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Abstract 

ABSTRACT 

The application of pro-, pre, and synbiotics has been studied primarily in humans and 

some other monogastric animals. Very few studies have been made to determine 

their effects on the ruminant intestinal microflora. This project tested whether or not 

four commercial food-grade oligo- and polysaccharides (three FOS products and one 

polysaccharide control, Arabinogalactan) could' modify the hindgut microflora of 

sheep towards a more salutary community in which the health-promoting bacterial 

groups bifidobacteria and lactobacilli predominate, whereas the potential intestinal 

pathogens and putrefactive bacteria E. coli and sulphite reducing clostridia are 

suppressed. 

A fructo-6-phosphate phosphokatolase (F6PPK) enzyme-based identification protocol 

was developed and optimised for identifying and large-scale screening of presumptive 

bifidobacteria isolates from gut contents or faecal samples. 

An in vivo experiment was then carried out to determine the bifidogenic effect 

(promotion of bifidobacteria by prebiotics) and the associated antimicrobial effect 

(suppression of potential pathogens due to the increase in the populations of 

bifidobacteria) of the four oligo- and polysaccharides on sheep hindgut microflora. 

Twelve fistulated sheep were managed in a balanced, two Latin square, cross-over 

design experiment, which was run in 5 consecutive periods, with each of 5 treatments 

(Arabinogalactan, Fibruline, Raftilose, Yacon, and an "acidified saline" 

carbohydrate-free control) administered to two sheep in each period. Each period 

consisted of a 1 week of stabilisation to the pelleted diet (no oligo- and 

polysaccharides), followed by 14 days of daily abomasal supplementation of oligo

and polysaccharide/acidified saline, followed by about 12 days of normal pelleted diet. 

In each period, sheep faecal bifidobacteria, lactobacilli, E. coli/ Enterobacteriaceae, 

sulphite reducing clostridia, and total anaerobes were enumerated on the day -4 of the 
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Abstract 

"stabilisation" period; days 3 & 9 of the "treatment supplementation" period, and 

days 15, 16, 19 & 26 after cessation of infusions. Raftilose, Yacon, and Fibruline 

all exerted significant bifidogenic effects on sheep faecal bifidobacteria after 9 days 

of daily dosing. Raftilose produced the greatest stimulation of bifidobacteria, 

reaching counts of approximately 107 CFU/g of faeces. No significant changes in 

the populations of bifidobacteria were observed in Arabinogalactan-treated sheep. 

Raftilose and Yacon significantly increased the number of lactobacilli, reaching 

approximately 107 CFU/g of faeces, after 9 days of daily dosing. With Fibruline, 

the lactobacilli increase after 9 days of administration was not significant. 

Arabinogalactan did not elevate the populations of lactobacilli. All four 

carbohydrate treatments significantly increased the number of total anaerobes to 

approximately 107 to 108 CFU/g of faeces after 9 days of daily dosing. 

Supplementation of the test oligo- and polysaccharides had no significant effect on 

the other determined groups of gut microflora: sulphite reducing clostridia and E. 

coli/Enterobacteriaceae. There were no significant changes in sheep faecal pH and 

dry matter content with the four treatments. 

Further in vitro antagonistic experiments were carried out to determine whether or 

not the isolated sheep faecal bifidobacteria inhibited the growth of potential intestinal 

pathogens in fermentation broth containing the bifidogenic FOS. One hundred and 

seventeen bifidobacterial isolates from sheep faeces, were screened for their capacity 

to utilise different oligo- and polysaccharides. Eighteen of these, with strong 

fermentation patterns, were selected for further study. In the first preliminary 

experiment, the 18 isolates plus 2 reference cultures of bifidobacteria were divided 

into 5 groups of 4 strains each. The 5 groups of bifidobacteria were compared for 

their in vitro antagonistic activities against E. coli in Peptone Yeast Extract broth 

containing Yacon, Raftilose, or Fibruline as primary carbon sources. Two groups, 

exerting 100% antagonistic effects against E. coli after 48-hour anaerobic co-culture 

