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Abstract

Categorical variables are prevalent in real-world datasets across numerous do-

mains, yet few visualisation techniques accommodate them e�ectively. This

is especially true of datasets comprising three or more categorical variables,

termed multivariate categorical data. Visualising such data is challenging due

to the lack of inherent ordering of nominal categories, the so-called ‘curse of

dimensionality’, and the potential variability in the number of categories per

variable. Corpus linguistics, which involves the study of large digital collections

of naturally occurring language, serves as the primary application domain in

this thesis. This domain was chosen because it is rich in multivariate categori-

cal data and, at the same time, is often visualised using only basic techniques.

This thesis contributes to the area of categorical data visualisation in sev-

eral ways. First, we propose a taxonomy of techniques for visualising cate-

gorical data, highlight limitations of existing solutions and identify relevant

analysis tasks. Building on this foundation, the thesis introduces novel tech-

niques and enhancements for visualising datasets involving multiple categor-

ical variables. We focus on adapting the layout and interactive capabilities

of an existing technique that uses a matrix of heatmaps to represent pairwise

category intersections. These modi�cations show that directly visualising sta-

tistical test results for categorical data can be bene�cial for exploring bivariate

patterns and associations. Furthermore, we contribute the design, implemen-

tation and evaluation of a novel technique called MultiCat, which is not re-

stricted to pairwise intersections but rather facilitates analysis of relationships

among multiple variables simultaneously. Both these techniques are interac-

tive and o�er greater scalability than existing alternatives, thereby a�ording

new possibilities for analysing multivariate categorical data. However, since

categorical variables can occur within more complex data structures, we also

consider their presence in networks and hypergraphs, which require specialised

methods.

To demonstrate the application of these techniques, we draw on two lin-

guistic case studies that focus on languages of special signi�cance in Aotearoa

New Zealand. Addressing the low-resource status of M�aori, the country’s In-

digenous language, we �rst contribute two related Twitter datasets|a mono-
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lingual M�aori corpus and a mixed{language M�aori{English corpus|together

with an architecture for di�erentiating M�aori and English words. Our initial

case study uses the monolingual M�aori corpus and proposed visualisation tech-

niques to investigate grammatical possession in M�aori, o�ering fresh insights

into the linguistic practices of contemporary speakers. The second case study

uses networks and hypergraphs with categorical attributes to explore M�aori

loanword co-occurrence in New Zealand English newspaper articles. We �nd

that loanwords tend not to occur in isolation and that New Zealanders are still

importing new (unlisted) borrowings from M�aori.

Ultimately, the techniques developed in this thesis have broad applications

both within and beyond the corpus linguistics community. By enabling more

e�ective visualisation and analysis of multivariate categorical data, this re-

search has the potential to facilitate deeper insights into domains as diverse

as education, healthcare, business and science.
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Part I

Thesis Preliminaries



Chapter 1

Introduction

As datasets grow in size and complexity, more specialised visualisation tech-

niques are needed to facilitate their e�ective exploration. However, techniques

designed for categorical data|spanning both nominal and ordinal variables|

have received little attention in the visualisation literature compared to those

for continuous data, especially in contexts involving multiple variables. Such

datasets arise in diverse domains: for instance, census data typically include

variables such as gender, education level, religion and marital status; medical

records might include disease types, treatment protocols and patient outcomes;

retail databases frequently categorise products by type, payment method and

customer demographics. Analysing all categorical variables simultaneously in

these datasets can enhance understanding of complex relationships and sup-

port informed decision-making. This thesis contributes to this gap in exist-

ing visualisation techniques by proposing novel solutions that can e�ectively

accommodate larger numbers of categorical variables. The rest of this chap-

ter will de�ne the main research questions, provide an overview of the the-

sis structure, summarise key contributions, and outline the publications and

manuscripts that are included as separate chapters in the thesis.

1.1 Research Questions

This thesis seeks to answer the following fundamental questions:

1. What generalisable information visualisation techniques can be devel-

oped or adapted to enable the e�ective analysis of datasets involving

multiple categorical variables?

2. How can applying these techniques to a particular domain increase un-

derstanding of that domain?
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We will apply the techniques resulting from addressing the �rst research

question to the domain of corpus linguistics in order to address the sec-

ond. While the presented examples centre on datasets related to M�aori and

New Zealand English (NZE), both of which are signi�cant to Aotearoa1 New

Zealand, the techniques are generalisable. We bring out this aspect of the work

in discussion sections throughout the thesis.

1.2 Thesis Structure

The content of this thesis is divided into four parts and ten chapters, as shown

in Figure 1.1. These chapters span the overlapping �elds ofInformation Visual-

isation, Natural Language Processing (NLP)and Corpus Linguistics, reecting

the interdisciplinary nature of the research carried out.

Part I includes this introduction (Chapter 1), together with relevant back-

ground details on information visualisation, corpus linguistics and the main

languages of interest (Chapter 2).

Part II focuses on visualisation techniques that support purely categorical

data, rather than mixed or continuous data types. We begin with a review and

taxonomy of established techniques for visualising categorical data (Chapter

3), before proposing extensions to a recent technique for visualising pairwise

category intersections (Chapter 4). We then introduce and evaluate a novel

technique for visualising higher-order categorical relationships (Chapter 5).

Part III is concerned with linguistic case studies from te reo M�aori (the

M�aori language) and New Zealand English. Motivated by the lack of existing

datasets for M�aori, we created two social media corpora that provide rich

opportunities for visualising categorical data (Chapters 6{7). This is followed

by a case study on grammatical possession in M�aori (Chapter 8), which applies

the techniques from Part II to the dataset introduced in Chapter 6. We then

examine how M�aori loanwords co-occur in New Zealand newspaper articles,

expanding our problem space from purely categorical data to relational data

(networks) with categorical attributes (Chapter 9).

Finally, Part IV (Chapter 10) provides a summary of the main �ndings

and contributions of this thesis, and outlines avenues for future work.

1Aotearoa is the M�aori name for New Zealand, and will be used throughout this thesis.
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Figure 1.1: Overview of the structure of this thesis and the main links be-

tween chapters.
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1.3 Contributions

The contributions made by this thesis can be described as follows:

1. A review of categorical data visualisation , including a taxonomy

of techniques and an overview of relevant analysis tasks (Chapter 3).

2. New and adapted visualisation techniques for exploring multidi-

mensional categorical data (Chapters 4{5) and relational data with cat-

egorical attributes (Chapter 9). These techniques advance the state of

the art in categorical data analysis and can be generalised to domains

such as business, science, education and communication.

3. Language resources for te reo M�aori and the mixing of M�aori and

English, including two related Twitter corpora and an architecture for

labelling additional bilingual M�aori/English datasets (Chapters 6{7).

4. Linguistic �ndings about how te reo M�aori and New Zealand English

are used in contemporary New Zealand society (Chapters 8{9), obtained

by applying the aforementioned visualisation techniques.

