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3.2. 7 Dynamics Equations of Motion 

The mathematical basis of spatial system dynamics (i.e. 3-D dynamics) is largely 

taken from Haug ( 1989), which is the key source reference for the computer 

implementation of mechanics in the Mechanical System Pack. As the full 

derivation of the equations is extensive, a concise formulation that only covers the 

key elements of the derivation is presented in the main body of this thesis. 

The equations of motion for spatial dynamics require more algebraic complexity 

to represent the orientation of the bodies, and the equations have a more non

linear character than in the planar (i.e. 2-D) case. The derivation of these 

equations considers a rigid body, which is located in space by a vector r and a set 

of generalised coordinates that defines the orientation of the x'y'z' body-fixed 

frame relative to an inertial xyz global reference frame (Figure 3-19). A 

differential mass dm(P) at a typical point P is located on the body vector sp. 

Forces that act on a differential element of mass at point P include the external 

force F(P) per unit mass at point P and the internal force f (P, R) per unit of 

masses at points P and R. Internal forces are modelled as the gravitational 

interaction and distance constraints. 

I( 

Figure 3-19: Forces acting on a rigid body in space. 

Newton' s equation of motion for differential mass dm(P) is 

fdm(P)-F( P)dm(P)- ff( P,R)dm(R)dm(P) = 0 (3.27) 
m 
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where integration of the internal force f (P, R) is taken over the whole body. 

Using Equation 3.27, the Newton-Euler variational equations of motion can be 

derived for a rigid body with a body-fixed reference frame at the centre of mass 

'.l T[ .. F] '.}_,T[J'"' -'J', '] O or mr - + cm w + w w - n = (3.28) 

where r is the position vector of origin of body-fixed coordinate system 

(i.e. x'y'z' frame), dr is the virtual displacement of the body, d1t1 the virtual rotation 

of the body with respect to local x'y'z' frame or local reference system (LRS), 

J' the inertia matrix with respect to the LRS, w' the angular velocity with respect 

to the LRS, F the total external force on the body, and n' the moment (or joint 

torque) of the external forces with respect to the LRS. The full derivation of the 

Newton-Euler equations for spatial dynamics is given in Appendix F. 

To implement the variational Newton-Euler equations for a system of bodies, 

Equation 3.28 is evaluated for each body in the system, and the resulting 

equations added to obtain the Newton-Euler variational equations of motion for 

the system. The notation for Equation 3.28 now becomes 

ar = ~r! ,arI , ... ,arJ f 
M = [m1,m2, ... ,m3] 

d1t1 = [dff? ,d1tz T , . .. ,dff~ Tr 
F =~!,FI, .. . ,FJ J 
J' = diag(Ji,Jz, ... ,J3) 

w' = [w?, w! , ... , w~T ,r 
n' = ~? ,nq , ... ,n'J' ,r 
_, d" ( _, _, _, ) w = zag w1,w2, ... ,wn 

(3.29) 

The forces and torques that now act on the system are partitioned into applied 

forces F4, applied torques n'A, constraint forces Fe and constraint torques n,c. 

Note that virtual displacements or rotations, such as dr anddff' respectively, have 

the following properties: 

• They are infinitesimal displacements or rotations. 

• They are consistent with the system constraints, but are arbitrary 

otherwise. 
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• The variation of displacements or rotations is obtained by holding time 

fixed. Therefore, they can be considered as occurring instantaneously, and 

time is not involved in their applications. 

This gives nse to the variational approach to dynamics, which makes the 

dynamics formulation concise, while having a meaningful physical interpretation 

(Baruh, 1999). The means by which this is achieved is though the virtual work 

principle denoted by aw ' which states the following: 

The work performed by a holonomic constraint force in any virtual 

displacement or virtual rotation (which can be expressed as a virtual 

displacement) is zero for any holonomic constraint. 

