

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the

Act and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right

to be identified as the author of the thesis, and due acknowledgement will be

made to the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

http://researchcommons.waikato.ac.nz/

3.2. 7 Dynamics Equations of Motion

The mathematical basis of spatial system dynamics (i.e. 3-D dynamics) is largely

taken from Haug (1989), which is the key source reference for the computer

implementation of mechanics in the Mechanical System Pack. As the full

derivation of the equations is extensive, a concise formulation that only covers the

key elements of the derivation is presented in the main body of this thesis.

The equations of motion for spatial dynamics require more algebraic complexity

to represent the orientation of the bodies, and the equations have a more non

linear character than in the planar (i.e. 2-D) case. The derivation of these

equations considers a rigid body, which is located in space by a vector r and a set

of generalised coordinates that defines the orientation of the x'y'z' body-fixed

frame relative to an inertial xyz global reference frame (Figure 3-19). A

differential mass dm(P) at a typical point P is located on the body vector sp.

Forces that act on a differential element of mass at point P include the external

force F(P) per unit mass at point P and the internal force f (P, R) per unit of

masses at points P and R. Internal forces are modelled as the gravitational

interaction and distance constraints.

I(

Figure 3-19: Forces acting on a rigid body in space.

Newton' s equation of motion for differential mass dm(P) is

fdm(P)-F(P)dm(P)- ff(P,R)dm(R)dm(P) = 0 (3.27)
m

84

where integration of the internal force f (P, R) is taken over the whole body.

Using Equation 3.27, the Newton-Euler variational equations of motion can be

derived for a rigid body with a body-fixed reference frame at the centre of mass

'.l T[.. F] '.}_,T[J'"' -'J', '] O or mr - + cm w + w w - n = (3.28)

where r is the position vector of origin of body-fixed coordinate system

(i.e. x'y'z' frame), dr is the virtual displacement of the body, d1t1 the virtual rotation

of the body with respect to local x'y'z' frame or local reference system (LRS),

J' the inertia matrix with respect to the LRS, w' the angular velocity with respect

to the LRS, F the total external force on the body, and n' the moment (or joint

torque) of the external forces with respect to the LRS. The full derivation of the

Newton-Euler equations for spatial dynamics is given in Appendix F.

To implement the variational Newton-Euler equations for a system of bodies,

Equation 3.28 is evaluated for each body in the system, and the resulting

equations added to obtain the Newton-Euler variational equations of motion for

the system. The notation for Equation 3.28 now becomes

ar = ~r! ,arI , ... ,arJ f
M = [m1,m2, ... ,m3]

d1t1 = [dff? ,d1tz T , . .. ,dff~ Tr
F =~!,FI, .. . ,FJ J
J' = diag(Ji,Jz, ... ,J3)

w' = [w?, w! , ... , w~T ,r
n' = ~? ,nq , ... ,n'J' ,r
_, d" (_, _, _,) w = zag w1,w2, ... ,wn

(3.29)

The forces and torques that now act on the system are partitioned into applied

forces F4, applied torques n'A, constraint forces Fe and constraint torques n,c.

Note that virtual displacements or rotations, such as dr anddff' respectively, have

the following properties:

• They are infinitesimal displacements or rotations.

• They are consistent with the system constraints, but are arbitrary

otherwise.

85

• The variation of displacements or rotations is obtained by holding time

fixed. Therefore, they can be considered as occurring instantaneously, and

time is not involved in their applications.

This gives nse to the variational approach to dynamics, which makes the

dynamics formulation concise, while having a meaningful physical interpretation

(Baruh, 1999). The means by which this is achieved is though the virtual work

principle denoted by aw ' which states the following:

The work performed by a holonomic constraint force in any virtual

displacement or virtual rotation (which can be expressed as a virtual

displacement) is zero for any holonomic constraint.