1.4 List of Publications and Manuscripts

Chapters 4{9 of this thesis comprise published papers or manuscripts prepared

for publication, as follows:

� Chapter 4 (published): Trye, D. , Apperley, M, & Bainbridge, D. (2023).

Extending the Heatmap Matrix: Pairwise analysis of multivariate cate-

gorical data. In 2023 27th International Conference Information Visual-

isation (IV). (pp. 29-36). Tampere, Finland: IEEE.https://doi.org/

10.1109/IV60283.2023.00016

� Chapter 5 (to be submitted): Trye, D. , Apperley, M., & Bainbridge,

D. (2024). MultiCat: A visualisation technique for multidimensional

categorical data [Unpublished manuscript]. School of Computing and

Mathematical Sciences, University of Waikato.

� Chapter 6 (published): Trye, D. , Keegan, T. T., Mato, P., & Apper-

ley, M. (2022). Harnessing Indigenous Tweets: The Reo M�aori Twitter

Corpus. Language resources and evaluation, 56(4), 1229-1268.https:

//doi.org/10.1007/s10579-022-09580-w
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� Chapter 7 (published): Trye, D. , Yogarajan, V., K•onig, J., Keegan,

T. T., Bainbridge, D., & Apperley, M. (2022, November). A hybrid

architecture for labelling bilingual M�aori-English tweets. In Findings

of the Association for Computational Linguistics: AACL-IJCNLP 2022

(pp. 119-130).https://aclanthology.org/2022.findings-aacl.11

� Chapter 8 (published): Trye, D. , Calude, A. S., Harlow, R., & Kee-

gan, T. T. (2024). Analysing A/O possession in M�aori-language tweets.

Languages, 9(8), 271. https://doi.org/10.3390/languages9080271

� Chapter 9 (published): Trye, D. , Calude, A. S., Keegan, T. T., & Fal-

coner, J. (2023). When loanwords are not lone words: Using networks

and hypergraphs to explore M�aori loanwords in New Zealand English.In-

ternational Journal of Corpus Linguistics. https://doi.org/10.1075/

ijcl.21124.try

The �ve published chapters appear in peer-reviewed journals (Chapters 6,

8 & 9) and conference proceedings (Chapters 4 & 7), with the writing style

reecting the intended audience. All included publications and manuscripts

have been reproduced with minor changes to the formatting for consistency

throughout the thesis. In particular, adjustments have been made to the layout

and pagination of each chapter, including the renumbering of all sections,

�gures and tables, as well as the re-lettering of appendices and supplementary

material. Additionally, all references have been standardised to follow a style

in line with APA. In some chapters, hyperlinks that originally appeared as

footnotes have been converted to in-text citations. Any further deviations from

the source material are noted in context. Because each of these chapters has

been written as a stand-alone publication, there is inevitably some repetition

between chapters.

In order to reinforce the links between chapters and the broader thesis,

Chapters 2{9 each begin with an introduction and conclude with a postscript.

These postscripts are immediately followed by references for the correspond-

ing chapter. For ease of readability, appendices are not included within the

chapters themselves; instead, they are grouped at the end of the thesis in the

order in which they are cited.

This research is the outcome of fruitful collaboration with many di�erent

people, including my PhD supervisors, mentors and colleagues at the Univer-

sity of Waikato (see Appendix A for details). In recognition of their collective

contribution, I will use the �rst-person plural throughout the thesis.



Chapter 2

Background

The research presented in this thesis is interdisciplinary, combining ideas and

methodologies from the �elds of Information Visualisation, Natural Language

Processing and Corpus Linguistics. We therefore provide some background

information about these disciplines, together with important context for un-

derstanding our case studies in Part III.

2.1 Information Visualisation Fundamentals

Visualisation is commonly de�ned as \the use of computer-supported, inter-

active, visual representations of data to amplify cognition" (Card et al., 1999,

p. 6). These representations facilitate the exploration, con�rmation or pre-

sentation of data, leading to insights that might otherwise go unnoticed. Im-

portantly, visualisations leverage the advanced perceptual capabilities of the

human visual system, whose bandwidth surpasses all other senses combined

(Ware, 2019, p. 2).Interactive visualisations are particularly valuable as they

enable users to navigate through a dataset according to their speci�c needs,

thereby harnessing the complementary strengths of humans and computers.

A distinction is often made between Information Visualisation (InfoVis ),

which deals with abstract data, and Scienti�c Visualisation (SciVis), which

focuses onphysical data. This thesis is concerned with the former.

2.1.1 The Visualisation Pipeline

While computer-based visualisations typically have unique characteristics, they

can be systematically analysed using the Visualisation Pipeline (Card et al.,

1999, p. 17), shown in Figure 2.1. This pipeline describes the mapping of

data to visual form to support human interaction. The �rst stage involves

preprocessing and transforming the raw data, by extracting data from source
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Figure 2.1: The Visualisation Pipeline, redrawn and adapted from Card et al.

(1999).

�les, removing extraneous information, converting the data into a particular

format for use in a visualisation tool, interpolating missing values, and so on.

Crucially, the way in which the data is preprocessed a�ects what exploration is

possible later on. The second stage is the visual mapping process, during which

a visual encoding is speci�ed that determines how the data will be represented

(discussed next). Finally, view transformations, such as zooming and �ltering,

a�ect which parts of the data are rendered on the screen. The feedback loops

stemming from the user indicate that each of these steps can be continually

re�ned.

2.1.2 Representation

The two basic building blocks of visualisation arerepresentation and inter-

action. Representation is concerned with transforming data into visual form,

which is achieved by mapping data attributes tovisual channels, also called

visual variables. There is a �nite set of visual channels available, including

position, size, texture, colour, shape and, in computer-based visualisation,

motion or animation (Bertin, 1983; Carpendale, 2003). An e�ective example

of a visualisation that leverages multiple visual channels and comprises mixed

data types is given in Figure 2.2, which plots life expectancy against average

daily income. The size of the circle for a country is proportional to its pop-

ulation, and the colour used denotes the continent to which it belongs. The

same visual channel should never encode more than one variable, but the same

variable may be redundantly encoded by multiple visual channels. In Figure

2.2, for example, colour should not be used to encode both the continent of

the country and its population, but the continent could be encoded using both

colour and texture, given that texture has not already been used elsewhere.

The appropriate encoding mechanism for a given context depends on the
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Figure 2.2: A motion chart displaying countries' Average daily income(x-

axis), Life expectancy(y-axis), Population (size) andContinent (colour), ani-

mated acrosstime (screenshot taken fromhttps://www.gapminder.org ).

Figure 2.3: Mackinlay's ranking of visual channels (which he refers to as

`tasks') for di�erent data types, ordered from most e�ective at the top to least

e�ective at the bottom. Visual channels shown in grey are not relevant to the

corresponding data type (redrawn and adapted from Mackinlay, 1986).
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characteristics of the data: some visual channels are better suited to quanti-

tative, ordinal or nominal variables. This thesis focuses on the latter two data

types, which are collectively known as categorical data. Building on work by

Cleveland and McGill (1984), Mackinlay (1986) ranked the accuracy of the

di�erent visual channels for each of these data types, as shown in Figure 2.3.

