a greater degree than NonLearner (JL1, JG1).

The two learning algorithms learn user preferences and the evidence for this is that ListAlg’s

and GPRank’s accuracy in predicting a user’s preferences for grouping and ordering triples in

an SSRG increases as more documents are encountered (GL1 and GG1).

GPRank more accurately predicts user preferences for grouping and ordering than ListAlg (K2).

Also, GPRank has a lower predictive disadvantage meaning that GPRank predicts more

consistently and GPRank’s predictive disadvantage is less affected by dataset diversity than

ListAlg.

The second research question is: Can an adaptive interface learn, from a few interactions, user

preferences for grouping and ordering displays of Semantic Web data?

GPRank is an example of an adaptive user interface method that fulfils the requirements to

answer this question in the affirmative. GPRank is the best choice (over NonLearner and

ListAlg) for a method for an AUI that groups and orders triples from an SSRG because GPRank

has the best ability to predict user preferences when encountering a new SSRG, has the best

ability to learn user preferences for grouping and ordering and is less affected by dataset

diversity.

This chapter presents evidence that GPRank is a good candidate for constructing grouped and

ordered displays of Semantic Web data based on learning user preferences. The next chapter

(below) tests whether a display of triples that are grouped and ordered by GPRank has speed

and accuracy advantages over an Alphabetical ordered display for users selecting data on a

screen.

105

CHAPTER SEVEN USER STUDY III: GPRANK VERSUS ALPHABETICAL

ORDERING FOR USER SPEED AND ACCURACY IN INFORMATION

RETRIEVAL TASKS

This chapter compares GPRank, an adaptive user interface method for grouping and ordering

triples in an SSRG against Alphabetical ordering for information retrieval speed and accuracy.

This chapter directly addresses the third research question.

Alphabetical ordering is a suitable baseline for comparison with an AUI because Alphabetical

ordering is used in many of the Semantic Web browsers reviewed in Chapter Three, and has

broad usage in information systems in general as so is familiar to users.

The testing is a user study where users click on the answer to a question that is located on a

single screen of data.

7.1 HYPOTHESES

For this experiment, Information retrieval is the retrieval of a single data item from a screen

display of data items without scrolling. This restricted definition is to reduce the timing

overheads associated with searching for a Semantic Web document and navigating within that

RDF Document. The hypotheses are grouped into speed and accuracy, each having a null

hypothesis representing no detectable advantage to either algorithm and a hypothesis where

GPRank has an advantage over Alphabetical order.

Are participants faster when carrying out information retrieval tasks from Semantic Web

displays formed by Alphabetical ordering or GPRank?

106

H0: Grouping and ordering data for display using GPRank has no difference in information

retrieval speed compared to Alphabetical ordering.

H1: Grouping and ordering data for display using GPRank has faster information retrieval than

Alphabetical ordering.

Are participants more accurate when carrying out information retrieval tasks from Semantic

Web displays formed by Alphabetical ordering or GPRank?

G0: Grouping and ordering data for display using GPRank has no effect on accuracy for

information retrieval tasks compared to Alphabetical ordering.

G1: Grouping and ordering data for display using GPRank results in more accurate information

retrieval than Alphabetical ordering.

7.2 METHODOLOGY

A useful test will emulate close to real-world usage scenarios. Semantic Web browsers are not

commonly in use and programs that work with data (e.g. booking systems) are usually

customised to suit the data schema and the workflows for their usage context. An imagined

approximation of a future usage scenario is an information retrieval task in response to a

question. In this situation, a user has results returned from a customised query. The unstable

ontology concept means that the returned data may not follow a recognisable schema but will

have a usable pattern of predicates shared across similar queries. This section discusses the

experiment design and data gathering.

107

7.2.1 Experiment Design Considerations

The research assumes that scenario to be information lookup and measures this by having

participants answer supplied questions. In a normal information lookup scenario, a user would

expect to locate the document that held the answer. The experiment eliminates locating the

document as a variable by supplying the Semantic Web document that contains the answer.

Therefore, this experiment focuses on the retrieval of a triplet from a single screen display of

an SSRG, without scrolling. The databank and question templates are available on Github at

https://github.com/Stormrose/GPRank.

A test app (HTML/JS) allows participants to answer questions from supplied data by clicking on

the answer. Participants are instructed to go as quickly and as accurately as they can because

the time taken to find then click the answer and whether the question was answered correctly

are both recorded. Participants answer enough questions so that there is sufficient data to

establish reasonably accurate measurements of an individual’s speed and accuracy for both

Alphabetical ordered and GPRank displays.

7.2.2 Experiment Implementation

The testing application is built in HTML/JavaScript and delivered via a web server. The

researcher briefed each participant in person. Either the researcher or the participant supplied

the testing equipment, and so it is not possible to control for the differences in computer

setups. Differences in computer setup will have affected the raw experiment results. The

mouse moves differently depending on individual settings and screen size/resolution.

However, the participants completed their contributions in single sessions. The effect is that

raw speed is incomparable among participants without some form of normalisation. Timing is

normalised using Wilcoxon-Mann-Whitney Rank Sum and accuracy is normalised using an

accuracy difference between GPRank and Alphabetical order.

108

This test uses data from multiple topic-domains. The topic domains are the same as in the

previous chapter; Movies, Tourist Destinations, Historical Events, Political Leaders, and Books.

This study reuses the Semantic Web data from Chapter Five (see 6.2.1) and extends the

dataset with additional RDF documents from DBPedia. An HTML/JS based program is used to

verify that the spread in dataset diversity. Dataset diversity is one minus the mean number of

unique triplets per document divided by the total number of unique predicates in the

document set. The dataset diversity in this user study (Table 7.1) is broadly the same as the

data set used in Chapter Five (see Table 6.1) except that Political leaders dataset was

increased in dataset diversity by 0.13 to give better coverage of the dataset diversity range.

Dataset Diversity

Plants (training) 0.10

Movies 0.26

Historical Events 0.64

Political Leaders 0.53

Tourist Destinations 0.76

Books 0.41

Table 7.1: Dataset Diversity for the third user study

The experiment randomly generates questions from templates combined with the Semantic

Web documents. In total, there are over 900 possible questions, of which an individual

participant could encounter a maximum of 81 because participants can only encounter each

SSRG once. Showing each SSRG only once means that all SSRGs remain are equally unfamiliar

to the user.