at 37°C, were selected for further examination. The eight individual strains in these 

two groups were tested individually for their antagonistic activities against E. coli in 
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PY broth containing Yacon or Raftilose. Fibruline was eliminated due to its low 

antagonistic activity by bifidobacteria. Six isolates, showed 100% inhibitory effects 

against E. coli, which made them particularly promising for use as probiotics. The 

pH of the fermented broths showed a clear negative correlation with the rank 

transformed or angular transformed inhibition rate of E. coli. One bifidobacterial 

strain, P5-Po4-37, was subsequently investigated for its in vitro antagonistic activity 

against E. coli by determination of bacterial growth kinetics over 60 hours anaerobic 

incubation at 37°C in PY broth containing Raftilose or Yacon. In this experiment, 

two different concentrations of bifidobacteria, 107 to 108 CFU/mL and 103 to 104 

CFU/mL, were incubated with 104 to 105 CFU/mL of E. coli. After 30 and 48-60 

hours of incubation, the growth of E. coli was completely inhibited by both the higher 

and lower concentrations of bifidobacteria, respectively. The presence of E. coli did 

not affect the growth of bifidobacteria. With the higher inoculum level, the 

populations of bifidobacteria increased by only approximately 1.30 log10 cycles; 

whereas with the lower inoculum level, the populations ofbifidobacteria increased by 

approximately 5.62 log10 cycles, to attain the same maximum viable counts at 

approximately 109 CFU/mL. Fermentation products were analysed in Raftilose 

containing PY fermented broth. The inhibitory activity of strain P5-Po4-37 was 

associated with the production of acetic and lactic acids. Strain P5-Po4-37 also 

exerted strong antagonistic activities against Clostridium perfringens, Enterobacter 

aerogenes, Enterococcus faecalis, Klebsiella pneumoniae, Salmonella Dublin, and 

Salmonella Menston. These findings indicated that Yacon and Raftilose potentiate 

an organic acid mediated inhibitory action of bifidobacterial strain P5-Po4-37 against 

the test potential intestinal pathogens. To date, this demonstration of inhibitory 

activities has been convincingly made only in in vitro studies. The combination of 

Yacon or Raftilose and bifidobacterial strain P5-Po4-37 may exert a promising 

synbiotic effect on sheep hindgut microflora, which will be investigated in vivo in the 

near future. 
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Chapter I Nutritional modulation of gut microecology 

Chapter 1 
LITERATURE REVIEW - NUTRITIONAL MODULATION 

OF GUT MICROECOLOGY 

1. 1 The gastrointestinal microflora of mammals 

1. 1. 1 The digestive system of mammals 

The digestive system of mammals consists of the mouth, oesophagus, stomach, 

small intestine, caecum, colon and rectum. The small intestine can be divided 

into duodenum, jejunum and ileum. The caecum, colon and rectum constitute 

the large intestine (Macfarlane and Cummings, 1991). The stomach may be 

simple or complex. The animals which possess one simple stomach are known 

as monogastrics (Figure 1.1). These include humans, pigs, chickens, and rats. 

Ruminants, such as cows, sheep, and goats, possess a four-chambered stomach, 

comprised of the rumen, reticulum, omasum and abomasum (Figure 1.2). 

1.1.1.1 Monogastric digestive physiology 

The digestive process converts foods or feedstuffs into chemical compounds 

which can be absorbed into the bloodstream to be used as nutrients or to generate 

energy for the body. 