For example, aw = FA . ar = 0 for a holonomic constraint, because the constraint

forces are always orthogonal to the applied force. Therefore, for all holonomic

constraints, the forces of constraint do no work as long as the virtual

displacements and rotations are consistent with the constraints, which means that

(3.30)

Thus, with F =FA+ Fe, n' = n'A + n'c, and Equation 3.30, the variational

equation of motion for a constrained system becomes

ar T [mr - FA]+ cm'T [J'w' + w'J'w' -n'A] = 0 (3.31)

which must hold for all kinematically admissible virtual displacements and

rotations.

A classical method in mechanics is to introduce Lagrange multipliers to reduce

the variational equation of Equation 3.31 to a mixed system of differential

algebraic equations. This can be done using a theorem of optimisation theory,

which states that for b a vector of n constants, x an n vector of variables, and A an

m x n constant matrix, if

(3.32)

holds for all x that satisfy

Ax=O (3.33)

then there exists an m vector A of Lagrange multipliers such that

86

(3.34)

for arbitrary x.

Since the kinematic and driving constraints that act on the system are of the form

Cl>(r,p,t) = 0 (3.35)

which must also satisfy the Euler parameter normalisation constraints

[
p{p~ -li

Cl>p= : =0
T

PnPn -1

(3.36)

where p = (e0 ,e1,e2 ,e3 l. Then the virtual displacements ar and virtual rotations

a1r' are kinematically admissible for the constraints if

(3.37)

Since Equation 3.31 must hold for allarand d7t'that satisfy Equation 3.37, then

from Equation 3.34 there exists a Lagrange multiplier vector A such that

(3.38)

for arbitrary or and d1t1
• The coefficients of these arbitrary variations must be

zero, yielding the constrained Newton-Euler equations or Newton-Lagrange

equations of motion

Mr+CI>; = FA

J' . ' + T 'A - 'J' I w ..-n' = n -w w
(3.39)

To complete the equations of motion, acceleration equations associated with the

kinematic constraints must be obtained. The velocity equation is obtained by

taking the time derivative of Equation 3.35

The time derivative of this equation yields the acceleration equation

Cl>rr + Cl>n,w' = 1.

(3.40)

(3.41)

where vector A is found by double differentiating the constraint equation, and

therefore depends on the type of constraint. For example, for a spherical

constraint, A = As equals

'\ s R _, _, ,p R _, _, 'P ,. = ·W·W·S· + ·W ·W ·S · llll]]]]

87

(3.42)

Combining Equations 3.39 and 3.41, the system acceleration equations are

Q Cl)T [..] FA
JI ih; ~' ,A -'J' I

'V n' w = n - w w

Cl) n' 0 J.. J..

(3.43)

These equations of motion, taken with the kinematic constraint equations of

Equation 3.35 and the velocity equations of Equation 3.40, yield a mixed system

of differential-algebraic equations of motion for the system. Technically, this is a

system of mixed first-order differential algebraic equations for velocity variables

r and w' and the algebraic variables A. It is not a second-order differential

algebraic system, since the angular velocity w' is not integrable.

Initial conditions on the position, orientation and velocity must be provided to

define the dynamics of a system. Since the orientation of a body is specified by

Euler parameters, initial conditions on the position and orientation are specified in

the form

Cl>(r,p,t0) = 0 (3.44)

where r and p must satisfy Equation 3.35 at t0 and the Euler parameter

normalisation constraints. Therefore, the inverse dynamics of driven spatial

multi-body systems is first solved iteratively for position, velocity and

acceleration. Then the equations of motion are solved algebraically for Lagrange

multipliers associated with the constraints.

Finally, the reaction forces and torques associated with both the kinematic and

driving constraints are calculated. For a typical joint k in body i, with a joint

definition point P in the local coordinate system, constraint equations Cl>k = 0,

and associated Lagrange multipliers A. k , the desired expressions for joint reaction

forces and torques on body i at joint k are given as

F~ = -cTRTCl>kTik
1 1 1 r.

l

T~ = -CT(Cl>kT _ ,tPRT Cl>kT)A. k
l l ff. "I I r.