Some questions include a word that matches the predicate in the answer and some questions

do not. These questions are called Easy and Hard respectively. In the following example (Table

109

7.2), the word species is used in both the question “To which species does Banana belong?”

and in the predicate label that indicates the answer “species.” The hard question does not

include a word match between the question wording and the answer predicate. Solving hard

questions requires more background knowledge from the participant. The analysis

distinguishes between Easy and Hard questions to determine if GPRank or Alphabetical

ordering have an advantage. GPRank may have an advantage if users group similar meaning

predicates together.

Type Example Question Example Answer Predicate

Easy To which species does Banana belong? species

Hard Where was Helen Clark educated? alma mater

Table 7.2: Easy/Hard Question examples for the third user study

The selection of display algorithm (GPRank or Alphabetical ordering) is also randomised for

each question to avoid bias that a specific order would introduce. There is no guarantee that

an equal number of questions are attempted per participant and algorithm, so the results

report the N sizes for both algorithms.

The results are saved to HTML5 LocalStorage in CSV format and then copied to a CSV file. The

format of the save includes SetID, Participant ID and then a series of four values, one per

question, representing: DocumentID, QuestionTemplateID, Algorithm (independent) and the

dependent variables: Did the participant answer correctly and in what time measured in

milliseconds.

The sequence of the experiment is Topic Domain Selection, Training Phase and Experimental

Phase. An explanation of what occurs in each phase follows.

110

Topic Domain Selection

The participant selections a topic domain (Figure 7.1). This choice represents a Set of Semantic

Web documents and questions.

Figure 7.1: Participant selects a topic domain

Training Phase

The participant trains their group-order preferences for five documents so that GPRank is

primed with some initial user preference data (Figure 7.2). Testing in Chapter Five showed that

GPRank achieves good user preference tracking after five documents.

111

Figure 7.2: Training GPRank with User's preferences for grouping and ordering

7.2.2.1 Experimental Phase

First participants see the question screen (Figure 7.3). Participants are asked a question and

told whether the next screen will be ABC of Learned (GPRank) orders. The participant clicks

the next button when they are ready.

112

Figure 7.3: Question screens with advance indication of the display format for the answering screen (Alphabetical
ordering and GPRank)

Then participants see the answer screen. The experiment repeats the question at the top of

the screen. The data is shown in either Alphabetical ordering (Figure 7.4) or GPRank (Figure

7.5). Participants click what they believe is the correct answer. Timing and accuracy (in/correct

answer) are recorded from the time the Answer Screen is shown until the click occurs.

113

Figure 7.4: Answering screen for ABC Ordering

Figure 7.5: Answering screen for GPRank format

114

If the answer screen was GPRank, then the participant is given an opportunity to alter

grouping and orderings (Figure 7.6).

Figure 7.6: After answering from a GPRank formatted screen, the participant is given the opportunity to adjust their
group-order preferences.

There is forced rest of a few seconds after several questions. The Rest Screen reminds

participants that they can pause on any Question Screen, but not on Answer Screens.

The participant continues until they volunteer to end the set early or the set runs out of

documents from which to generate questions. The experiment then shows the Topic Domain

Selection Screen.

The experiment shows a progress bar always at the top right of the screen. Like previous

experiments (see Chapters 4 and 6), participants have the flexibility on how long they spend

doing this user test. Participants have the option to end their session at any time, after or

during a set. Participants do not have to complete a set for their data to be recorded and

useful: partial completions still yield useful data.

115

The data gathering was carried out in the third quarter of 2015. The researcher approached

participants from among personal contacts. There were thirty participants.

A summary of the participant demographic attributes follows to illuminate any sampling

biases that may have occurred. The study results are not analysed demographically. The

demographic information includes Gender, Age bands, Ethnicity/s, First Languages, Profession,

and Education. Participants are not required to respond to any questions and could supply

multiple answers so the numbers of responses for each demographic question may not equal

the number of participants. Ethnicity is categorised according to labels nominated by the

participants themselves. The summary omits ethnicities with one response to protect the

identity of the participants.

There were 13 female and 17 male participants. There is one participant aged 15-19, 17

participants aged 20-24, one participant aged 25-29, 4 participants aged 30-39, 2 participants

aged 40-49, 2 participants aged 50-59, one participant aged 60-64 and one participant aged 65

or older. Participant ethnicity includes NZ European (8), European (5), New Zealander (4),

Chinese (4), Maori (3), Pakeha (2), and three other participants, each from different ethnicities.

Twenty-four participants gave English as their first language. Three participants are first

language Cantonese speakers and there are three participants each giving Chinese, French, or

Spanish as their first language.

Participant professions include seventeen graphic designers, five educators, four computer

scientists, twelve students and one retired person. Participant education levels included

twelve students, four participants holding bachelors and six holding masters.

116

7.3 RESULTS

The results are processed in a combination of Sci-Py Python, R (R-Studio) and Excel because

each made certain aspects of the analysis easier. The raw data has timing and correctness data

for nearly 2000 questions answered, so this chapter shows only the aggregated results. Due to

differences in testing computers, the results are not directly comparable between participants.

Normalised measures by participant allow for comparison.

Wilcoxon-Mann-Whitney Rank Sum gives a p-value in the range [0.0 – 1.0] is used to compare

the probability that timings with one algorithm are quicker than the other for each participant.

High p-values (1.0) represent quicker times with Alphabetical ordering, while lower p-values

(0.0) represent quicker times with GPRank. The amount the p-value diverges from 0.5

indicates certainty.

Accuracy Delta is the difference between an individual participant’s accuracy under GPRank

and Alphabetical ordering. The experiment calculates accuracy as the percentage of correct

answers for each algorithm, and then the Accuracy Delta is calculated by subtracting the

accuracy percentage for GPRank from the accuracy percentage for Alphabetical ordering.

The Participant IDs used here are not the same as the participant numbers used during data

capture to protect participant privacy. The order of participants below is randomised so that it

is different to the order of participation during data collection.

The following table (Table 7.3) shows timing data by participant and algorithm. Timing data is

skewed to the right, so the median is a better measure of centrality than the arithmetic mean.

The median is indicatory only because centrality does not measure spread. The p-value

column (Wilcoxon-Mann-Whitney p-value) is the measure of the probability that the

participant performs faster with one algorithm than the other. The N column states the

117

numbers of questions answered by the participant given as the number for each algorithm and

then the total.