For example, aw = FA . ar = 0 for a holonomic constraint, because the constraint 

forces are always orthogonal to the applied force. Therefore, for all holonomic 

constraints, the forces of constraint do no work as long as the virtual 

displacements and rotations are consistent with the constraints, which means that 

(3.30) 

Thus, with F =FA+ Fe, n' = n'A + n'c, and Equation 3.30, the variational 

equation of motion for a constrained system becomes 

ar T [mr - FA]+ cm'T [J'w' + w'J'w' -n'A] = 0 (3.31) 

which must hold for all kinematically admissible virtual displacements and 

rotations. 

A classical method in mechanics is to introduce Lagrange multipliers to reduce 

the variational equation of Equation 3.31 to a mixed system of differential

algebraic equations. This can be done using a theorem of optimisation theory, 

which states that for b a vector of n constants, x an n vector of variables, and A an 

m x n constant matrix, if 

(3.32) 

holds for all x that satisfy 

Ax=O (3.33) 

then there exists an m vector A of Lagrange multipliers such that 
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(3.34) 

for arbitrary x. 

Since the kinematic and driving constraints that act on the system are of the form 

Cl>( r,p,t) = 0 (3.35) 

which must also satisfy the Euler parameter normalisation constraints 

[
p{p~ -li 

Cl>p= : =0 
T 

PnPn -1 

(3.36) 

where p = ( e0 ,e1,e2 ,e3 l. Then the virtual displacements ar and virtual rotations 

a1r' are kinematically admissible for the constraints if 

(3.37) 

Since Equation 3.31 must hold for allarand d7t'that satisfy Equation 3.37, then 

from Equation 3.34 there exists a Lagrange multiplier vector A such that 

(3.38) 

for arbitrary or and d1t1 
• The coefficients of these arbitrary variations must be 

zero, yielding the constrained Newton-Euler equations or Newton-Lagrange 

equations of motion 

Mr+CI>; = FA 

J' . ' + .... T 'A - 'J' I w ..-n' = n -w w 
(3.39) 

To complete the equations of motion, acceleration equations associated with the 

kinematic constraints must be obtained. The velocity equation is obtained by 

taking the time derivative of Equation 3.35 

The time derivative of this equation yields the acceleration equation 

Cl>rr + Cl>n,w' = 1. 

(3.40) 

(3.41) 

where vector A is found by double differentiating the constraint equation, and 

therefore depends on the type of constraint. For example, for a spherical 

constraint, A = As equals 

'\ s R _, _, ,p R _, _, 'P ,. = ·W·W·S· + ·W ·W ·S · llll ]]]] 
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Combining Equations 3.39 and 3.41, the system acceleration equations are 

Q Cl)T [ .. ] FA 
JI ih; ~' ,A -'J' I 

'V n' w = n - w w 

Cl) n' 0 J.. J.. 

(3.43) 

These equations of motion, taken with the kinematic constraint equations of 

Equation 3.35 and the velocity equations of Equation 3.40, yield a mixed system 

of differential-algebraic equations of motion for the system. Technically, this is a 

system of mixed first-order differential algebraic equations for velocity variables 

r and w' and the algebraic variables A. It is not a second-order differential

algebraic system, since the angular velocity w' is not integrable. 

Initial conditions on the position, orientation and velocity must be provided to 

define the dynamics of a system. Since the orientation of a body is specified by 

Euler parameters, initial conditions on the position and orientation are specified in 

the form 

Cl>( r,p,t0 ) = 0 (3.44) 

where r and p must satisfy Equation 3.35 at t0 and the Euler parameter 

normalisation constraints. Therefore, the inverse dynamics of driven spatial 

multi-body systems is first solved iteratively for position, velocity and 

acceleration. Then the equations of motion are solved algebraically for Lagrange 

multipliers associated with the constraints. 