(3.45)

l l

where Ci is the direct cosine matrix.

88

3.2.8 Solving Differential-Algebraic Equations of

Motion

The dynamic equations of motion for constrained multibody systems are solved

numerically. There are at least three distinct methods for the solution of mixed

differential-algebraic equations, and some hybrid versions that take advantage of

the favourable properties of each method. The basic process involves the

numerical reduction of the mixed differential-algebraic equations to a system of

first-order differential equations than are integrated using the standard numerical

algorithms. For example, though the exact method used by the Mechanical

Systems Pack is not documented, one alternative is to define an intermediate

variable s = r , forming a first-order system of differential-algebraic equations

using Equation 3.43, and the following relationship between the Euler parameters

and the angular velocity

. 1 GT() , p=- p w
2

wherefore= [e1,e2 ,e3]matrix G is defined as

[
-e1

G = [-e, e +eol]= -e2

-e3

(3.46)

(3.47)

Then the first order system of differential-algebraic equations of the system are

M 0 (l)T

[r ·] [, ~'J' ·]

r

0 J' (l)T,
7t w = n -w w

<I>r (I) , 0 A. A. 7t

r=s (3.48)

. lGT() , p=- p w
2

Once the equations are in the form of a system of first order differential equations,

then various standard numerical integration algorithms can be applied. The

Mechanical Systems Pack uses an Adams-Bashforth-type numerical integration

algorithm to numerically integrate the equations of motion to obtain the motion

history for a specified time domain. It is a variable order, variable step size and

adaptive algorithm that changes the order and step size as necessary during the

89

integration to achieve convergence. Therefore, new Mathematica functions are

created and used as the algorithm proceeds: it is essentially a self-modifying code.

3.2.9 Mechanical Systems Computational

Architecture

It is apparent that there is much complexity in the formulation and solution of the

spatial dynamic equations of motion for a system of rigid bodies. However, from

the viewpoint of the user of the Mechanical Systems Pack, essentially all the

algebraic and numerical complexity is hidden in the computer intensive

calculations. Though it is always advantageous for the scientist to understand the

basic dynamic formulation in order to construct physically meaningful models,

and perhaps quickly identify any gross solution errors, the physical models

themselves are structured at a higher information level. This makes it relatively

easy and time-efficient to construct complex mechanical models by using the

higher-level Mechanical Systems Pack programming functions within the

symbolic manipulation language environment of Mathematica.

The Mechanical Systems Pack performs five major tasks:

1. Reads input data directly from the Mathematica front end.

2. Checks the model definitions of the rigid body system.

3. Checks whether the model satisfies the constraint definitions.

4. Solves for kinematic, inverse dynamics or forward dynamics depending on

the solution option.

5. Runs the output functions.

The input data were the kinematic data of the markers obtained from the Eva 6.0

motion analysis system *.trc files. These were processed in Mathematica to

calculate the local body segment axes in cartesian xyz coordinates. Then the data

were converted to Euler angles or Euler parameters. An Euler 3-2-1 sequence was

chosen, and the conversion formulae are presented in Section 3.2.11.

Before the equations of motion are solved, a model assembly and constraint

analysis phase is carried out. At each iteration of the minimisation process,

90

modules generate the constraint equations and Jacobian information. Following

successful assembly, an analysis subroutine carries out a computational check on

the rank of the constraint Jacobian to identify any redundant constraints that may

exist. If a feasible model has been specified, the analysis proceeds. Otherwise,

the calculations are terminated, and a constraint solution error generated.

The solution module is designed with options for kinematics, inverse dynamics or

forward dynamics solution. For a full kinematic analysis, the position analysis is

carried out first using the iterative Newton-Raphson method (Equations 3.20 and

3.21). During each iteration, modules provide information on constraint equation

violations and Jacobians. Upon completion of position iteration at a given time

step, velocity analysis is initiated, and the modules evaluate constraint Jacobian

entries and the right side of the velocity equation (Equation 3.22). Following

completion of the velocity analysis at the given time step, acceleration analysis is

carried out. Modules provide only the right side of the acceleration equations,

since the constraint Jacobian is identical to that constructed during velocity

analysis (Equation 3.26). Upon completion of the acceleration analysis, if the

final specified time has been reached, the programme terminates.