Participant ABC Timing

Median (ms)

GPRank Timing

Median (ms)

p-value for H0/H1 N (nABC +

nGPRank = N)

u01 2512 2275 0.077 40+35 = 75

u02 4284 3523 0.340 20+25 = 45

u03 2465 1793 0.010 36+30 = 66

u04 3540 3431 0.073 43+38 = 81

u05 4705 3377 0.069 13+18 = 31

u06 2296 2924 0.843 34+47 = 81

u07 7720 15945 0.991 38+28 = 66

u08 2343 1886 0.104 11+14 = 25

u09 2152 1963 0.386 33+27 = 60

u10 3352 2446 0.072 21+20 = 41

u11 2924 2508 0.292 42+39 = 81

u12 3112 3681 0.932 42+39 = 81

u13 2052 2200 0.196 28+12 = 40

u14 1760 1820 0.440 45+36 = 81

u15 3408 3205 0.346 27+24 = 51

u16 2048 1889 0.266 14+26 = 40

u17 2624 1943 0.076 43+38 = 81

u18 2968 3066 0.436 45+36 = 81

u19 2454 3277 0.927 26+20 = 46

u20 6607 4228 0.024 30+21 = 51

u21 2480 2333 0.236 41+40 = 81

u22 3603 2525 0.000 34+47 = 81

u23 3599 2770 0.007 43+38 = 81

u24 1693 1669 0.468 40+41 = 81

u25 3291 2515 0.024 40+41 = 81

u26 3183 2618 0.214 42+39 = 81

u27 2952 3122 0.468 29+31 = 60

u28 1511 2065 0.761 41+40 = 81

u29 1791 1974 0.447 36+45 = 81

u30 1400 1766 0.955 43+38 = 81

Table 7.3: Time to answer question by Participant and Algorithm in the third user study

118

Table 7.4 shows the per participant, per algorithm accuracy when retrieving information

displayed in Alphabetical order or GPRank. The Delta column is the GPRank accuracy minus

the Alphabetical order accuracy. The N column is the number of questions answered by each

participant. The N column contains the Alphabetical order N, the GPRank N, and a total N.

Participant ABC Accuracy (%) GPRank Accuracy

(%)

Accuracy Delta for

G0/G1

N (nABC +

nGPRank = N)

u01 100% 97% -3% 40+35 = 75

u02 95% 88% -7% 20+25 = 45

u03 83% 97% 13% 36+30 = 66

u04 91% 92% 1% 43+38 = 81

u05 69% 94% 25% 13+18 = 31

u06 85% 77% -9% 34+47 = 81

u07 92% 93% 1% 38+28 = 66

u08 82% 64% -18% 11+14 = 25

u09 85% 96% 11% 33+27 = 60

u10 90% 100% 10% 21+20 = 41

u11 90% 95% 4% 42+39 = 81

u12 95% 92% -3% 42+39 = 81

u13 89% 100% 11% 28+12 = 40

u14 89% 97% 8% 45+36 = 81

u15 93% 88% -5% 27+24 = 51

u16 93% 88% -4% 14+26 = 40

u17 84% 95% 11% 43+38 = 81

u18 82% 83% 1% 45+36 = 81

u19 96% 90% -6% 26+20 = 46

u20 83% 86% 2% 30+21 = 51

u21 95% 98% 2% 41+40 = 81

u22 88% 91% 3% 34+47 = 81

u23 95% 92% -3% 43+38 = 81

u24 98% 90% -7% 40+41 = 81

u25 95% 90% -5% 40+41 = 81

u26 83% 77% -6% 42+39 = 81

u27 97% 100% 3% 29+31 = 60

u28 85% 90% 5% 41+40 = 81

u29 94% 93% -1% 36+45 = 81

u30 98% 95% -3% 43+38 = 81

Table 7.4: Accuracy by Participant and Algorithm in the third user study

119

7.4 FINDINGS

The following graph (Figure 7.7) plots participants on with normalised values for which

algorithm has an advantage for timing (Y-Axis) versus Accuracy (X-Axis). The p-value of ABC vs

GPRank timings is used to provide a normalised measure of which algorithm has a speed

advantage. A lower y-axis value represents timings in favour of GPRank while a high y-axis

value represents timings in favour of Alphabetical ordering. The middle ground means that no

determination of timing advantage can be made. The absolute middle (0.5) means that the

data is indistinguishable from a coin-toss.

The X-Axis represents the relative accuracy advantage of GPRank compared to Alphabetical

ordering. Sub-zero scores represent that Alphabetical ordering has an accuracy advantage for

that particular participant, while positive X-Axis values represent an accuracy advantage for

GPRank. The band between -10% is considered noise.

The trend line is the linear correlation between Algorithm timing advantage and Accuracy. The

right-downwards slope indicates that participants are both more accurate and quicker with

their preferred algorithm.

120

Figure 7.7: Chart plotting normalised speed advantage by Algorithm and Accuracy

From 30 participants, ten are faster with GPRank, and four are faster with Alphabetical

ordering (10% p-values).

There is a band with no participants that lies between 0.5 to 0.75. The sample size is too small

to investigate what this means without further research. There are 6 participants with scores

above 0.75.

There are 24 participants lower than 0.5, of which 10 have a strong advantage with GPRank.

This indicates that the remaining 14 participants may have a speed advantage with GPRank,

but the speeds with either algorithm are close enough not to declare a winner. Participants in

the 0.10 to 0.5 p-value range have close median times with either algorithm, so it is unlikely

that display algorithm affects timing much for these participants.

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

-25% -20% -15% -10% -5% 0% 5% 10% 15% 20% 25%

Does Alg Pref(timing) correlate with Alg Accuracy?
Participant Alg Pref(pvalue) vs Algorithm Accuracy Delta

121

Participants who have a timing advantage with GPRank have lower accuracy with Alphabetical

Order than the converse: those who have a timing advantage with Alphabetical Order have

accuracy less affected when encountering GPRank.

7.4.1 GPRank may be more Accurate for Some Participants

The following graph (Figure 7.8) plots only the participants with a p-value of less than 0.1 or

greater than 0.9 and removes the participant with a 25% accuracy advantage with GPRank as

an outlier (25% is higher than the third quartile boundary plus 1.5 times the interquartile

range of Accuracy Deltas).

Figure 7.8: Chart plotting normalised speed and accuracy advantage. p-values <0.1 and >0.9. Accuracy outlier
removed.

Ignoring the accuracies between -10% and +10% as noise, there is a cluster of three

participants who have a significantly higher accuracy advantage with GPRank. However, the N

value is too small to read much into this without further research.