Finally, the reaction forces and torques associated with both the kinematic and 

driving constraints are calculated. For a typical joint k in body i, with a joint 

definition point P in the local coordinate system, constraint equations Cl>k = 0, 

and associated Lagrange multipliers A. k , the desired expressions for joint reaction 

forces and torques on body i at joint k are given as 

F~ = -cTRTCl>kTik 
1 1 1 r. 

l 

T~ = -CT( Cl>kT _ ,tPRT Cl>kT )A. k 
l l ff. "I I r. 

(3.45) 

l l 

where Ci is the direct cosine matrix. 
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3.2.8 Solving Differential-Algebraic Equations of 

Motion 

The dynamic equations of motion for constrained multibody systems are solved 

numerically. There are at least three distinct methods for the solution of mixed 

differential-algebraic equations, and some hybrid versions that take advantage of 

the favourable properties of each method. The basic process involves the 

numerical reduction of the mixed differential-algebraic equations to a system of 

first-order differential equations than are integrated using the standard numerical 

algorithms. For example, though the exact method used by the Mechanical 

Systems Pack is not documented, one alternative is to define an intermediate 

variable s = r , forming a first-order system of differential-algebraic equations 

using Equation 3.43, and the following relationship between the Euler parameters 

and the angular velocity 

. 1 GT( ) , p=- p w 
2 

wherefore= [e1,e2 ,e3]matrix G is defined as 

[
-e1 

G = [-e, e +eol]= -e2 

-e3 

(3.46) 

(3.47) 

Then the first order system of differential-algebraic equations of the system are 

M 0 (l)T 

[r ·] [ , ~'J' ·] 

r 

0 J' (l)T, 
7t w = n -w w 

<I>r (I) , 0 A. A. 7t 

r=s (3.48) 

. lGT() , p=- p w 
2 

Once the equations are in the form of a system of first order differential equations, 

then various standard numerical integration algorithms can be applied. The 

Mechanical Systems Pack uses an Adams-Bashforth-type numerical integration 

algorithm to numerically integrate the equations of motion to obtain the motion 

history for a specified time domain. It is a variable order, variable step size and 

adaptive algorithm that changes the order and step size as necessary during the 
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integration to achieve convergence. Therefore, new Mathematica functions are 

created and used as the algorithm proceeds: it is essentially a self-modifying code. 

3.2.9 Mechanical Systems Computational 

Architecture 

It is apparent that there is much complexity in the formulation and solution of the 

spatial dynamic equations of motion for a system of rigid bodies. However, from 

the viewpoint of the user of the Mechanical Systems Pack, essentially all the 

algebraic and numerical complexity is hidden in the computer intensive 

calculations. Though it is always advantageous for the scientist to understand the 

basic dynamic formulation in order to construct physically meaningful models, 

and perhaps quickly identify any gross solution errors, the physical models 

themselves are structured at a higher information level. This makes it relatively 

easy and time-efficient to construct complex mechanical models by using the 

higher-level Mechanical Systems Pack programming functions within the 

symbolic manipulation language environment of Mathematica. 

The Mechanical Systems Pack performs five major tasks: 

1. Reads input data directly from the Mathematica front end. 

2. Checks the model definitions of the rigid body system. 

3. Checks whether the model satisfies the constraint definitions. 

4. Solves for kinematic, inverse dynamics or forward dynamics depending on 

the solution option. 

5. Runs the output functions. 

The input data were the kinematic data of the markers obtained from the Eva 6.0 

motion analysis system *.trc files. These were processed in Mathematica to 

calculate the local body segment axes in cartesian xyz coordinates. Then the data 

were converted to Euler angles or Euler parameters. An Euler 3-2-1 sequence was 

chosen, and the conversion formulae are presented in Section 3.2.11. 

Before the equations of motion are solved, a model assembly and constraint 

analysis phase is carried out. At each iteration of the minimisation process, 
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modules generate the constraint equations and Jacobian information. Following 

successful assembly, an analysis subroutine carries out a computational check on 

the rank of the constraint Jacobian to identify any redundant constraints that may 

exist. If a feasible model has been specified, the analysis proceeds. Otherwise, 

the calculations are terminated, and a constraint solution error generated. 