For example, it is evident from this �gure that position is considered the most

accurate encoding for all three data types, colour is more suited to nominal

data than other data types, and length is always more accurate than area.

The choices of visual encoding signi�cantly a�ect the perception of the data,

as well as the ability to make valid comparisons. As such, when creating any

visual data representation, the most important attributes in a dataset should

always be ascribed to the most salient visual channels; this is known as the

e�ectiveness principle (Munzner, 2014, p. 101).

2.1.3 Perceptual Guidelines

It is important to design visualisations by considering the human capacity

for visual perception and cognition (Franconeri et al., 2021). Pre-attentive

processing is a special form of perception that can be used, among other things,

to quickly identify distinct elementsin complex arrangements (Healey et al.,

1996). Similarly, Gestalt theory provides robust guidelines for arranginggroups

of elements based on how humans perceive visual patterns (Ko�ka, 1935; Ware,

2019). For example, according to the Gestalt Law of Similarity, items with

similar visual attributes tend to be perceived as a group, which is exempli�ed in

Figure 2.4. Here, colour is used to `group' bars belonging to the same category

(corpus), enabling quick and e�ective comparisons. If visual channels are the

main way of describing data, the Gestalt Laws can be seen as a secondary

layer that provide additional context, by grouping or partitioning elements in

meaningful ways.

2.1.4 Interaction

Visualisations can be greatly enhanced through interaction. Metaphorically

speaking, interaction allows users to change the lens on the data. By manip-

ulating a visualisation, users can observe cause-and-e�ect relationships and

gain con�dence in formulating and answering their own questions, thereby fa-

cilitating information acquisition (Tominski, 2022). Interaction is helpful for

exploring large and complex datasets because (i) there is often too much in-

formation to display at once, and (ii) there are many di�erent ways it can be
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Figure 2.4: Grouped bar chart illustrating the Gestalt Law of Similarity

through the use of colour.

presented, only some of which will support a user's speci�c needs. Interaction

is particularly valuable when it allows the user to drill down into a dataset in

a exible and open-ended manner (Heer and Shneiderman, 2012).

There are a variety of high-level tasks that reect users' motivations and

interests when they are engaged with a visualisation. Shneiderman's (1996,

p. 337) classic `Visual Information Seeking Mantra' constitutes a useful start-

ing point for thinking about interaction and the sorts of tasks it can support:

\Overview �rst, zoom and �lter, then details on demand". In the same paper,

Shneiderman mentions three further tasks: `relate' (view relationships among

items), `history' (keep a history of actions to support undo, replay, and pro-

gressive re�nement) and `extract' (allow extraction of sub-collections and of

the query parameters). Yi et al. (2007, p. 1226) de�ne a similar, updated list

of high-level tasks that are also motivated by users' intentions:1

� Select: mark something as interesting.

� Explore: show me something else.

� Recon�gure: show me a di�erent arrangement.

� Encode: show me a di�erent representation.

� Abstract/Elaborate: show me more/less detail.

� Filter: show me something conditionally.

� Connect: show me related items.

1The bulleted task descriptions in this section have been collated from the source material,
using the original wording.
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Interaction can also be conceptualised in terms of low-level tasks that are

centred around thedata rather than the user or their intentions. Amar et al.

(2005, p. 113) provide a list of such tasks:

� Retrieve Value: Given a set of speci�c cases, �nd attributes of those

cases.

� Filter: Given some concrete conditions on attributes values, �nd data

cases satisfying those conditions.

� Compute Derived Value: Given a set of data cases, compute an aggregate

numeric representation of those data cases.

� Find Extremum: Find data cases possessing an extreme value of an

attribute over its range within the dataset.

� Sort: Given a set of data cases, rank them according to some ordinal

metric.

� Determine Range: Given a set of data cases and an attribute of interest,

�nd the span of values within the set.

� Characterise Distribution: Given a set of data cases and a quantita-

tive attribute of interest, characterise the distribution of that attribute's

values over the set.

� Find Anomalies: Identify any anomalies within a given set of data cases

with respect to a given relationship or expectation, e.g. statistical out-

liers.

� Cluster: Given a set of data cases, �nd clusters of similar attribute values.

� Correlate: Given a set of data cases and two attributes, determine useful

relationships between the values of those attributes.

Conceptually, these low-level tasks answer the `how' of interaction, whereas

the high-level tasks answer the `why' (Brehmer and Munzner, 2013). Com-

mon interaction techniques that support these tasks include: focus+context

techniques (Cockburn et al., 2009), brushing and linking (Becker and Cleve-

land, 1987); dynamic queries (Shneiderman, 1994), semantic zoom (Bederson

and Hollan, 1994); and scrolling (e.g., Seyser and Zeiller, 2018). Figure 2.5 is

an example of brushing and linking, where data items selected in one view are

highlighted in the other.

2.1.5 Multidimensional Visualisation

The representation of multidimensional data poses a signi�cant challenge in

the �eld of information visualisation. A dataset is considered multidimensional

if it comprises three or more variables, which can be quantitative, ordinal or
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Figure 2.5: Brushing and linking across two scatter plots (screen-

shot taken from https://vda-lab.github.io/visualisation-tutorial/

vegalite-brushing-and-linking.html ).

nominal. More precisely, each data item in a multidimensional dataset can

be de�ned asdi = ( di 1; di 2; : : : ; diN ); i 2 f 1; 2; : : : ; M g, where i is the item's

index, N is the number of variables (withN � 3), and M is the total number

of data items. Multidimensional datasets are commonly structured as tables,

where rows correspond to data items and columns correspond to variables.

We will use the terms `multidimensional' and `multivariate' interchangeably

throughout this thesis.

A wealth of multidimensional visualisation techniques have been proposed

over the past few decades, some of which are more intuitive than others (Liu

et al., 2016). These techniques aim to facilitate exploration of a large number

of variables at the same time, allowing users to �nd meaning in the diversity,

even if they do not start out with a clear idea of what to look for (Ware,

2019). Regardless of the number of variables they represent, visualisations

are typically rendered in two- or three-dimensional space, due to unavoidable

cognitive limitations.

Visualisation techniques for representing multidimensional data can be

broadly classi�ed into the following �ve categories (Keim, 2000, p. 60):

� Geometric techniques, which use position and/or size as the main visual

channels to encode the data, such as scatter plots, scatter plot matrices

(SPLOMs), parallel coordinates (Inselberg, 1985) andTable Lens (Rao

and Card, 1994).

� Icon-based techniques, which typically map individual data items to dis-

tinct icons or glyphs, such asCherno� Faces (Cherno�, 1973) and star

plots (Coekin, 1969).