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

-25% -20% -15% -10% -5% 0% 5% 10% 15% 20% 25%

Does Strong Alg Pref(timing) correlate with Alg Accuracy?
Participant Alg Pref(pvalue) vs Algorithm Accuracy Delta

122

7.4.2 Other Findings

While not part of the main research aims for this chapter, a large dataset contains other

opportunities for quantitative exploration. This section contains analysis that is interesting but

does not directly answer the hypothesis.

7.4.2.1 The Effect of Set Diversity

Set diversity is a measure of how diverse the predicate labels are within a document set. The

dataset diversity formula is the same as that in the previous chapter. The calculation for set

diversity is one minus the mean number of unique predicates per document divided by the

total number of unique predicates in a set. The number is in the range [0.0 – 1.0) with 0.0

representing the least diverse set (the same predicates in all documents) and 1.0 representing

the most diverse set (no predicates are repeated in between documents).

There is no linear correlation (Pearson) between set diversity and time to answer. There was a

moderate correlation (0.49) in incorrect answers as set diversity increased. There was no

significant difference between GPRank and Alphabetical ordering when correlating time to

answer with set diversity. Set diversity has a small (-0.27) negative correlation with accuracy as

set diversity increased, but there was no difference between the accuracy of GPRank and

Alphabetical ordering. (see Table 7.5)

123

Set Diversity Pearson Correlation vs ABC Ordering GPRank Combined

Time to answer correctly * * +0.04

Time to answer incorrectly * * +0.49

All Times to Answer +0.06 +0.12 +0.09

Accuracy -0.27 -0.27 -0.27

* times to answer in/correctly not calculated per algorithm

Table 7.5: Correlation between Dataset Diversity and answering times in the third user study

7.4.2.2 The Effect of Easy / Hard Questions

Easy questions contain the answer’s predicate label in the question text. Hard questions do

not contain the answer’s predicate label in the question text. Hard questions take longer to

answer and have approximately 5% lower accuracy, but the results are similar for both

GPRank and Alphabetical ordering (Table 7.6).

Question

Type

ABC Ordering

(timing mean ms)

GPRank

(timing mean ms)

ABC Ordering

(accuracy %)

GPRank

(accuracy %)

N (nABC +

nGPRank = N)

Easy 3747 3624 92% 93% 636 + 627 =

1263

Hard 5049 5285 86% 87% 370 + 341 = 711

Table 7.6: The effect of Easy/Hard question on Answer Time and Accuracy by Algorithm in the third user study

7.4.2.3 The Effect of Participants Learning the Task

Participants may become more accustomed to a task as the user test progresses. Document

order, question order, and the ordering in with the two display algorithms were used are all

124

randomised to reduce any bias that becoming accustomed to the task may introduce.

However, viewing this information by algorithm may show whether GPRank or Alphabetical

ordering become more learnable for users.

The following graph (see Figure 7.9) shows that participant response times for correct answers

improve the more questions a participant answers. GPRank and Alphabetical ordering have a

similar rate of improvement.

Figure 7.9: Response Times vs Order of Answering by Algorithm

1

1

2

4

8

16

32

64

0 5 10 15 20 25 30 35 40 45

Th
o

u
sa

n
d

s

Scatterplot: Response Time(seconds log2) vs Order Of Answering
Conclusion: There is an near equal improvement in both ABC and GPRank over repeated attempts

ABC GPRank Linear (ABC) Linear (GPRank)

125

There was no effect on accuracy as users progressed through the questions for either GPRank

or Alphabetical ordering (Table 7.7). Accuracy overall appears to be unaffected by the length

of the study (up to 81 questions per participant).

Alphabetical Order -0.02

GPRank -0.03

Table 7.7: Correlation [-1,+1] of Algorithm Accuracy to Cumulative Questions Answered by Algorithm in the third
user study

7.5 CONCLUSIONS

From thirty participants, one-third show a speed advantage with GPRank, and four have a

speed advantage with Alphabetical ordering. There are 20% (10 - 4 = 6) more participants that

have a speed advantage with GPRank compared to Alphabetical ordering. Therefore, H0 is

rejected, and H1 is accepted.

H1: Grouping and ordering data for display using GPRank results in faster information retrieval

than Alphabetical ordering.

From thirty participants there are four (inc. one outlier) that show an accuracy advantage with

GPRank over Alphabetical ordering. Participants tended to be more accurate with the

algorithm with which they were also fastest. Therefore, there are no adequate grounds to

reject the null hypothesis G0 and accept G1.

G0: Grouping and ordering data for display using GPRank has no effect on accuracy for

information retrieval tasks compared to Alphabetical ordering.

126

As a set becomes more complex then times to answer incorrectly increase. There is a weak

correlation that indicates accuracy decreases as set diversity increases. Both GPRank and

Alphabetical ordering perform similarly in this regard.

Hard questions take longer to answer and are have ~5% lower accuracy. GPRank and

Alphabetical ordering perform similarly for timing and accuracy under Easy/Hard questions.

Participants become quicker at answering questions, and their accuracy is unaffected over the

duration of an 81 questions test.

The accepted hypotheses are:

H1: Grouping and ordering data for display using GPRank has faster information retrieval than

Alphabetical ordering.

G0: Grouping and ordering data for display using GPRank has no effect on accuracy for

information retrieval tasks compared to Alphabetical ordering.

Since GPRank, compared to Alphabetical ordering, enables more participants to be faster with

equivalent accuracy, then GPRank is a better alternative than Alphabetical ordering for

forming displays of Semantic Web data.

The next chapter examines the conclusions from this chapter in the context of the wider thesis.

127

CHAPTER EIGHT SUMMARY AND CONCLUSIONS

This chapter discusses the research considering the overall research aims. The chapter begins

with a restatement of the research questions and moves onto a summary of the research.

After the summary is a discussion of the findings and implication of the research. The chapter

ends with recommendations for application of the findings and suggestions for future research.

This thesis examines if a Semantic Web browser with an adaptive user interface may improve

speed and accuracy information retrieval tasks. The Semantic Web presents a unique

challenge for the display of data because the Semantic Web does not have fixed ontologies

and users may have different preferences for how data is grouped and ordering when

displayed. The hypothesis is that:

A Semantic Web browser with an adaptive user interface that groups and orders data has

speed and accuracy advantages in information retrieval tasks.

We address the thesis by answering the following questions:

Question 1. Is there sufficient diversity in user preferences for displaying Semantic Web data to

justify the overhead of an adaptive user interface that learns how to group and order?