The solution module is designed with options for kinematics, inverse dynamics or 

forward dynamics solution. For a full kinematic analysis, the position analysis is 

carried out first using the iterative Newton-Raphson method (Equations 3.20 and 

3.21). During each iteration, modules provide information on constraint equation 

violations and Jacobians. Upon completion of position iteration at a given time 

step, velocity analysis is initiated, and the modules evaluate constraint Jacobian 

entries and the right side of the velocity equation (Equation 3.22). Following 

completion of the velocity analysis at the given time step, acceleration analysis is 

carried out. Modules provide only the right side of the acceleration equations, 

since the constraint Jacobian is identical to that constructed during velocity 

analysis (Equation 3.26). Upon completion of the acceleration analysis, if the 

final specified time has been reached, the programme terminates. 

For an inverse dynamics solution, the system is assembled and checked for 

feasibility just as in the kinematic analysis. Then the analysis is carried out by 

solving the kinematic equations for a kinematically determined system, 

assembling the equations of motion, and solving for Lagrangian multipliers 

(Equation 3.45). The reaction forces, driving forces and torques that correspond 

to the movement of the system are subsequently calculated. Finally, if a forward 

solution is called upon, the system feasibility is checked as before, and the mass-, 

constraint-, and force-related matrices are assembled. The analysis is carried out 

by numerically integrating the mixed differential-algebraic equations of motion 

(Equation 3.47). Table 3-2 relates the computational flow generated during the 

dynamics model assembly phase with the use of high-level Mechanical System 

functions. 
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Table 3-2: Mechanical Systems Pack dynamics analysis flow and high-level 
functions for the model-builidng phase. 

MECHANICAL SYSTEMS 

FUNCTION 
DYNAMICS FUNCTION 

Input Data and Model Assembly 

Body[], SetBodies [] • Each body assigned a unique 

Constraint[] 

SetConstraints[] 

SetLoads[] 

number, bnum. 

• Sets the inertia properties for each 

body: mass, location of centroid. 

and moments of inertia. 

• Points on bodies are defined. 

• Initial location estimate for body 

specified. 

• Bodies are linked through the 

specification of constraints. 

• Assign each constraint a umque 

constraint number, cnum. 

• Builds constraint equations. 

Model Feasibility 

• Check that each constraint has a 

unique constraint number. 

• Check that the number of DOFs. 

constrained is equal to number of 

dependent variables. 

• Check that all of the local points 

that are specified by point number 

have been defined in SetBodies. 

External Loads 

• Applies load vector to any point on 

defined body. 

Essentially the high level operations assign each rigid body in the system a 

number by using a Body[ ] function, and then combines them using the 
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SetBodies[ ] function. Then each body is linked to one or two adjacent bodies by 

specifying an appropriate set of constraints using the Constraint[ ] function. The 

total system of constraints is then generated and tested using SetConstraints[ ], 

and a link segment model is formed. Therefore, merely adding or changing 

modules composed of Body[ ] and Constraint[ ] functions can generate a wide 

variety of complex rigid body models. The external loads imposed upon the 

system by gravity and ground contact (in the form of ground reaction forces) 

could be implemented by using the SetLoads function. 

Table 3-3 relates the computational flow and information generated during the 

solution phase with the use of high-level Mechanical System functions. A variety 

Table 3-3: Mechanical Systems Pack dynamics analysis flow and high-level 
functions for the solution phase. 

MECHANICAL SYSTEMS 
DYNAMICS FUNCTION 

FUNCTION 

Kinematic Solution 

SolveMech[rules, Solution """"7 • Solves kinematic equations of 

Acceleration] motion with Newton-Raphson 

method. 

Inverse Dynamics Solution 
SolveMech[rules, Solution """"7 • Solves kinematic equations of 

Dynamic] motion. 