For an inverse dynamics solution, the system is assembled and checked for

feasibility just as in the kinematic analysis. Then the analysis is carried out by

solving the kinematic equations for a kinematically determined system,

assembling the equations of motion, and solving for Lagrangian multipliers

(Equation 3.45). The reaction forces, driving forces and torques that correspond

to the movement of the system are subsequently calculated. Finally, if a forward

solution is called upon, the system feasibility is checked as before, and the mass-,

constraint-, and force-related matrices are assembled. The analysis is carried out

by numerically integrating the mixed differential-algebraic equations of motion

(Equation 3.47). Table 3-2 relates the computational flow generated during the

dynamics model assembly phase with the use of high-level Mechanical System

functions.

91

Table 3-2: Mechanical Systems Pack dynamics analysis flow and high-level
functions for the model-builidng phase.

MECHANICAL SYSTEMS

FUNCTION
DYNAMICS FUNCTION

Input Data and Model Assembly

Body[], SetBodies [] • Each body assigned a unique

Constraint[]

SetConstraints[]

SetLoads[]

number, bnum.

• Sets the inertia properties for each

body: mass, location of centroid.

and moments of inertia.

• Points on bodies are defined.

• Initial location estimate for body

specified.

• Bodies are linked through the

specification of constraints.

• Assign each constraint a umque

constraint number, cnum.

• Builds constraint equations.

Model Feasibility

• Check that each constraint has a

unique constraint number.

• Check that the number of DOFs.

constrained is equal to number of

dependent variables.

• Check that all of the local points

that are specified by point number

have been defined in SetBodies.

External Loads

• Applies load vector to any point on

defined body.

Essentially the high level operations assign each rigid body in the system a

number by using a Body[] function, and then combines them using the

92

SetBodies[] function. Then each body is linked to one or two adjacent bodies by

specifying an appropriate set of constraints using the Constraint[] function. The

total system of constraints is then generated and tested using SetConstraints[],

and a link segment model is formed. Therefore, merely adding or changing

modules composed of Body[] and Constraint[] functions can generate a wide

variety of complex rigid body models. The external loads imposed upon the

system by gravity and ground contact (in the form of ground reaction forces)

could be implemented by using the SetLoads function.

Table 3-3 relates the computational flow and information generated during the

solution phase with the use of high-level Mechanical System functions. A variety

Table 3-3: Mechanical Systems Pack dynamics analysis flow and high-level
functions for the solution phase.

MECHANICAL SYSTEMS
DYNAMICS FUNCTION

FUNCTION

Kinematic Solution

SolveMech[rules, Solution """"7 • Solves kinematic equations of

Acceleration] motion with Newton-Raphson

method.

Inverse Dynamics Solution
SolveMech[rules, Solution """"7 • Solves kinematic equations of

Dynamic] motion.

• Evaluates Lagrange multipliers to

calculate forces and torques.

• Equations solved iteratively using

Newton-Raphson method.

Forward Dynamics Solution
SolveFree[rules, endtime, options] • Solves acceleration equations .

• Integrates for position and

velocity.

• Evaluates constraint Jacobians and

Lagrange multipliers.

• Equations solved iteratively using

Adams-Bashforth method.

93

of solution options can be chosen. This thesis largely used the dynamic solution

option, because this solves for both kinematics and inverse dynamics of the

system. The main point is that the high level function SolveMech solves the

complex kinematic and dynamics equations of motion with the specification of

just a few parameters.