The first user study (see Chapter Four) investigates the inter-rater agreement for participants

who are asked to rank the relatedness of pairs of Semantic Web triples. The results are that

participants have a moderate amount of agreement about the relatedness of pairs of triples

and this indicates that user preferences for grouping and ordering data are diverse enough to

justify the overhead of an adaptive user interface.

128

Question 2. Can an adaptive interface learn, from a few interactions, user preferences for

grouping and ordering displays of Semantic Web data?

Chapter Five describes two adaptive user interface methods, ListAlg and GPRank, that are

subsequently tested in the second user study in Chapter Six. Both ListAlg and GPRank are

capable of learning user preferences for grouping and ordering Semantic Web data. GPRank is

more accurate at predicting user preference than GPRank. Although the absolute difference is

slight, participants reliably select GPRank’s predictions over ListAlg in a blind selection.

Question 3. Do users perform single screen search tasks quicker and more accurately with an

adaptive user interface that groups and orders Semantic Web data or with data in alphabetical

order?

The third user study in Chapter Seven tests whether users are faster and more accurate

finding the answer to a question in a screen of data arranged using an adaptive user interface

based upon GPRank or with Alphabetical ordering. Some participants are faster with GPRank,

and the users that are faster with Alphabetical ordering are not much slower when using

GPRank. There are a smaller group of users who perform information retrieval tasks more

quickly with Alphabetical ordering. There is no difference in the accuracy of users performing

information retrieval tasks when using GPRank or Alphabetical ordering.

8.1 CONCLUSIONS

For about a quarter of users, GPRank (an adaptive user interface algorithm) resulted in

increased speed in information retrieval tasks compared to Alphabetical ordering. For most

users, the performance was about the same. Users were no less accurate using GPRank than

when using Alphabetical ordering.

129

The performance of GPRank is then evidence that an adaptive user interface that groups and

orders data can improve speed in information retrieval tasks. Some users are faster with

GPRank and no less accurate than Alphabetical ordering. Therefore, the hypothesis is accepted:

A Semantic Web browser with an adaptive user interface that groups and orders data has

improves speed in information retrieval tasks.

The user tests (Chapters Six and Seven) use single screens of data that did not scroll. It is not

known how GPRank and Alphabetical ordering will perform relative to each other if the display

includes scrolling.

The second and third user studies use Semantic Web data from five topic areas, and the

results might not be generalisable outside those topics.

There are advantages for more users in using AUIs based upon GPRank and using GPRank has

few disadvantages for those more used to Alphabetical Ordering. For those that prefer

alphabetical order, the drag-and-drop system used to express user preferences for grouping

and ordering can detect when a user is consistently arranging data in alphabetical order and

offer to always to do alphabetical ordering.

GPRank makes decisions based on pairs of triplets. GPRank works when the assumptions

underlying the unstable ontologies hold. The key assumption is that predicates within an SSRG

are not reliably predictable until the SSRG is retrieved. Schema information – such as that

contained in rdf:type, RDFS, and OWL – cannot be relied upon to be present or accurate.

Resolving schema information may take several slow network transactions.

This research views unstable ontologies as a fundamental property of the Semantic Web, and

therefore GPRank is suitable within this scope. If there is a more limited situation where

Semantic Web technology is used for a dataset with high data quality, enforced schema and a

narrow set of user goals, then other user interfaces may be more appropriate than an AUI

130

based upon GPRank. In that situation, the ontologies are stable, and the dataset is more like a

traditional database though delivered on the Semantic Web platform. In this situation,

templating or traditional database forms are probably a better approach. The research places

this situation out of scope, but it is discussed here so that the limitations of GPRank are

properly defined.

8.2 RECOMMENDATIONS FOR FUTURE RESEARCH

During this research area for further investigation were discovered. This section summarises

avenues for future research.

GPRank might be generalisable to any situation with supervised learning for grouping and

ordering with pairwise, partial orders. The implementation in this research focuses on

grouping and ordering predicates for forming displays of Semantic Web data. Whether GPRank

is generalizable can be the subject of further research.

GPRank was not user tested on scrolling displays. A future investigation could test the effects

of scrolling displays on speed and accuracy for information retrieval tasks.

GPRank has a higher computational cost per iteration, and its user model is larger than ListAlg.

It is possible to improve GPRank’s efficiency by looking for fragments for which ListAlg’s

assumptions hold (the user prefers the same grouping and order all the time) and then

treating those fragments as if they were a single item within GPRank. This should be a simple

extension for ordered predicates within a single group. However, the approach could be

extended to include groups and their members also. A successful implementation would

improve the efficiency (space and computation) of GPRank.

If ListAlg’s assumptions hold for parts of the group/ordering preferences for individual users,

then it follows that the predicate patterns might be stable enough to support a partial-

131

templating system. Further research could look at mixing partial-templates into a GPRank

created display. Since templates represent a fixed perspective on how data should be

displayed, then there is the danger that the template enforces its form of life on the user.

Research in this direction should carefully balance the benefits of templates versus the

potential imposition of a dominant form of life: user preferences should be easily expressible

and take priority.

GPRank weights group affinity by the number of confirmations. The strength of the weighting

becomes stronger as more confirmations are received. GPRank currently caps the strength at

six confirmations based on a preliminary investigation by the researcher. However, the exact

tuning of confirmation based weighting should the subject of more robust investigation.

ListAlg and GPRank appear to plateau following an exponential trend. However, the user study

in Chapter Five (above) was too short to determine if the trend continues. A user test with

more documents per participant will show if GPRank outperforms ListAlg in terms of the

predictive accuracy of the algorithm as measured by Normalised Kendall Tau Distance.

There is a missing third quartile in the p-values for algorithm timing in the third user study (7

above). Care should be taken not to infer too much from this, but further research could

determine if this indicates that preference for Alphabetical ordering is a learned behaviour.

There was a cluster of three participants in the third user study (Chapter 7 above) for whom

GPRank gives a significant accuracy advantage over Alphabetical ordering. Further research

with more participants could identify if this is a distinct group of users and look at the

composition of that group of participants.

GPRank’s user model has the same boot-strapping problem common to all algorithms that

learn from user preferences. The boot-strapping problem is because user preferences are

unknown in the beginning. Addressing the boot-strapping problem could be the subject of

132

further exploration. This research proposed uses the NonLearner algorithm when the user

model is empty. NonLearner performs at 0.6, which is better than random (0.5) and so any

bootstrapping approach has a low bar to outperform NonLearner.