Digestion begins in the mouth with the teeth, which grind the food into small 

particles. The tongue with taste buds, a powerful muscular organ, detects the 
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"taste sensations" of sour, sweet, bitter and salty in molecules of food dissolved in 

saliva, moves the food around during mastication, and initiates swallowing by 

moving the food to the pharynx. Saliva, a watery fluid, not only lubricates 

chewing and swallowing, but also begins the process of digestion with salivary 

amylase, which breaks down starch into disaccharides and dextrins. Saliva also 

contains the antimicrobial enzyme lysozyme and Immunoglobulin A (lgA) 

antibodies. 

esophagus 

ileum 
large intestine 

stomach anus 

jejunum cecum 

Figure 1.1 Digestive tract of the monogastric mammal (University of Kentucky, 

2002a, reproduced with kind permission) 

The pharynx, which is a mass of muscles and tissues, transports food into the 

oesophagus. The oesophagus, which connects the pharynx above with the 

stomach below, moves the swallowed food to the stomach by peristalsis. 

The stomach stores the swallowed food and liquid, and churns its contents 

together with digestive juice produced by the stomach wall into a chyme. 

Protein digestion is initiated here with the breakdown of proteins to polypeptides; 

this is aided by the enzyme pepsin and hydrochloric acid. Absorption of small 

molecules such as water, aspirin and alcohol occurs from the stomach. The 

stomach also produces an intrinsic factor important for vitamin B 12 absorption in 
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the small intestine. After several hours the stomach empties its contents slowly 

into the small intestine via the pyloric sphincter. 

The small intestine is divided into three regions, duodenum, jejunum and ileum. 

Most chemical digestion of food occurs in the duodenum with the aid of 

secretions from the gut wall and from two other digestive organs - the pancreas 

and liver. The pancreas produces a digestive juice that contains a wide array of 

enzymes to break down the carbohydrate, fat, and protein in food. The liver 

produces yet another digestive juice - bile, which is stored between meals in the 

gallbladder. At mealtimes, it is squeezed out of the gallbladder into the bile 

ducts to reach the small intestine and mixed with the fat in food. The bile acids 

emulsify the fat into the watery contents of the small intestine. After the fat is 

emulsified, it is digested by enzymes from the pancreas and the lining of the small 

intestine. Finally, all of the digested molecules of food like amino acids, fatty 

acids and monosaccharides, as well as water and minerals from the diet, are 

absorbed from the cavity of the small intestine. Most absorbed materials cross 

the mucosa into the blood and are carried off in the bloodstream to other parts of 

the body for storage or further chemical change. Some digestion and some 

absorption occur in the jejunum, but most absorption occurs in the ileum, the 

lower small intestine. The enzymes in the small intestine are listed in Table 1.1. 

All the indigestible foods, such as fibre, as well as a substantial part of the 

intestinal secretions, are propelled into the large intestine ( colon), which harbours 

a large number of bacteria. These bacteria, which are commonly referred to as 

the intestinal microflora, have an enormous fermenting capacity. They degrade 

and ferment indigestible fibre ingredients. The end products of bacterial 

fermentation are absorbed and thus contribute to the total nutritional value of the 

ingested foods (Cummings and Macfarlane, 1991). The large intestine also 

functions in water absorption, production of some B vitamins and vitamin K 

synthesis, and waste storage. 
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Table 1.1 Enzymes involved in the digestion in the small intestine (modified from 

University of Kentucky, 2002a) 

Enzyme Function Source 

Trypsin 

(peptides-+ amino acids) 
Digest proteins Secreted from pancreas 

Chymotrypsin 

Carboxypeptidases 

Pancreatic amylases 
Digest carbohydrates 

(plant starches-+ compound sugars) Secreted from pancreas 

Pancreatic lipases Digest lipids 

Disaccharidases Digest carbohydrates Secreted from small intestine 

Dipeptidases Digest peptides wall 

At the end of the process, the material that collects at the end of the digestive 

system is either undigested or simply cannot be digested regardless of mechanical 

and chemical actions. This is faecal material. Faeces also contain bacteria and 

other microorganisms that may begin to multiply in the large intestine. There 

may also be dead cells that might have sloughed off from the luminal (inner) walls 

of the digestive system during cell rejuvenation. Water is also present and is 

necessary to avoid constipation in the animal (vanLoon, 1976). 