� Pixel-oriented techniques, where data values are encoded using coloured
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pixels, such asCircle Segments(Ankerst et al., 1996) and theRecursive

Pattern (Keim et al., 1995).

� Hierarchical techniques, where the data are recursively divided to show

the values of multiple variables, such as mosaic plots (Hartigan and

Kleiner, 1981) and dimensional stacking (LeBlanc et al., 1990).

� Graph-based techniques, which model relationships between data items

and variables using nodes and edges, such asPivotSlice (Zhao et al.,

2013) andPloceus(Liu et al., 2011).

These categories are not mutually exclusive, and additional methods are avail-

able for displaying multiple variables simultaneously. For example, Cher-

no� Faces can be integrated into a two-dimensional scatterplot, resulting in

a hybrid geometric/icon-based representation. Furthermore, Multiple (Co-

ordinated) Views (Roberts, 2007) facilitate the e�ective juxtaposition of vi-

sualisations encoding separate dimensions, while potentially also leveraging

the strengths of di�erent types of representations. Additionally, projection

methods|such as Principal Component Analysis (PCA), Correspondence Anal-

ysis (CA) and Multidimensional Scaling (MDS)|are frequently employed to

reduce the number of variables before the data are mapped to visual form,

often using geometric techniques.

There are, however, a number of unsolved problems regarding the visualisa-

tion of multidimensional data, including complex categorical data, as discussed

in Chapter 3. The curse of dimensionality(Bellman, 1961) means that data

become increasingly sparse as the number of variables increases, making many

types of data analysis more di�cult. At the same time, many existing visual-

isation techniques are prone to clutter and/or visual occlusion, limiting their

scalability.

Datasets containing many variables are often too large or complex to be

visualised in a straightforward manner, unless some of the detail is abstracted

away, thereby sacri�cing granularity for greater readability. In order to min-

imise loss of critical information and provide a helpful solution, it is necessary

to have an in-depth understanding of not just thedata, but also the users

and the tasks they wish to perform. For instance, consider a social scientist

analysing demographic data from thousands of survey respondents, including

categorical variables such as gender, education level, political a�liation and

country of residence. The researcher needs to identify over-represented groups

of respondents based on these categories. To accomplish this task quickly and

e�ciently using visualisation, data items with identical values would need to

be aggregated rather than displayed individually.
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2.2 Corpus Linguistics

Having introduced key ideas from information visualisation, this section ex-

plains why corpus linguistics is a useful target domain for exploring multidi-

mensional categorical data. We begin with an overview of corpus linguistics

and highlight the current state of visualisation techniques within the �eld.

Over the past forty years, theoretical linguistics has increasingly adopted

empirical, data-driven methods alongside traditional, introspective ones. This

shift has been accompanied by the rise of corpus linguistics, which focuses

on analysing large corpora of naturally occurring text (McEnery and Hardie,

2011). These corpora are designed to be representative of typical sociolinguistic

variables such as time, genre, or the social status of each speaker. Leveraging

data-driven analysis, scholars can gain insights into a wide range of linguistic

phenomena, including lexical, morphological, syntactic and semantic features

that would otherwise be di�cult to uncover (Biber et al., 1998).

A variety of text analysis methods have ourished in corpus linguistics.

For instance, frequency pro�ling involves counting how often words, phrases

or other linguistic elements appear in a corpus, while concordances provide

a means of examining co-occurrence patterns, revealing grammatical and us-

age norms. These methods have been widely implemented in corpus analy-

sis software: popular examples includeAntConc (Anthony, 2023), English-

Corpora.org (Davies, 2020),#LancsBox X (Brezina and Platt, 2024),Sketch

Engine (Kilgarri� et al., 2014) and WordSmith Tools (Scott, 2024).

2.2.1 Visualising Language Data

Linguistic visualisation concerns \the presentation of linguistic data through

visual representations designed to amplify cognition or communicate linguistic

information" (Collins, 2010, p. 44). In the �eld of corpus linguistics, where

the complexity and volume of data are continually increasing, visualisations

are not just bene�cial but|in many cases|necessary for exploring intricate

patterns, explaining phenomena and facilitating statistical analysis (Siirtola

et al., 2014).

There are two possible approaches for developing tools that support lin-

guistic visualisations. The �rst is to create specialised applications that are

linguistically motivated (see Butt et al., 2020 and references therein). Promi-

nent examples includeDiachronlex diagrams(Theron and Fontanillo, 2015),

the Text Variation Explorer (Siirtola et al., 2014),Concordance Mosaics(Shee-

han et al., 2022) andAppAnn (Almutairi, 2013), as well as several tools de-
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veloped by Chris Culy, which are available online.2 Recent advances have also

seen the incorporation of machine learning in linguistic tools to enhance the

analyst's workow (Schneider et al., 2017), along with visualisation tools that

integrate with existing corpus analysis software (Isaacs et al., 2024).

The second approach|and the one adopted in this thesis|is to design

more general (domain-agnostic) visualisation tools or techniques, to which

language data can be directly applied (e.g., Siirtola et al. 2011; Hilpert, 2011).

Tools like Mondrian (Theus, 2002) andTableau (Stolte et al., 2008), for in-

stance, can be useful for experimenting with techniques that have not been

implemented in specialised linguistic tools. Regardless of which approach is

used, no single visualisation technique can fully accommodate every linguist's

needs; it is therefore helpful to have a diverse inventory from which to choose.

Information visualisation poses an ongoing methodological challenge for

corpus linguists, who have generally been slow to adopt new visualisation tech-

niques (Isaacs et al., 2024, p. 1; Anthony, 2018, p. 198). In fact, the structure

and content of corpora are typically described using words and tables rather

than visualisations (S•onning and Sch•utzler, 2023). Given the advantages that

visualisation has to o�er, S•onning and Sch•utzler (ibid, p. 12) describe this as

\somewhat surprising, if not unsatisfactory". Their analysis of 1,238 corpus

linguistics articles from 2015 to 2020 revealed that almost a third of these pa-

pers did not contain any visualisations at all (though, of course, this does not

necessarily mean that the authors did not create or interact with any visualisa-

tions when undertaking the research). Among the remaining papers, authors

displayed a strong preference for a small number of basic chart types, includ-

ing bar charts, line plots, scatter plots and dot plots (see also Anthony, 2018,

p. 202, Allen, 2017, pp. 464{465; Rayson et al., 2016, p. 28). As Anthony notes

(2018, p. 198), these and other basic charts are not always suitable for captur-

ing the complexity of the underlying data, which calls for more sophisticated

visualisation techniques. The lack of variation in the visualisations chosen

by corpus linguists can be at least partly attributed to current limitations

of corpus analysis tools, which do not tend to support more advanced tech-

niques (ibid, p. 207). Overall, these observations suggest that visualisations

are under-utilised by the corpus linguistics community. Hence, it is worthwhile

increasing awareness of relevant visualisation techniques and ensuring they are

easily accessible to corpus linguists.