The field of social recommenders/collaborative filtering could provide bootstrapping

information based on the preferences of other users. Incorporating the preferences of others

can become implied templating by the masses, and so this researcher urges caution that social

filters are sophisticated enough that grouping/ordering decisions respect plurality in the forms

of life that these decisions embody.

GPRank tracks grouping and ordering decisions only. The research assumed that filtering

decisions – deciding which triplets do not get shown – is made before GPRank is activated.

Filtering may also remove triplets that are redundant; that is, the triplet contains information

that is already in another triplet. Filtering redundant triplets can result in a situation where the

filtering process removes triplet-A because it is redundant compared to triplet-B and the user

model has no knowledge of triplet-B but does have a knowledge of triplet-A. More research

could investigate ways to allow the display algorithm to utilise its knowledge of triplet-A to

inform display decisions about triplet-B until there is explicit information for triplet-B. This

specific situation is distinct to the partial bootstrapping problem because there is already

potentially useful information in the user model.

GPRank incorporates new user preference information from a grouped and ordered display

without any regard for the actions a user took to group and order that display. The effect of

this is that Group/Ordering acts of commission are weighted equally to acts of omission. If a

user is unsatisfied with a grouping and ordering but does not act to correct it, then GPRank will

learn an incorrect grouping and ordering. Further research could be done to see if user actions

that are explicit (e.g. reordering two triplets) should have more effect on GPRank’s learning

than when the user has not acted.

133

REFERENCES

Alshukaili, D., Fernandes, A. A., & Paton, N. W. (2016). Structuring Linked Data Search Results

Using Probabilistic Soft Logic. In International Semantic Web Conference (pp. 3–19).

Springer.

Bayes, T., & Price, M. (1763). An Essay towards Solving a Problem in the Doctrine of Chances.

Philosophical Transactions of the Royal Society of London, 53(0), 370–418.

https://doi.org/10.1098/rstl.1763.0053

Becker, C., & Bizer, C. (2009). Marbles linked data browser. Retrieved 23 November 2010, from

http://marbles.sourceforge.net/

Berners-Lee, T., Chen, Y., Chilton, L., Connolly, D., Dhanaraj, R., Hollenbach, J., … Sheets, D.

(2006). Tabulator: Exploring and analyzing linked data on the Semantic Web. In 3rd

International Semantic Web User Interaction Workshop. Retrieved from

http://swui.semanticweb.org/swui06/papers/Berners-Lee/Berners-Lee.pdf

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The Semantic Web. Scientific American, May.

Retrieved from http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-

84A9809EC588EF21

Bizer, C., & Gauß, T. (2007, January 15). Disco - Hyperdata Browser. Retrieved 23 November

2010, from http://www4.wiwiss.fu-berlin.de/bizer/ng4j/disco/

Bréal, M. (1904). Essai de sémantique:(science des significations). Hachette.

Camarda, D., & Mazzini, S. (2012). LodLive. Javascript, HTML. Retrieved from

http://en.lodlive.it

Cheng, G., & Qu, Y. (2009). Searching linked objects with falcons: Approach, implementation

and evaluation. International Journal on Semantic Web and Information Systems

(IJSWIS), 5(3), 49–70.

134

Dadzie, A.-S., & Rowe, M. (2011). Approaches to visualising linked data: A survey. Semantic

Web, 2(2), 89–124.

de la Flor, G. (2004). User Modeling & Adaptive User Interfaces (No. 1085). Institue for

Learning & Research Technology (ILRT). Retrieved from

http://web.archive.org/web/20060304225843/http://www.ilrt.bris.ac.uk/publications

/researchreport/rr1085/report_html

Dice, L. R. (1945). Measures of the Amount of Ecologic Association Between Species. Ecology,

26(3), 297–302. https://doi.org/10.2307/1932409

Gutteridge, C. (2012). Quick and Dirty RDF browser (Version 1.5). Retrieved from

http://graphite.ecs.soton.ac.uk/browser/

Hu, P. J.-H., Ma, P.-C., & Chau, P. Y. (1999). Evaluation of user interface designs for information

retrieval systems: a computer-based experiment. Decision Support Systems, 27(1),

125–143.

Huynh, D. F., Karger, D. R., & Miller, R. C. (2007). Exhibit: lightweight structured data

publishing. In Proceedings of the 16th international conference on World Wide Web -

WWW ’07 (pp. 737–746). Banff, Alberta, Canada: ACM.

https://doi.org/10.1145/1242572.1242672

Johnson, C. M., Johnson, T. R., & Zhang, J. (2005). A user-centered framework for redesigning

health care interfaces. Journal of Biomedical Informatics, 38(1), 75–87.

Kaufmann, O., Lorenz, A., Oppermann, R., Schneider, A., Eisenhauer, M., & Zimmermann, A.

(2007). Implicit interaction for pro-active assistance in a context-adaptive warehouse

application. In Proceedings of the 4th international conference on mobile technology,

applications, and systems and the 1st international symposium on Computer human

interaction in mobile technology - Mobility ’07 (p. 729). Singapore.

https://doi.org/10.1145/1378063.1378187

135

Kendall, M. G. (1938). A New Measure of Rank Correlation. Biometrika, 30(1/2), 81.

https://doi.org/10.2307/2332226

Kirkpatrick, S. (1984). Optimization by simulated annealing: Quantitative studies. Journal of

Statistical Physics, 34(5–6), 975–986.

Krippendorff, K. (2004). Content analysis: An introduction to its methodology. Sage.

Kules, B. (2000). User Modeling for Adaptive and Adaptable Software Systems. Retrieved 8

December 2010, from http://www.otal.umd.edu/UUGuide/wmk/

Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical

data. Biometrics, 159–174.

Langley, P. (1999). User modeling in adaptive interfaces. In UM ’99: Proceedings of the seventh

international conference on User modeling (pp. 357–370). Secaucus, NJ, USA: Springer-

Verlag New York, Inc.

MIT. (2005). SIMILIE: Longwell RDF Browser. Retrieved 23 November 2010, from

http://simile.mit.edu/wiki/Longwell

Morris, C. (1946). Signs, language and behavior.

OpenLink Software. (2009). Zitgist DataViewer. Retrieved 23 November 2010, from

http://zitgist.com/products/dataviewer/dataviewer.html

Oppermann, R. (1994). Adaptive user support: ergonomic design of manually and

automatically adaptable software. CRC Press.