3.2.10 Segment Model Definitions

To create a system of multiple linked rigid bodies in the Mechanical Systems

Pack, a series of Body and Constraint functions were used. The process was

logical: specify the names of the bodies, number them appropriately, and choose

the most economical system of constraints. Each body in 3-D space was assigned

a body-fixed local coordinate system located at its centre of mass. Also, each

independent body was specified with a unique positive integer body number. The

choice of each number was arbitrary except for the ground body, which had to

always be numbered as body 1, so that its coordinate axes could be defined as the

global coordinate system. These body numbers were used throughout the model

to reference each body. The numbering scheme was chosen to design a fifteen

rigid body segment model of the human body that corresponded to the Eva 6.0

link segment model. The rigid bodies were numbered from 2 to 16:

upperarrnRIGHT=2; forearrnRIGHT=3; handRIGHT=4; uppertrunk=5;

lowertrunk=6; upperarmLEFf=7; forearmLEFf=8; handLEFf=9; headneck=lO;

thighRIGHT=l l; calfRIGHT=12; footRIGHT=13; thighLEFf=14; calfLEFf=l5;

footLEFf=l6. These body numbers were placed as the first argument of the Body

function. Points on a segment that delimited the segment endpoints were

specified as point objects in the local coordinate system of the segment, but any

number of other points could also be defined. These filled the second argument of

Body function. Other properties of the body segment such as initial location

estimate, mass, centre of mass location, and moments of inertia were also defined.

For example, the Body function module used to define the properties of the right

thigh segment was

94

bd[thighRIGHT] = Body[thighRIGHT, PointList ~

(*Pl*) {O, -thighCoM, O},

(*P2*) {O, thighlength - thighCoM, O}},

Initial Guess ~ {X}'Z1hr, eulihr},

Mass ~ thighmass,

Centroid ~ thighcentroid,

Inertia ~ {lxx thigh, lyy thigh, I22 thigh, 0, 0, 0}];

Points PI and P2 defined the segment end points, and therefore the segment

length. By default the origin of the body-fixed axes was placed at {O, 0, O},

which, from the way the points were defined, corresponded to the location of the

centre of mass. The Initial Guess was specified by the location of the centre of

mass, and global orientation of the body in terms of Euler parameters. The

definitions of the mass, centroid, and moments of inertia (or collectively segment

inertial parameters) were accordingly defined in their respective positions in the

module. In general, it was relatively simple to define points on a body segment.

However, the points in the Body function were always in local coordinates.

Therefore, some points such as the shoulder joint centre, needed to be converted

from global coordinates to local coordinates before they could be incorporated in

the Body function object (Appendix G).

To set the orientation of the body-fixed axes in accordance with those of the Eva

6.0 link segment model, the segment endpoints PI and P2 were defined along the

local y-axis. The y-axis therefore represented the longitudinal axis of the segment

as it did for the input kinematic data. Also, for both Eva 6.0 and the Mechanical

Systems Pack, once the longitudinal axis was defined, the orientation of a

segment's body-fixed axes were initially aligned to match with the global

coordinate system. The Euler angle sequences related the orientation of the body

fixed axes to the global coordinate system. Also, the global and local coordinate

systems were defined to correspond exactly with that of the link segment model in

Eva 6.0 (i.e. the kinematic model) (Figure 3-12).

95

The values of the segment inertia parameters were obtained from de Leva (1996),

who adjusted Zatsiorsky-Seluyanov's segment inertia parameters (Zatsiorsky et

al., 1990) so that the mean relative centre of mass positions and radii of gyration

were referenced to joint centres (or other commonly used landmarks). The

original study provides a comprehensive set of inertial parameters for young adult

Caucasians, but used bony landmarks, many of which are markedly distant from

the joint centres commonly used by biomechanists as reference points. Also, for

the rigid body model the segments were represented as articulating at joint

centres, and the dynamics equations calculated forces and torques at or about

these joints, respectively. It therefore made sense to use the modified inertial

parameter set.