There are several reasons why corpus linguists can bene�t from more ad-

vanced visualisation techniques. Firstly, exploratory visualisation �ts very well

2http://linguistics.chrisculy.net/lx/software/



17

within the corpus linguistics methodology, as discussed below. Secondly, the

size and availability of digital corpora is growing, providing rich resources for

analysis, but simultaneously making it harder to extract meaningful patterns

from the data. Thirdly, there is a growing interest in computer-mediated lan-

guage, particularly language produced on social media and the internet, which

introduces additional complexities (Calude, 2023). Robust visualisation tools

are needed to enable linguists to extract relevant features quickly and e�ciently

to support their analyses (Rayson et al., 2016; Anthony, 2018). Importantly,

however, these visualisations should \aid rather than replace linguists' own

expertise in making sense of real world language" (Allen, 2017, p. 478).

Interactive visualisations are extremely valuable, yet surprisingly rare within

corpus linguistics. Rayson et al. (2016, p. 34) note that many existing tools

are static in nature, often resulting in visual clutter as more information is pre-

sented than desirable. They argue that more dynamic, interactive and iterative

visualisation tools are needed to support the data-driven corpus methodology.

Similarly, Siirtola et al. (2014, p. 11) advocate greater use of exploratory

techniques in corpus linguistics, rather than simple text concordances and

spreadsheet applications, especially when users are in the initial stages of an

analysis. The shortcomings of existing tools highlight the value of developing

novel interactive solutions that foster more playful exploration of linguistic

data and more e�cient data analysis. Linguists are more likely to invest time

into learning visualisation tools if they know they are easy to use and can

reward them with additional opportunities for insight.

2.2.2 Relationship to Text Visualisation

Text visualisation is an important sub�eld of information visualisation, which

has received considerable attention in recent years (Kucher and Kerren, 2015;

J•anicke et al., 2015; Brath, 2020). Given that corpora are made up of text,

it would be natural to assume that corpus visualisations necessarily involve

the representation of textual data. However, while these two areas overlap,

not all visualisations in corpus linguistics directly represent the text within

a corpus. For example, linguistic analyses often abstract textual data into

categories (e.g., syntactic classes, phonemic categories), thus distancing the

representation from the original text (see the next section). Moreover, text

visualisation extends beyond linguistics to encompass broader applications in

the social sciences and digital humanities. Consequently, many techniques

developed for visualising text are not tailored to the needs of corpus linguists

(Siirtola et al., 2016; Culy and Lyding, 2010).
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Figure 2.6: Venn diagram showing the relationship between text visualisa-

tion, linguistic visualisation and categorical visualisation (`P2' and `P3' desig-

nate Part II and Part III of this thesis, respectively).

The relationship between text visualisation, linguistic visualisation and cat-

egorical visualisation, as far as this thesis is concerned, is illustrated in Fig-

ure 2.6. We focus on categorical visualisation techniques, represented by the

green circle, rather than on text visualisation. Part II of the thesis looks at

the general area of categorical visualisation, with Part III looking speci�cally

at the intersection of this area with linguistic visualisation.

2.2.3 Visualising Multidimensional Categorical Data

As this thesis explores visualisation techniques for categorical data, and specif-

ically multidimensional categorical data, our target domain needs to provide

opportunities for visualising numerous categorical variables. Corpus linguis-

tics meets these criteria because (i) language data is inherently multidimen-

sional, and (ii) categorical variables are prevalent in corpus linguistic studies.

Regarding this �rst point, Almutairi (2013, p. 698) observes that \The multi-

dimensional nature of textual data is a challenging problem and most linguists

are interested in understanding more than three or four dimensions in their

textual data simultaneously." This renders many existing visualisation tech-

niques unreadable, especially those designed to display the frequency of all

category intersections simultaneously.

Regarding the second point, categorical variables are the most frequent

data type in corpus linguistics (Stefanowitsch, 2020, p. 177). The sheer domi-

nance of bar charts in corpus linguistics publications, and the increasing pop-

ularity of mosaic plots (S•onning and Sch•utzler, 2023), also provide evidence of

this. Common examples of categorical variables includesentiment (positive,



19

neutral, negative), intensity (low, medium, high), position (beginning, middle,

end), animacy (human, animate, inanimate, abstract) andconstruction type

(e.g., ditransitive, prepositional dative). Moreover, categorical `background'

variables of the speakers or writers of each text are also frequently considered

in analyses, such as theirgender, ethnicity and socio-economic status(Siirtola

et al., 2011).

The visualisation techniques considered in this research will be of particular

relevance to corpus linguists who commonly analyse speci�c features or con-

structions by tagging them according to large numbers of categorical variables,

whether this tagging is done manually, automatically or semi-automatically.3

Two recent examples of datasets structured this way are Burnette and Calude

(2022) and Calude and Delahunty (2020), which each contain 10 categorical

variables. The techniques proposed in this thesis are based on the assumption

that the main variables of interest are categorical and that analysts will want

to view them all simultaneously|an aspect not well supported by current

approaches, as will be discussed in Part II.

2.3 Te Reo M�aori and New Zealand English

Context

We now provide some context about the two languages of interest in this

thesis, namely te reo M�aori (the M�aori language) and New Zealand English

(NZE), both of which will be explored in Part III. 4 These languages were

selected because of their relevance to the local research setting in Aotearoa

New Zealand: M�aori is ade jure o�cial language of New Zealand (alongside

New Zealand Sign Language), while English isde facto o�cial. 5 Although

the vast majority of New Zealanders are English monolinguals, M�aori plays an

increasingly prominent role in the country's life, and a more inclusive attitude

towards the language appears to be emerging (Albury, 2015, 2016; Te Puni

K�okiri, 2010; Hashimoto, 2019). Indeed, the M�aori language is special to

Aotearoa as it provides a unique context to experience the country's Indigenous

culture and history, and to understand the values and worldview of the M�aori

people.

3Automated procedures can sometimes generate additional categorical variables at little
extra cost.

4In particular, we will focus on Twitter data containing varying degrees of M�aori (Chap-
ters 6{8), and on NZE newspaper articles featuring M�aori loanwords (Chapter 9).

5While we focus only on these two languages, we note that more than 160 languages are
used in New Zealand.
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2.3.1 Te Reo M�aori

M�aori is the Indigenous language of Aotearoa New Zealand, and is a member

of the East Polynesian subgroup of the Austronesian language family.6 The

language is essential to the creation and expression of M�aori identity (Mar-

ras Tate and Rapatahana, 2022). It has a small phoneme inventory comprising

ten consonants /p, t, k, m, n,N, w, f, ó, h/ and �ve vowels /i, e, a, o, u/ with

long vowel pronunciation indicated using a macron. In terms of syntax, M�aori

has basic VSX (verb-subject-object) order in simple sentences; however, vari-

ations exist for fronting topical or focal phrases (Harlow, 2007). M�aori is

not a single homogeneous language but rather comprises a small number of

mutually intelligible regional dialects, calledmita (Biggs, 1968). Much of the

variation acrossmita is lexical, but there are also some phonological di�erences

(Harlow, 2007). Although M�aori has a rich history of language description (see

Whaanga and Greensill, 2014), including several grammars (e.g., Harlow, 2015

and Bauer, 1997), it is considered to be low-resourced in the context of NLP.