• Evaluates Lagrange multipliers to 

calculate forces and torques. 

• Equations solved iteratively using 

Newton-Raphson method. 

Forward Dynamics Solution 
SolveFree[rules, endtime, options] • Solves acceleration equations . 

• Integrates for position and 

velocity. 

• Evaluates constraint Jacobians and 

Lagrange multipliers. 

• Equations solved iteratively using 

Adams-Bashforth method. 
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of solution options can be chosen. This thesis largely used the dynamic solution 

option, because this solves for both kinematics and inverse dynamics of the 

system. The main point is that the high level function SolveMech solves the 

complex kinematic and dynamics equations of motion with the specification of 

just a few parameters. 

3.2.10 Segment Model Definitions 

To create a system of multiple linked rigid bodies in the Mechanical Systems 

Pack, a series of Body and Constraint functions were used. The process was 

logical: specify the names of the bodies, number them appropriately, and choose 

the most economical system of constraints. Each body in 3-D space was assigned 

a body-fixed local coordinate system located at its centre of mass. Also, each 

independent body was specified with a unique positive integer body number. The 

choice of each number was arbitrary except for the ground body, which had to 

always be numbered as body 1, so that its coordinate axes could be defined as the 

global coordinate system. These body numbers were used throughout the model 

to reference each body. The numbering scheme was chosen to design a fifteen 

rigid body segment model of the human body that corresponded to the Eva 6.0 

link segment model. The rigid bodies were numbered from 2 to 16: 

upperarrnRIGHT=2; forearrnRIGHT=3; handRIGHT=4; uppertrunk=5; 

lowertrunk=6; upperarmLEFf=7; forearmLEFf=8; handLEFf=9; headneck=lO; 

thighRIGHT=l l; calfRIGHT=12; footRIGHT=13; thighLEFf=14; calfLEFf=l5; 

footLEFf=l6. These body numbers were placed as the first argument of the Body 

function. Points on a segment that delimited the segment endpoints were 

specified as point objects in the local coordinate system of the segment, but any 

number of other points could also be defined. These filled the second argument of 

Body function. Other properties of the body segment such as initial location 

estimate, mass, centre of mass location, and moments of inertia were also defined. 

For example, the Body function module used to define the properties of the right 

thigh segment was 
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bd[thighRIGHT] = Body[thighRIGHT, PointList ~ 

(*Pl*) {O, -thighCoM, O}, 

(*P2*) {O, thighlength - thighCoM, O}}, 

Initial Guess ~ {X}'Z1hr, eulihr}, 

Mass ~ thighmass, 

Centroid ~ thighcentroid, 

Inertia ~ {lxx thigh, lyy thigh, I22 thigh, 0, 0, 0}]; 

Points PI and P2 defined the segment end points, and therefore the segment 

length. By default the origin of the body-fixed axes was placed at {O, 0, O}, 

which, from the way the points were defined, corresponded to the location of the 

centre of mass. The Initial Guess was specified by the location of the centre of 

mass, and global orientation of the body in terms of Euler parameters. The 

definitions of the mass, centroid, and moments of inertia (or collectively segment 

inertial parameters) were accordingly defined in their respective positions in the 

module. In general, it was relatively simple to define points on a body segment. 

However, the points in the Body function were always in local coordinates. 

Therefore, some points such as the shoulder joint centre, needed to be converted 

from global coordinates to local coordinates before they could be incorporated in 

the Body function object (Appendix G). 