The Initial Guess option for the Body function needed an estimate of the body's

location coordinates. This was required because the Mechanical Systems Pack

iteratively solves the kinematic equations, which are usually non-linear, using the

Newton-Raphson method. As with many numeric procedures, an initial estimate

was used from which repeated iterations would cause a solution to converge

within a set tolerance. Initial guesses of a body's location and orientation are

referred to as the permanent initial guesses, because each subsequent solution

attempt uses the previous solution as its initial guess. The Initial Guess option

required each segment's CoM and orientation to be specified in terms of global

xyz coordinates and Euler parameters, respectively. The global coordinates of

each segment's CoM were calculated using Equation (3.3).

After the local points on each segment body have been defined, construction of

the model was then a matter of tying the points together with the use of

mechanical constraints. There are a variety of choices from a library of

mechanical constraint objects that impose physical constraints on the model as a

system of mathematical equations. The number of DoF for a 3-D rigid body

system equals six times the number of segments minus the number of constraints.

There were fifteen segments in the model, so if the system was not constrained,

there would be 90 DoF. The primary constraint object chosen was the Spherical]

constraint, a spherical constraint causing two points in 3-D space to be coincident

with each other, creating joint or articulating centres by constraining 3 DOF. This

96

object was used to link the ends of adjacent segments together. The other

constraint used was the RelativeDist constraint, which constrained a point to be a

specified x, y, or z distance units from the global reference frame.

With the lower trunk as the root segment, all the body segments were linked

together by starting with the most proximal segment, linking its distal end to the

proximal end of the adjacent segment, and continuing onwards throughout the

kinematic chains. The Spherical] constraint was used to create joints or

articulating centres at the knees, hips, midtrunk, neck, shoulders, elbows, and

wrists. For example, the code below shows how the proximal end of the lower

trunk (Point[lowertrunk,2]) was constrained to the distal end of the upper trunk

(Point[uppertrunk, l]):

cs[5]=Spherical3[5,Point[uppertrunk,l],Point[lowertrunk,2]];

The RelativeDist constraint was used to specify the shank-foot connection

(Appendix G).

In total, 36 DOF of the system were effectively constrained. Therefore, driving

constraints had to be defined to satisfy the remaining 54 DOF of the system.

Three DoF were used to specify the linear translation of the whole system with

RelativeXJ, Relative YI, and RelativeZJ driving constraints, which constrained the

proximal end of the root segment to be a distance of x, y, and z units away from

the origin of the global coordinate system, respectively. The code below shows

how these constraints were specified:

cs[l] = RelativeXl[l, Point[lowertrunk, 1], Point[ground, 1], Xtr1l;

cs[2] = RelativeY1[2, Point[lowertrunk, 1], Point[ground, 1], Ytr1l;

cs[3] = RelativeZl [3, Point[lowertrunk, l], Point[ground, l], ZtriJ;

Point[lowertrunk,l] represents the proximal end of the lower trunk, which, by the

application of each constraint consecutively, is {Xtrl, Ytrl, ztri}units from

97

Point[ground, I], the origin of the global reference system.

Another 6 DoF were used to specify the linear motion of the glenohumeal joint

using relative distance driving constraints. The remaining 45 DoF were

constrained with the RotationLock3 driving constraint, which locked the angular

orientation of each segment with respect to the global coordinate system as an

Euler (z-y-x or 3-2-1) angle sequence. For example, the right forearm was

constrained to be a rotational sequence of <p about the z-axis, e about the y-axis,

and 'I' about the x-axis:

cs[lO] = RotationLock3[10, forearmRIGHT, ground, {cp, z}, {8, y}, {'I', x}];

In this way, all 90 DOF of the link segment model of the bowler were accounted

for, and the model could be solved for kinematics. However, to solve for

dynamics the external loads had to first be added.