An overview of M�aori corpora is given in Chapter 6.

M�aori is simultaneously threatened (endangered) and undergoing revitali-

sation (Bell et al., 2005). Recent statistics show that M�aori is spoken by 3%

of the New Zealand population (Te Tari M�at�awaka, 2020), including roughly

one in six M�aori adults (Te Kupenga, 2020). All of these adults are bilingual

English speakers, with most having learned M�aori as a second language rather

than as their �rst. Reporting on Tu Kupenga 2018, Lane (2024) highlights

a critical increase in the number of speakers belonging to the youngest gen-

eration (born between 1984{2003). Focusing on the most pro�cient speakers,

he estimates that 22% of M�aori adults from the youngest generation, 18% of

adults born between 1964{1983, and 23% of older adults (born before 1964)

can speak M�aori fairly well to very well. Lane's �ndings also suggest that,

while M�aori-medium schools are important, language acquisition is greatly

enriched by speaking M�aori at home and in community contexts.

As noted above, although the number of M�aori speakers remains low, atti-

tudes towards the M�aori language have improved in recent years. More New

Zealanders are showing an interest in learning the language, as evidenced by

an increase in te reo M�aori course enrolments, particularly among non-M�aori

(Education Counts, 2023; Berardi-Wiltshire and Bortolotto, 2022). Mean-

while, M�aori language use is becoming more prominent in English-medium

schools (May, 2023). An attitudes survey from 2021 indicated that the major-

ity (62%) of New Zealanders are in favour of M�aori being taught at primary

6Seehttps://glottolog.org/resource/languoid/id/maor1246
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school (Ruru, 2022), with 57% also agreeing that the government should pro-

mote the use of M�aori in everyday contexts.

2.3.1.1 Social Media Presence

Anecdotally, there is a growing community of M�aori-language speakers who

use M�aori on social media, including Facebook, Twitter/X, Reddit, TikTok

and Instagram (Keegan, 2019; Keegan et al., 2015; Trye et al., 2019). This is

believed to increase the prestige and vitality of the language (Keegan and Cun-

li�e, 2014). Social media play a signi�cant role in our everyday lives and can

provide rich insights into expressions of identity and ideology. Furthermore,

given the vast amount of data available online, this genre o�ers unique oppor-

tunities for linguistic analysis. However, as far as we are aware, no quantitative

analyses of any aspect of M�aori language on social media have previously been

carried out. We address this gap in the existing body of knowledge through

a case study of possession in M�aori-language tweets, which is presented in

Chapter 8.

2.3.2 Language Contact in Aotearoa New Zealand

The M�aori people, believed to be the �rst inhabitants of Aotearoa, are thought

to have arrived from East Polynesia approximately 800{1,000 years ago (McLauch-

lan, 2014, p. 27). Their language quickly evolved in response to the local en-

vironment, distinguishing it from its Polynesian predecessors. While M�aori

was the only language spoken in mainland New Zealand before the arrival

of European settlers in the late 18th century, eventually the majority of the

Indigenous people would go from being monolingual M�aori speakers, to bilin-

guals, to monolingual English speakers (Spolsky, 2005).

Captain James Cook, a British explorer and naval o�cer, �rst visited the

shores of New Zealand in 1769, bringing M�aori into initial contact with the

English language. However, signi�cant European immigration did not occur

for several more decades. Interactions between British settlers and Indigenous

M�aori initially displayed elements of a promising partnership, characterised by

mutual cooperation and exchange. Along with whalers, sealers and various

coastal traders, early Anglican missionaries had arrived in Aotearoa by the

19th century. With a view to setting up a Christian mission station in the

land, most missionaries became uent in te reo M�aori. They were also the

�rst to devise a written form of the language, with Samuel Marsden compiling

the �rst M�aori vocabulary list and Thomas Kendall publishing the �rst M�aori
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language dictionary in 1815 (McLauchlan, 2014, pp. 54{55; Whaanga and

Greensill, 2014, pp. 16{20).

The partnership between the M�aori people and British settlers was for-

malised in 1840 withTe Tiriti o Waitangi (`The Treaty of Waitangi'), which

profoundly changed New Zealand's demographic, political and social fabric

(Belich, 2002). Resulting from a meeting held in Waitangi, this document was

signed by representatives of the British Government and leaders from most

M�aori tribes. The Treaty established New Zealand as a Crown Colony and

appointed Captain William Hobson as Governor. It ostensibly guaranteed

M�aori control and ownership over their lands and resources, both material

and cultural, including the M�aori language (May and Hill, 2018, p. 309).

Contrary to these assurances, the British Government soon began to exert

dominance through legislation that was detrimental to the Indigenous people.

During and after the New Zealand Wars (1845{1872), M�aori lost their land

through government-imposed con�scations and faced devastating casualties

from war and disease. Over the ensuing decades, they were were subjected to

laws that \undermined their self-determination, leading to political marginal-

isation, the alienation of M�aori land, and intergenerational impoverishment

and racism" (Te K�ahui Tika Tangata, 2022, p. 45).

Following sustained attempts to assimilate M�aori into the growing P�akeh�a7

population, the M�aori language would soon also become severely threatened.

Early mission schools were initially M�aori-medium institutions in which bilin-

gual education was valued and successful, but were switched to an English-

medium system from the 1840s. Under the Native Schools Act 1867, M�aori

were physically punished for speaking their language (Whaanga and Greensill,

2014, p. 9; King, 2018, p. 593), which contributed to a break in intergenera-

tional transmission (Fishman, 1991). Furthermore, urbanisation of M�aori after

World War II saw the M�aori population shift from being 90% rural to 80%

urban in less than two decades. This was accompanied by a severe reduction

in the amount of M�aori spoken at home and within local communities (May,

2023). All of this precipitated the systematic delegitimisation of te reo M�aori

(Benton, 1988), steering it towards a pathway of decline and ultimately jeopar-

dising its future survival. As May (2023, p. 665) points out, \It is this context

of rapid language loss that galvanized the M�aori language revitalization move-

ment from the early 1980s onward."