Pietriga, E., Bizer, C., Karger, D., & Lee, R. (2006). Fresnel: A browser-independent presentation

vocabulary for RDF. The Semantic Web-ISWC 2006, 158–171.

Quan, D. A., & Karger, R. (2004). How to make a semantic web browser. In Proceedings of the

13th conference on World Wide Web - WWW ’04 (p. 255). New York, NY, USA.

https://doi.org/10.1145/988672.988707

136

Quan, D., Huynh, D., & Karger, D. R. (2003). Haystack: A platform for authoring end user

semantic web applications. In International Semantic Web Conference (pp. 738–753).

Springer.

Quan, D., & Karger, D. R. (2004). Xenon: an Rdf Stylesheet Ontology.

Rosenholtz, R., Twarog, N. R., Schinkel-Bielefeld, N., & Wattenberg, M. (2009). An intuitive

model of perceptual grouping for HCI design. In Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems (pp. 1331–1340). ACM. Retrieved from

http://web.mit.edu/rruth/www/Papers/RosenholtzEtAlCHI2009PO.pdf

Schneider-Hufschmidt, M., Malinowski, U., & Kuhme, T. (1993). Adaptive user interfaces:

Principles and practice. Elsevier Science Inc.

Seeliger, A., & Paulheim, H. (2012). A semantic browser for linked open data.

Shadbolt, N., Berners-Lee, T., & Hall, W. (2006). The semantic web revisited. IEEE Intelligent

Systems, 21(3), 96–101.

Sørensen, T. (1948). A method of establishing groups of equal amplitude in plant sociology

based on similarity of species and its application to analyses of the vegetation on

Danish commons. Kongelige Danske Videnskabernes Selskab, 5(4), 1–34.

Steer, D. (2003, January 28). BrownSauce: an introduction. HP Laboratory. Retrieved from

http://www.hpl.hp.com/techreports/2003/HPL-2003-10.pdf

Stegemann, T., Ziegler, J., Hussein, T., & Gaulke, W. (2012). Interactive construction of

semantic widgets for visualizing semantic web data. In Proceedings of the 4th ACM

SIGCHI symposium on Engineering interactive computing systems (pp. 157–162). ACM.

Tummarello, G., Cyganiak, R., Catasta, M., Danielczyk, S., Delbru, R., & Decker, S. (2010). Sig.

ma: Live views on the web of data. Web Semantics: Science, Services and Agents on

the World Wide Web, 8(4), 355–364.

W3C. (2007, October 21). IsaViz: A Visual Authoring Tool for RDF. Retrieved 23 November

2010, from http://www.w3.org/2001/11/IsaViz/

137

1

APPENDICES

2

APPENDIX ONE: DEMOGRAPHIC QUESTIONNAIRE

All three user studies use the same demographic questionnaire. The questionnaire is on the

next page.

1

Demographic Questionnaire

Project Title

<The title of the user study>.

Participant Number:

Supplying any demographic detail is optional.

Gender: Female Male

(Circle one)

Age: 15–19 20–24 25-29 30–39 40–49 50–59 60–64 65+

(Circle one)

Ethnicity:

(List all that apply)

First Languages:

(List all that apply)

Profession/Education:

(List all that apply)

Researcher: Emmanuel King Turner / eturner@waikato.ac.nz / +64 7 838 4627

Supervisor: <name> / <email> / <telephone>

mailto:eturner@waikato.ac.nz

2

APPENDIX TWO: PAIRS OF TRIPLES USED TO FORM QUESTIONS IN THE FIRST USER STUDY (CHAPTER FOUR)

Question

Subject

(both triples)

Left Triple

Predicate

Left Triple

Object

Right Triple

Predicate

Right Triple

Object

0 Patea (town) comment Patea is the third-largest town in South

Taranaki, New Zealand...

thumbnail http://upload.wikimedia.org/wikipedia/comm

ons/thumb/7/76/Patea,_Taranaki,_New_Zeala

nd...

1 Patea (town) lattitudeMinutes 45 name Patea

2 Patea (town) subject Category:South Taranaki District lattitudeSeconds 26

3 Steven Spielberg

(filmmaker)

birthYear 1946-01-01 00:00:00 birthDate 1946-12-18

4 Steven Spielberg

(filmmaker)

alternativeNames Steven Allan Spielberg, Stephen

Spielberg

surname Spielberg

5 Steven Spielberg

(filmmaker)

shortDescription Academy Award winning American film

director and producer

occupation Film director, producer, screenwriter

6 Steven Spielberg

(filmmaker)

description Academy Award-winning American film

director and producer

shortDescription Academy Award winning American film

director and producer

7 Steven Spielberg

(filmmaker)

name Steven Spielberg birthName Steven Spielberg

8 Steven Spielberg

(filmmaker)

name Steven Spielberg birthName Steven Allan Spielberg

3

9 Steven Spielberg

(filmmaker)

name Steven Spielberg surname Spielberg

10 Athens (city) country Greece aprLowC 10

11 The Beatles activeYearsEndYear 1970-01-01 00:00:00 pastMembers Pete Best

12 Steven Spielberg

(filmmaker)

wikiPageExternalLink http://www.empireonline.com/features/

spielbergat60/60.asp

birthYear 1946-01-01 00:00:00

13 Patea (town) subdivisionType District subdivisionType Country

14 Patea (town) longitude 174.4766693115234 longitudeDegrees 174

15 Barbie (doll) name Barbara Milli Roberts surname Roberts

16 Peter Jackson

(filmmaker)

name Sir Peter Jackson name Jackson, Peter

17 Peter Jackson

(filmmaker)

name Peter Jackson name Jackson, Peter

18 Steven Spielberg

(filmmaker)

name Steven Spielberg name Spielberg, Steven

19 Peter Jackson

(filmmaker)

name Peter Jackson name Sir Peter Jackson

20 Patea (town) subject Category:South Taranaki District longitudeDegrees 174

21 Patea (town) longitude 174.4766693115234 subdivisionName Taranaki Region

22 Steven Spielberg

(filmmaker)

networth 3.0E9 religion Judaism

4

23 Patea (town) Longitude East-West E longitudeSeconds 36

24 Patea (town) coordinatesDisplay inline,title coordinatesRegion NZ

25 Steven Spielberg

(filmmaker)

label Steven Spielberg alternativeNames Steven Allan Spielberg, Stephen Spielberg

26 Patea (town) subdivisionType District subdivisionType Region

27 Patea (town) subdivisionName Taranaki Region subdivisionName New Zealand

28 Patea (town) subject Category:Populated places in New

Zealand

subject Category:South Taranaki District

29 Patea (town) subdivisionName South Taranaki District subdivisionName Taranaki Region

30 Patea (town) comment Patea is the third-largest town in South

Taranaki, New Zealand...

populationTotal 1143

31 Patea (town) Longitude East-West E subdivisionName Taranaki Region

32 Patea (town) country New Zealand longitudeSeconds 36

33 Patea (town) wikiPageExternalLink http://www.stjospatea.school.nz wikiPageExternalLink http://72.14.253.104/search?q=cache:Ogv_p7

3ng-IJ:www.stdc.co.nz/pdf/patea...