3.2.11 Adding External Loads

Various external loads were added to the model to simulate the loads experienced

by the bowler. The most fundamental load experienced by the body is that of

gravity G, which was defined to act vertically downwards for each segment with a

magnitude of 9.81 rns-2• This was modelled using the Gravity[vector,G] object

that applied a force of magnitude mass*G in the direction of the specified vector

to the centroid of each body:

Grav= Gravity[Vector[ground,{0,0,-1 }], 9.81, {upperarmRIGHT,

forearmRIGHT, handRIGHT, uppertrunk, lowertrunk, upperannLEFf,

foreannLEFf, handLEFf, headneck, thighRIGHT, calfRIGHT, footRIGHT,

thighLEFf, calfLEFf, footLEFf}];

The more difficult external loads to define were the ground reaction forces, which

acted in the vertical, medio-lateral, and anterior-posterior directions. The main

reason was that these loads were only active for a short period of time during the

98

bowling phase, and so a series of switching constraints had to be specified.

Therefore, the TimeSwitch[loadO,timel, ... , timen, loadn] load constraint function

was used, where the first and last loadi were applied from time] to timen. For

example, for the vertical ground reaction force through the left foot,

GroundReactLEF1Z, the programme module was of the form

GroundReactLEFfZ = TimeSwitch[timel,

Force[footLEFT,

Axis[ground, {CoPx[T], CoPy[T], CoPz[T]}, {O, 0, 1 }], GRFLEFTz[T]], time2];

where the vertical ground reaction force time function GRFLEFTz[TJ was applied

between times time] and time2, and acted through the left foot (i.e footLEFT)

through the x, y, and z coordinates of the centre of pressure {CoPx[T], CoPy[TJ,

CoPz[T] J in the global vertical direction (i.e. ground) specified by vector (0, 0,

1]. Note that the centre of pressure was calculated from the force platform

readings (Appendix B).

Similarly, the time switching load constraint was used to define the external load

imposed by the cricket ball on the system

BallLoadRIGHT= TimeSwitch[timel,

Force[handRIGHT, Axis[Point[handRIGHT,2], Vector[ground,{0,0,-1}]],

ballmass*9.8], BallReleaseTime];

where the gravitational load of the ball ballmass*9.8 was applied to the bowling

hand from time], the initial time of the bowling action, to BallReleaseTime, the

time at which the ball was released.

Finally, all the loads were applied to the model using SetLoads[loads], which

generated the Lagrange Multiplier equations of motion:

SetLoads[Grav, GroundReactRIGHTX, GroundReactRIGHTY,

GroundReactRIGHTZ, GroundReactLEFTX, GroundReactLEFTY,

GroundReactLEFTZ, BallLoadRIGHT]