7The term P�akeh�a refers to New Zealanders of European descent.
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2.3.3 M�aori-Language Revitalisation

M�aori-language revitalisation can be seen as an ongoing negotiation between

M�aori and P�akeh�a. M�aori-led revitalisation initiatives began in earnest in the

1980s, focusing particularly on the schooling system. However, earlier cam-

paigns by the M�aori people set the scene for this to happen. On 14 September

1972, Hana Te Hamara and other M�aori activists descended on Parliament to

deliver a petition seeking the inclusion of te reo M�aori in the New Zealand

education system. In recognition of the Crown's failure to ful�l its Treaty

obligations, the Waitangi Tribunal was established in 1975. Past and present

breaches of the Treaty were subsequently lodged, including a claim relating to

inadequate protection of the M�aori language, led by activist Te Huirangi Waik-

erepuru. As a result of this movement, the M�aori Language Act was passed

in 1987, under which te reo M�aori was made an o�cial language of Aotearoa

and Te Taura Whiri i te Reo M�aori (`The M�aori Language Commission') was

established. That same year, the �rst M�aori immersion (pre)schools, known as

k�ohanga reo (`language nests'), were also opened (King, 2001). Subsequently,

M�aori-language immersion primary schools (kura kaupapa M�aori), secondary

schools (wharekura) and tertiary institutions ( W�ananga M�aori ) were estab-

lished. These initiatives have earned M�aori an international reputation as a

successful example of Indigenous language education (May and Hill, 2018).

Other signi�cant developments have included support for 21 M�aori radio sta-

tions and a government-funded M�aori television station that began in 2004.

Despite sustained e�orts towards revitalisation of te reo M�aori, current

strategies remain hampered by three major factors: (i) a lack of uent M�aori

teachers; (ii) an increasingly aged population of speakers; and (iii) a lack of

Indigenoustino rangatiratanga (`self-governance') over M�aori-language immer-

sion education, which has changed from being a M�aori-led and funded initiative

to falling under the remit of the NZ Ministry of Education (May and Hill, 2018,

pp. 310-311).

Presently, the New Zealand Government aims to ensure that, by 2040, one

million New Zealanders will have at least basic pro�ciency in M�aori, with 85%

of the population viewing the language as an intrinsic part of their national

identity (Te Puni K�okiri, 2019). This reects a growing emphasis on non-Maori

learning M�aori, and on encouraging all New Zealanders to embrace speaking

the language, regardless of their level of experience.
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2.3.4 New Zealand English (NZE)

English is the dominant language of New Zealand, spoken by roughly 95% of

the population (Statistics New Zealand, 2018). Despite current aspirations,

New Zealand has been described as an \unusually monolingual country" (Bell

and Kuiper, 1999, p. 13) owing to its geographical isolation and settler-colonial

history. While NZE is a relatively recent variety, it has acquired \local prestige

and is now something that many younger New Zealanders claim as part of

their identity" (Bell et al., 2005, p. 13). NZE shares many features with the

other Southern Hemisphere Englishes, namely Australian and South African

English, but also has its own special characteristics.

Since the 1980s, a large body of work on NZE has emerged, mostly con-

cerning pronunciation (i.e., the New Zealand accent). The English spoken by

children in Aotearoa was recognised as distinctive by the early 1900s (Hay

et al., 2008). Key features of NZE include the centralised pronunciation of the

vowel in words such as `kit', `�sh' and `chips' (Bauer, 1994; Bell, 1997), the

near merger of words with the phoneme pairs `ear/air' (Holmes and Bell, 1992;

Batterham, 2000), the use of high-rising terminal intonation (Warren, 2005)

and rhythm (Nokes and Hay, 2012).

A variety of research on the grammar and morpho-syntax of NZE has also

been carried out (e.g., Bauer, 2007; Hundt, 1998, 2008), as well as lexical and

pragmatic features, such as the adverbheaps(Calude, 2019) and the particle

eh (Meyerho�, 1994; Schweinberger, 2018). However, the most unique aspect

of NZE concerns the use of M�aori words, as detailed below.

2.3.4.1 M�aori Loanwords

Loanwords (or borrowings)8 are commonly cited as the most distinctive feature

of NZE (Deverson, 1991; Macalister, 2004, 2006; Hay et al., 2008). These

words arise when lexical material is transferred from a source language to a

receptor language (Zenner and Kristiansen, 2013, p. 1). In the case of NZE,

the source language is M�aori (an endangered Indigenous language) and the

receptor language is English (a dominantlingua franca), which is a highly

unusual direction of lexical transfer (Trye et al., 2020). Borrowings also occur

in the opposite direction, from English to M�aori, but they are not the focus

here.

Macalister (2006, p. 18) proposed two main `waves' of borrowing from

M�aori: an initial wave during the `colonisation phase', from the time of �rst

8We use the terms `loanword' and `borrowing' interchangeably throughout the thesis.
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European arrival in Aotearoa until 1880, and a second wave during the so-

called `decolonisation phase', from 1970 onwards. The intervening period of

recolonisation, 1880-1970, saw a resistance to borrowing. Interestingly, each

wave was associated with di�erent types of borrowings: the �rst wave included

ora and fauna terms and proper nouns (e.g.,kumara `sweet potato', H�emi

`James'), while the second wave had a higher concentration of social and ma-

terial loanwords (e.g., kaitiakitanga `guardianship', rohe `tribal boundary').

The second wave is strongly linked to te reo M�aori revitalisation e�orts, and

increased prestige of M�aori language and culture in general.

Today, M�aori loanwords are increasingly used in spoken and written dis-

course, by monolingual and bilingual New Zealanders, both within and beyond

the M�aori community (Macalister, 2006; Calude et al., 2020a). There are close

to 1,000 borrowings listed inA Dictionary of Maori Words in New Zealand

English (Macalister, 2005). However, the use of M�aori loanwords in NZE is

complex, and may vary according to the identity of the author or speaker, as

well as the genre and topic of the text. For example, loanwords are proli�c in

education and schooling domains, in certain media (like Radio New Zealand),

as well as in discourse related to M�aori language or culture (Calude et al.,

2019; Degani et al., 2010). In terms of speaker identity, M�aori women use

the highest proportion of borrowings (Calude et al., 2020a). Words also di�er

with respect to how entrenched they are: some words, like `M�aori' itself, are

so familiar that speakers do not register their origin as M�aori.

It is estimated that the average NZE speaker has passive knowledge of at

least 70 to 80 M�aori loanwords (Macalister, 2004). Recent studies have shown

that non-M�aori-speaking New Zealanders acquire considerablesubconscious

knowledge of M�aori through ambient exposure to the M�aori language (Oh

et al., 2020; Panther et al., 2023), but their explicit semantic knowledge is

much smaller than their implicit, form-based (proto-lexical) knowledge (Oh

et al., 2023).

M�aori loanwords have been studied comprehensively across a range of gen-

res over the years (Deverson, 1991; Kennedy and Yamazaki, 2000; De Bres,

2006; Macalister, 2009; Daly, 2016; Calude et al., 2020b,a; Trye et al., 2020).