34 Athens (city) areaCode 21 areaUrban 412

35 Patea (town) subdivisionName South Taranaki District subdivisionType Country

36 Peter Jackson

(filmmaker)

name Sir Peter Jackson name Peter Jackson

37 Athens (city) capitalOf Greece capital Greece

5

38 Oregon (state) country USA incountry USA

39 Barbie (doll) name Barbara Millicent Roberts name Barbara Milli Roberts

40 Patea (town) wikiPageUsesTemplat

e

http://dbpedia.org/resource/Template:I

nfobox_settlement

longitudeSeconds 36

41 Patea (town) country New Zealand wikiPageUsesTempla

te

http://dbpedia.org/resource/Template:Infobox

_settlement

42 Patea (town) comment Patea is the third-largest town in South

Taranaki, New Zealand...

longitude 174.4766693115234

43 Athens (city) aprPrecipitationMm 31 areaMunicipality 39

44 Steven Spielberg

(filmmaker)

birthName Steven Allan Spielberg birthYear 1946-01-01 00:00:00

45 Patea (town) country New Zealand geometry POINT(174.477 -39.7572)

46 Patea (town) label Patea name Patea

47 Patea (town) country New Zealand subdivisionName New Zealand

48 Patea (town) comment Patea is the third-largest town in South

Taranaki, New Zealand...

abstract Patea is the third-largest town in South

Taranaki, New Zealand...

49 Patea (town) label Patea englishName Patea

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Equations
	1 Chapter One Introduction
	1.1 Motivation
	1.2 Problem Statement and approach
	1.3 Research Questions
	1.4 Thesis Structure

	2 Chapter Two Background
	2.1 History of the Semantic Web
	2.2 Machine Understandability
	2.3 The Resource Description Framework
	2.4 Ontology
	2.5 Adaptive and Adaptable User Interfaces
	2.6 Summary

	3 Chapter Three Related work
	3.1 Lexical Approaches
	3.1.1 Document Ordering
	3.1.2 Alphabetical Ordering
	3.1.3 Lexical Matching

	3.2 Semantic Approaches
	3.2.1 Predicate Matching
	3.2.1.1 String Matching
	3.2.1.2 Graph Matching

	3.2.2 Type Matching
	3.2.2.1 Exhibit Lens
	3.2.2.2 Fresnel
	3.2.2.3 Ozone

	3.2.3 Ontological Reasoning

	3.3 User Preference Approaches
	3.4 Summary

	4 Chapter Four User study I: Do users agree on the relatedness of triples?
	4.1 Hypotheses
	4.2 Methodology
	4.2.1 Measuring Agreement
	4.2.2 Study Location and Time.
	4.2.3 Participant Demographics

	4.3 Results
	4.4 Discussion
	4.5 Summary

	5 Chapter Five User preferences for grouping and ordering
	5.1 NonLearner
	5.1.1 Forming Displays from NonLearner
	5.1.1.1 Hierarchical Clustering
	5.1.1.2 Collapsing into Groups and Orders

	5
	5
	5.1
	5.1.1

	5.2 ListAlg
	5.2.1 User Model
	5.2.2 Forming Displays from ListAlg
	5.2.3 Incorporating New User Preferences
	5.2.4 Discussion

	5.3 Grouped Pairwise Ranking (GPRank)
	5.3.1 User Model
	5.3.1.1 A Lookup Function
	5.3.1.2 Constraints and Assertions
	5.3.1.2.1 Constraint: 𝑎 and 𝑏 cannot be the same
	5.3.1.2.2 Constraint: Predicate Reversal
	5.3.1.2.3 Statement: The undefined tuple
	5.3.1.2.4 Statement: Confirmations as zero

	5.3.2 Forming Displays with GPRank
	5.3.2.1 Step One - Grouping
	5.3.2.2 Step Two – Ordering Groups
	5.3.2.3 Step Three – Ordering Predicates Within Groups
	5.3.2.4 Resolving Conflicts Between .gprank and grouprank()

	5.3.3 Incorporating New User Preferences into the GPRank User Model
	5.3.4 Discussion

	5.4 Comparison Between ListAlg and GPRank
	5.4.1 Future research: a hybrid user model

	5.5 Summary

	6 Chapter Six User Study II: Learning user preferences for grouping and ordering
	6.1 Hypotheses
	6.2 Methodology
	6.2.1 The three methods
	6.2.2 Dataset design
	6.2.3 Measuring differences between alternative grouping and ordering
	6.2.4 Test Sequence

	2.1
	2.2
	2.2.1
	2.2.2
	2.2.3
	2.2.4
	6.2.5 Study location and time

	6.3 Results
	6.3.1 Performance of NonLearner
	6.3.2 ListAlg and GPRank Learning
	6.3.3 ListAlg and GPRank Performance versus NonLearner

	6.4 Conclusions and summary

	7 Chapter Seven User study III: GPRank versus Alphabetical ordering for user speed and accuracy in information retrieval tasks
	7.1 Hypotheses
	7.2 Methodology
	7.2.1 Experiment Design Considerations
	7.2.2 Experiment Implementation
	7.2.2.1 Experimental Phase

	7.3 Results
	7.4 Findings
	7.4.1 GPRank may be more Accurate for Some Participants
	7.4.2 Other Findings
	7.4.2.1 The Effect of Set Diversity
	7.4.2.2 The Effect of Easy / Hard Questions
	7.4.2.3 The Effect of Participants Learning the Task

	7.5 Conclusions

	8 Chapter Eight Summary and Conclusions
	8.1 Conclusions
	8.2 Recommendations for Future Research

	References
	Appendices
	Appendix One: Demographic questionnaire
	Appendix Two: Pairs of triples used to form questions in the first user study (Chapter Four)