To set the orientation of the body-fixed axes in accordance with those of the Eva 

6.0 link segment model, the segment endpoints PI and P2 were defined along the 

local y-axis. The y-axis therefore represented the longitudinal axis of the segment 

as it did for the input kinematic data. Also, for both Eva 6.0 and the Mechanical 

Systems Pack, once the longitudinal axis was defined, the orientation of a 

segment's body-fixed axes were initially aligned to match with the global 

coordinate system. The Euler angle sequences related the orientation of the body

fixed axes to the global coordinate system. Also, the global and local coordinate 

systems were defined to correspond exactly with that of the link segment model in 

Eva 6.0 (i.e. the kinematic model) (Figure 3-12). 
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The values of the segment inertia parameters were obtained from de Leva ( 1996), 

who adjusted Zatsiorsky-Seluyanov's segment inertia parameters (Zatsiorsky et 

al., 1990) so that the mean relative centre of mass positions and radii of gyration 

were referenced to joint centres (or other commonly used landmarks). The 

original study provides a comprehensive set of inertial parameters for young adult 

Caucasians, but used bony landmarks, many of which are markedly distant from 

the joint centres commonly used by biomechanists as reference points. Also, for 

the rigid body model the segments were represented as articulating at joint 

centres, and the dynamics equations calculated forces and torques at or about 

these joints, respectively. It therefore made sense to use the modified inertial 

parameter set. 

The Initial Guess option for the Body function needed an estimate of the body's 

location coordinates. This was required because the Mechanical Systems Pack 

iteratively solves the kinematic equations, which are usually non-linear, using the 

Newton-Raphson method. As with many numeric procedures, an initial estimate 

was used from which repeated iterations would cause a solution to converge 

within a set tolerance. Initial guesses of a body's location and orientation are 

referred to as the permanent initial guesses, because each subsequent solution 

attempt uses the previous solution as its initial guess. The Initial Guess option 

required each segment's CoM and orientation to be specified in terms of global 

xyz coordinates and Euler parameters, respectively. The global coordinates of 

each segment's CoM were calculated using Equation (3.3). 

After the local points on each segment body have been defined, construction of 

the model was then a matter of tying the points together with the use of 

mechanical constraints. There are a variety of choices from a library of 

mechanical constraint objects that impose physical constraints on the model as a 

system of mathematical equations. The number of DoF for a 3-D rigid body 

system equals six times the number of segments minus the number of constraints. 

There were fifteen segments in the model, so if the system was not constrained, 

there would be 90 DoF. The primary constraint object chosen was the Spherical] 

constraint, a spherical constraint causing two points in 3-D space to be coincident 

with each other, creating joint or articulating centres by constraining 3 DOF. This 
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object was used to link the ends of adjacent segments together. The other 

constraint used was the RelativeDist constraint, which constrained a point to be a 

specified x, y, or z distance units from the global reference frame. 

With the lower trunk as the root segment, all the body segments were linked 

together by starting with the most proximal segment, linking its distal end to the 

proximal end of the adjacent segment, and continuing onwards throughout the 

kinematic chains. The Spherical] constraint was used to create joints or 

articulating centres at the knees, hips, midtrunk, neck, shoulders, elbows, and 

wrists. For example, the code below shows how the proximal end of the lower 

trunk (Point[lowertrunk,2]) was constrained to the distal end of the upper trunk 

(Point[uppertrunk, l]): 

cs[5]=Spherical3[5,Point[uppertrunk,l],Point[lowertrunk,2]]; 

The RelativeDist constraint was used to specify the shank-foot connection 

(Appendix G). 

In total, 36 DOF of the system were effectively constrained. Therefore, driving 

constraints had to be defined to satisfy the remaining 54 DOF of the system. 

Three DoF were used to specify the linear translation of the whole system with 

RelativeXJ, Relative YI, and RelativeZJ driving constraints, which constrained the 

proximal end of the root segment to be a distance of x, y, and z units away from 

the origin of the global coordinate system, respectively. The code below shows 

how these constraints were specified: 

cs[l] = RelativeXl[l, Point[lowertrunk, 1], Point[ground, 1], Xtr1l; 

cs[2] = RelativeY1[2, Point[lowertrunk, 1], Point[ground, 1], Ytr1l; 

cs[3] = RelativeZl [3, Point[lowertrunk, l], Point[ground, l], ZtriJ; 

Point[lowertrunk,l] represents the proximal end of the lower trunk, which, by the 

application of each constraint consecutively, is {Xtrl, Ytrl, ztri}units from 
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Point[ground, I], the origin of the global reference system. 