1.1.1.2 Ruminant digestive physiology 

For the most part, the digestive system of ruminants is very similar to that of other 

mammals, but the stomach is considerably different from the "monogastric" 

condition. The ruminant stomach is comprised of four compartments called the 

rumen, reticulum, omasum and abomasum. This complex stomach enables the 

ruminants to digest substances that are considered indigestible by humans and 
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other monogastric species. These substances include all feeds which may 

contain cellulose. Cellulose is a carbohydrate polymer that is extremely 

insoluble and is somewhat resistant to chemical breakdown (Findlay, 1998). 

Both ruminants and monogastrics lack the cellulases that are needed for the 

breakdown or hydrolysis of cellulosic compounds into individual glucose 

molecules. However, many microorganisms found in the rumen possess these 

cellulases allowing them to digest cellulose (Campbell, 1999). The rumen is the 

first compartment of the ruminant stomach. It is virtually non-functional at birth, 

but rapidly activates when calves or other young ruminants are fed solid feeds 

including grain, hay and grass (Table 1.2). 

Table 1.2 Ratio of Rumen/Reticulum volume to Omasurn/ Abomasum volume 

according to age (University of Kentucky, 2002b, reproduced with kind 

permission) 

Age 

Birth 

6 months 

I year 

R/R:0/A 

I : 3 

4: I 

8-10: I 

The rumen churns the food particles with its liquid contents and also serves as a 

"fermentation vat" for the digestion of the food particles by a large population of 

microorganisms, which are present there (Table 1.3). Fermentation in the rumen 

produces volatile fatty acids such as acetic acid, propionic acid and butyric acid. 

Volatile fatty acids are generally absorbed directly into the bloodstream through 

the rumen wall to provide nutrient and energy requirements for the host 

(University of Alberta, 1998). Fermentation products that pass out of the rumen 

into the lower digestive tract include microbial protein, B-complex vitamins, and 
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vitamin K. Microbial fermentation also results in large amounts of gaseous 

methane and carbon dioxide, which are relieved by a process called eructation or 

belching. 

Table 1.3 Microorganisms in the rumen (University of Kentucky, 2002b, 

reproduced with kind permission) 

Protozoa 100,000 per gram of fluid 

Bacteria 
-----i I 00 million per gram of fluid 

Fungi 

The second chamber of the ruminant stomach is the reticulum which functions in 

conjunction with the rumen. The reticulum participates in moving the fibrous 

feeds up the oesophagus. This process is called regurgitation or rumination. 

(vanLoon, 1976). Rumination is the process whereby semi-liquid material is 

regurgitated up the oesophagus to the mouth, where it undergoes remastication or 

a second chewing before being swallowed again in the form of a bolus (Pond et 

al., 1995). Rumination usually takes place at times in which the animal is at rest. 

The reticulum is also called the "hardware" stomach since it also functions in 

sorting ingested foreign objects from the digesta. Ingested foreign objects in 

domestic ruminants most commonly include nails, bailing twine and stones 

(University of Alberta, 1998). 

In young or newborn calves, lambs or fawns, a groove termed the oesophageal 

groove extends from the oesophagus to the omasum allowing the direct delivery 

of milk into the abomasum. This groove remains functional only until the calf or 

young animal is weaned onto solid food (University of Alberta, 1998). Though 

its function is not clearly understood, the omasum or third chamber consists of a 
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body region and a canal region. The body region is composed of a multitude of 

muscular leaves that project from the greater curvature. These leaves act in 

increasing the absorptive capacity for water and fatty acids. The canal region of 

the omasum is "located on the lesser curvature" and functions to connect the 

reticulum to the abomasum (Cunningham and James, 1997). 

The abomasum, or the "true stomach", has the same functions as a nonruminant 

stomach (University of Albert, 1998). The abomasum secretes hydrochloric acid 

and enzymes such as pepsin, that begin the chemical digestion of proteins to 

peptides and amino acids (vanLoon, 1976). The abomasum also consists of a 

multitude of folds that increase secretory capacity (University of Alberta, 1998). 