99

	2068_2R
	2070_1L
	2070_2R
	2073_1L
	2073_2R
	2074_1L
	2074_2R
	2075_1L
	2075_2R
	2076_1L
	2076_2R
	2082_1L
	2082_2R
	2083_1L
	2083_2R
	2084_1L
	2084_2R
	2085_1L
	2085_2R
	2086_1L
	2086_2R
	2087_1L
	2087_2R
	2088_1L
	2088_2R
	2089_1L
	2089_2R
	2092_1L
	2092_2R
	2093_1L
	2093_2R
	2094_1L
	2094_2R
	2098_1L
	2098_2R
	2099_1L
	2099_2R
	2100_1L
	2100_2R
	2101_1L
	2101_2R
	2102_1L
	2102_2R
	2103_1L
	2103_2R
	2104_1L
	2104_2R
	2105_1L
	2105_2R
	2106_1L
	2106_2R
	2107_1L
	2107_2R
	2108_1L
	2108_2R
	2109_1L
	2109_2R
	2110_1L
	2110_2R
	2111_1L
	2111_2R
	2112_1L
	2112_2R
	2113_1L
	2113_2R
	2114_1L
	2114_2R
	2115_1L
	2115_2R
	2116_1L
	2116_2R
	2117_1L
	2117_2R
	2118_1L
	2118_2R
	2119_1L
	2119_2R
	2120_1L
	2120_2R
	2121_1L
	2121_2R
	2122_1L
	2122_2R
	2124_1L
	2124_2R
	2125_1L
	2125_2R
	2126_1L
	2126_2R
	2127_1L
	2127_2R
	2128_1L
	2128_2R
	2129_1L
	2129_2R
	2130_1L
	2130_2R
	2131_1L
	2131_2R
	2132_1L
	2132_2R
	2133_1L
	2133_2R
	2134_1L
	2134_2R
	2135_1L
	2135_2R
	2136_1L
	2136_2R
	2137_1L
	2137_2R
	2138_1L
	2138_2R
	2139_1L
	2139_2R
	2140_1L
	2140_2R
	2141_1L
	2141_2R
	2142_1L
	2142_2R
	2143_1L
	2143_2R
	2144_1L
	2144_2R
	2145_1L
	2145_2R
	2146_1L
	2146_2R
	2147_1L
	2147_2R
	2148_1L
	2148_2R
	2149_1L
	2149_2R
	2150_1L
	2150_2R
	2151_1L
	2151_2R
	2152_1L
	2152_2R
	2153_1L
	2153_2R
	2154_1L
	2154_2R
	2155_1L
	2155_2R
	2156_1L
	2156_2R
	2157_1L
	2157_2R
	2158_1L
	2158_2R
	2159_1L
	2159_2R
	2160_1L
	2160_2R
	2161_1L
	2161_2R
	2162_1L
	2162_2R
	2163_1L
	2163_2R
	2164_1L
	2164_2R
	2165_1L
	2165_2R
	2166_1L
	2166_2R
	2167_1L
	2167_2R
	2168_1L
	2168_2R
	2169_1L
	2169_2R
	2170_1L
	2170_2R
	2171_1L
	2171_2R
	2172_1L
	2172_2R
	2173_1L
	2173_2R
	2174_1L
	2174_2R
	2175_1L
	2175_2R
	2176_1L
	2176_2R
	2177_1L
	2177_2R
	2178_1L
	2178_2R
	2179_1L
	2179_2R
	2180_1L
	2180_2R
	2181_1L
	2181_2R
	2182_1L
	2182_2R
	2183_1L
	2183_2R
	2184_1L
	2184_2R
	2185_1L
	2185_2R
	2186_1L
	2186_2R
	2187_1L
	2187_2R
	2188_1L
	2188_2R
	2189_1L
	2189_2R
	2190_1L
	2190_2R
	2191_1L
	2191_2R
	2192_1L
	2192_2R
	2193_1L
	2193_2R
	2194_1L
	2194_2R
	2195_1L
	2195_2R
	2196_1L
	2196_2R
	2197_1L
	2197_2R
	2198_1L
	2198_2R
	2199_1L
	2199_2R
	2200_1L
	2200_2R
	2201_1L
	2201_2R
	2202_1L
	2202_2R
	2203_1L
	2203_2R
	2204_1L
	2204_2R
	2205_1L
	2205_2R
	2206_1L
	2206_2R
	2207_1L
	2207_2R
	2208_1L
	2208_2R
	2209_1L
	2209_2R
	2210_1L
	2210_2R
	2211_1L
	2211_2R
	2212_1L
	2212_2R
	2213_1L
	2213_2R
	2214_1L
	2214_2R
	2215_1L
	2215_2R
	2216_1L
	2216_2R
	2217_1L
	2217_2R
	2218_1L
	2218_2R
	2219_1L
	2219_2R
	2220_1L
	2220_2R
	2221_1L
	2221_2R
	2222_1L
	2222_2R
	2223_1L
	2223_2R
	2224_1L
	2224_2R
	2225_1L
	2225_2R
	2226_1L
	2226_2R
	2227_1L
	2227_2R
	2228_1L
	2228_2R
	2229_1L
	2229_2R
	2230_1L
	2230_2R
	2231_1L
	2231_2R
	2232_1L
	2232_2R
	2233_1L
	2233_2R
	2234_1L