Another 6 DoF were used to specify the linear motion of the glenohumeal joint 

using relative distance driving constraints. The remaining 45 DoF were 

constrained with the RotationLock3 driving constraint, which locked the angular 

orientation of each segment with respect to the global coordinate system as an 

Euler (z-y-x or 3-2-1) angle sequence. For example, the right forearm was 

constrained to be a rotational sequence of <p about the z-axis, e about the y-axis, 

and 'I' about the x-axis: 

cs[lO] = RotationLock3[10, forearmRIGHT, ground, {cp, z}, {8, y}, {'I', x}]; 

In this way, all 90 DOF of the link segment model of the bowler were accounted 

for, and the model could be solved for kinematics. However, to solve for 

dynamics the external loads had to first be added. 

3.2.11 Adding External Loads 

Various external loads were added to the model to simulate the loads experienced 

by the bowler. The most fundamental load experienced by the body is that of 

gravity G, which was defined to act vertically downwards for each segment with a 

magnitude of 9.81 rns-2• This was modelled using the Gravity[vector,G] object 

that applied a force of magnitude mass*G in the direction of the specified vector 

to the centroid of each body: 

Grav= Gravity[Vector[ground,{0,0,-1 }], 9.81, {upperarmRIGHT, 

forearmRIGHT, handRIGHT, uppertrunk, lowertrunk, upperannLEFf, 

foreannLEFf, handLEFf, headneck, thighRIGHT, calfRIGHT, footRIGHT, 

thighLEFf, calfLEFf, footLEFf} ]; 

The more difficult external loads to define were the ground reaction forces, which 

acted in the vertical, medio-lateral, and anterior-posterior directions. The main 

reason was that these loads were only active for a short period of time during the 
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bowling phase, and so a series of switching constraints had to be specified. 

Therefore, the TimeSwitch[loadO,timel, ... , timen, loadn] load constraint function 

was used, where the first and last loadi were applied from time] to timen. For 

example, for the vertical ground reaction force through the left foot, 

GroundReactLEF1Z, the programme module was of the form 

GroundReactLEFfZ = TimeSwitch[timel, 

Force[footLEFT, 

Axis[ground, {CoPx[T], CoPy[T], CoPz[T]}, {O, 0, 1 }], GRFLEFTz[T]], time2]; 

where the vertical ground reaction force time function GRFLEFTz[TJ was applied 

between times time] and time2, and acted through the left foot (i.e footLEFT) 

through the x, y, and z coordinates of the centre of pressure {CoPx[T], CoPy[TJ, 

CoPz[T] J in the global vertical direction (i.e. ground) specified by vector (0, 0, 

1 ]. Note that the centre of pressure was calculated from the force platform 

readings (Appendix B). 

Similarly, the time switching load constraint was used to define the external load 

imposed by the cricket ball on the system 

BallLoadRIGHT= TimeSwitch[timel, 

Force[handRIGHT, Axis[Point[handRIGHT,2], Vector[ground,{0,0,-1} ]], 

ballmass*9.8], BallReleaseTime]; 

where the gravitational load of the ball ballmass*9.8 was applied to the bowling 

hand from time], the initial time of the bowling action, to BallReleaseTime, the 

time at which the ball was released. 

Finally, all the loads were applied to the model using SetLoads[loads], which 

generated the Lagrange Multiplier equations of motion: 

SetLoads[Grav, GroundReactRIGHTX, GroundReactRIGHTY, 

GroundReactRIGHTZ, GroundReactLEFTX, GroundReactLEFTY, 

GroundReactLEFTZ, BallLoadRIGHT] 
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