Later, when the food passes into the intestine, absorption of amino acids, lipids, 

and carbohydrates takes place as in monogastic animals. 

Large 

Small 

Intestine 
Omasum 

Figure 1.2 Digestive tract of the ruminant (Oklahoma State University, 2002, 

reproduced with kind permission) 
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1.1.2 The gastrointestinal microflora of mammals 

The gastrointestinal tract (GIT) of mammals harbours a complex microbial 

community comprising about 1014 microorganisms consisting of more than 400 

different species of bacteria (Moore and Holdeman, 1974). These 

microorganisms, which are present in the complex ecological niche of the GIT, 

can be found in the lumen where they are either attached to the feed particles or 

existing freely in the fluid. They may also be found in association with the 

mucous epithelium, or in the bottom of the crypts (Savage, 1986). These 

microorganisms live in a stable relationship with the host. 

The distribution of microorganisms within gastrointestinal tracts varies according 

to animal species. In the human GIT variability exists in bacterial numbers and 

populations between the mouth, stomach, small intestine and colon. In the 

mouth, saliva is the main habitat of bacteria and has been reported to contain 104 

to 109 organisms/mL of contents. (O'Sullivan, 1996). After the more or less 

neutral pH of the oral cavity, the low pH of the stomach (ranging from 2.5 to 3.5) 

is lethal to most microbes. The total bacterial counts in the stomach are 

therefore below 103 organisms/mL of contents and are dominated by 

Gram-positive bacteria such as streptococci and lactobacilli and by yeasts (Figure 

1.3). Due to the aggressive bile and pancreatic juices and the short transit time, 

the duodenum also represents a hostile environment and contains relatively low 

numbers of transient bacteria. Along the length of the small intestine, the flow 

rate of the digesta is somewhat reduced, the bile is diluted, the pH becomes more 

neutral and the oxygen tension drops rapidly, all of which result in the gradual 

increase in the microbial population (up to 108 organisms/mL of contents) in the 

jejunum and ileum, initially mainly facultative anaerobic species, but in the ileum 

strict anaerobes are also present (Figure 1.3) (Bhat et al., 1989; Nielsen et al., 

1994; Hill, 1995). Once past the ileum, the intestinal populations of microbes 

increase dramatically. The strict anaerobes outnumber the facultative anaerobes 
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in the lumen by 100 to 1000-fold, and total bacterial counts may exceed 1011 

organisms/mL of contents (Figure 1.3). The microflora in the large intestine are 

fairly stable. These bacteria fall into three categories: J) organisms which are 

almost always present in large numbers, for example Bacteroides and 

Bifidobacterium spp.; 2) organisms which are part of the resident flora but which 

are normally present in small numbers, for example members of the 

Enterobacteriaceae, Lactobacil/us, and Streptococcus spp.; and 3) organisms 

present in small numbers which originate from other regions of the body, for 

example Staphylococcus spp., or from the environment, for example Bacillus spp. 

(O'Sullivan, 1996). 

Stomach and Duodenum 
(10 1-103 CFU/ml) 
lactobacilli 

streptococci 
yeasts 

Jejunum and Ileum 
(104-108 CFU/ml) 
lactobacilli 
Enterobacteriaceae 
streptococci 

Bacteroides 
bifidobacteria 
fusobacteria 

Colon 
(10 10-10 12 CFU/g) 

Bacteroides clostridia 
bifidobacteria Veillonella 

streptococci 
fusobacteria 

Enterobacteriaceae 

lac to bacilli 
Proteus 

staphylococci 

Pseudomonas 
yeasts 

protozoa 

Figure 1.3 Microbial colonisation of the human gastro-intestinal tract (Holzapfel 

et al., 1998, reproduced with kind permission from author and Elsevier) 

The GIT of newborns is inoculated primarily by organisms from the birth canal of 

the mother and the environment. At first facultative anaerobic strains such as 

Escherichia coli and Streptococcus spp. exist in the highest numbers (Rotimi and 

9 
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