These studies show widespread, productive and ongoing use of words of M�aori

origin in NZE. In Chapter 9, we will take a novel approach by investigating

whether multiple loanword types are used within the same texts, rather than

considering only their individual raw frequencies.
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2.4 Postscript

This chapter has established a foundation for understanding what follows in

this thesis. We began by introducing key concepts in Information Visualisa-

tion, focusing on the Visualisation Pipeline, representation, interaction and

multidimensional data. We then outlined current visualisation approaches in

corpus linguistics, before explaining why this domain is particularly well suited

for exploring multidimensional categorical data. Finally, the chapter provided

background information about te reo M�aori and New Zealand English, includ-

ing an historical overview of the contact between the Indigenous population

and European settlers, which has profoundly shaped the linguistic landscape

of Aotearoa today.

Looking ahead, Part II of the thesis will examine visualisation methods

for representing multidimensional categorical data, including both new and

existing techniques. Part III will introduce new datasets and then apply these

visualisation techniques, among others, to case studies concerning M�aori and

New Zealand English.
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Part II

Visualising Categorical Data



Chapter 3

A Review of Categorical

Visualisation Techniques

This chapter serves as the main literature review for the thesis, providing a

background and framework for our primary research question: What gener-

alisable information visualisation techniques can be developed or adapted to

enable the e�ective analysis of datasets involving multiple categorical vari-

ables?

3.1 Introduction

Categorical variables are prevalent in real-world datasets, frequently occurring

in domains such as the behavioural and social sciences, public health, biomed-

ical science, education, business and marketing (Agresti, 2012). Examples of

categorical data include responses to multiple-choice survey questions (e.g.,

strongly disagree, disagree, neutral, agree, strongly agree), treatment options

assigned to participants in a medical trial (e.g., drug A, drug B, placebo), and

the biological class to which di�erent animals belong (mammal, bird, reptile,

etc.). Categorical variables are even found in highly quantitative �elds, such as

industrial quality control, where products are rated based on their adherence

to speci�c standards (Agresti, 2019).

When dealing with categorical data, analysts are typically interested in

comparing category frequencies and investigating relationships between cat-

egories. Like other data types, the amount of categorical data available is

continually growing, increasing the need for e�cient analysis methods (Jo-

hansson Fernstad, 2011). Surprisingly, despite these demands, visualisation

techniques for categorical data have received considerably less attention in

the literature compared to those for numeric data (Liu et al., 2016; Friendly,
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1998). This is especially true when the need arises to visualise more than three

categorical variables simultaneously.

Categorical data visualisation presents several challenges. Firstly, nom-

inal categories do not have an intrinsic order or inherent spatial mapping

(Cibulkov�a and Kupkov�a, 2022). Secondly, combinations of categories become

increasingly sparse when more variables are added, exemplifying the `curse of

dimensionality' (Hofmann, 2006). Thirdly, variables with a large number of

categories may exceed the limits of the visual encoding, or render a visualisa-

tion unreadable. Overall, compared to numeric data, categorical visualisation

techniques appear to be more sensitive to structural characteristics of the data

(Johansson Fernstad, 2011).

This chapter provides a review and taxonomy of categorical visualisation

techniques. We begin by de�ning key terminology (Section 3.2), before de-

tailing the scope of the review and our method for gathering and organising

the relevant literature (Section 3.3). The heart of the chapter describes six

distinct `families' of techniques that we have identi�ed, which form the basis

of the proposed taxonomy (Section 3.4). We focus on prototypical examples

within each family, then introduce nine di�erent types of analysis tasks from

a categorical visualisation perspective (Section 3.5). Finally, we compare gen-

eral strengths and weaknesses of each family and reect on opportunities for

future work (Section 3.6). An interactive repository of the techniques reviewed

in this chapter is available at: https://cat-vis.github.io/ .

3.2 Categorical Data

Categorical data consist of variables that take a �xed set of values, each rep-

resenting a distinct category or group, such as colour. Due to their unique

characteristics, these variables require di�erent analysis methods from numeric

data, including specialised visualisation techniques (Friendly and Meyer, 2015).

The main advantage of visualising categorical data is the ability to reveal re-

lationships between multiple variables or categories more clearly than tabular

or textual representations.

3.2.1 Terminology

A range of terms is used in the literature to refer to categorical data. Our pre-

ferred terms within this thesis are emphasised here in bold. Individual(data)

items may alternatively be calledobjects, cases, records, tuples, points, vec-

tors, observationsor samples. The properties of each data item are described
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by a set of variables , where a variable is de�ned as a characteristic that can

vary from one item to another. Variables are sometimes also known asat-

tributes, featuresor dimensions. The number of distinct values that a variable

can take is itscardinality , while the values themselves are variously referred

to as categories , levelsor classes. We refer to a group of two or more orthog-

onal categories as acombination of categories . Categorical variables with

only two possible values are sometimes referred to asbinary variables (Agresti,

2019; Friendly and Meyer, 2015).

Following Tan et al. (2006), we consider a categorical variable to be either

nominal , meaning its categories are unordered, orordinal , meaning they

have a natural ordering. Examples of nominal variables include `gender' and

`continent', whereas `customer satisfaction' and `education level' are both or-

dinal variables. We consider it important for a categorical visualisation tool

to accommodate both these data types. Additionally, quantitative (numeric)

variables can bebinned , or discretized, to form (typically) ordinal variables,

though this process results in a loss of precision. Two common binning strate-

gies are to create categories of equalwidth or frequency (Dougherty et al.,

1995). For example, `income' and `age' are often divided into speci�c ranges.

Data can beunivariate, bivariate, or multivariate, depending on whether

they comprise one, two, or more than two variables, respectively. We use the

terms multivariate and multidimensional interchangeably. Multivariate cate-

gorical data are relatively common: census data may include variables such as

gender, education level, religion and marital status; medical records might in-

clude disease types, treatment protocols and patient outcomes; retail databases

frequently categorise products by type, payment method and customer demo-

graphics. Analysing all categorical variables simultaneously can enhance un-

derstanding of complex relationships and support informed decision-making.

Statistical models often distinguish betweenresponse (or dependent) vari-

ables andexplanatory (or independentvariables). The latter are thought to

partially explain the value of the former. Often, a dataset contains a single

response variable and several explanatory variables (Theus, 2008). For exam-

ple, in the Titanic and Mushroom datasets introduced below, the response

variables areSurvived (yes/no) and Edibility (poisonous/edible), respectively.

Depending on a user's analysis task, it may be bene�cial to highlight a re-

sponse variable within a visualisation by assigning it a prominent position, for

instance, or mapping it to colour.
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3.2.1.1 Common Datasets and Data Forms

The Titanic dataset (Dawson, 1995; see Figure 3.1) is arguably the most well-

known dataset in the �eld of categorical visualisation. This dataset provides

socio-historical information about the passengers and crew aboard the RMS

Titanic , which tragically sank in 1912. Although the dataset has been the

subject of considerable attention (see, for example, Symanzik et al., 2019),

and is widely used for illustrative purposes, it is relatively small, containing

only 4 variables, 10 categories and 2201 data items. Several di�erent versions

of the Titanic data exist, some of which include the names of passengers as an

additional string-type (text) variable. We will use the Titanic dataset in most

of the examples in this chapter.

The synthetic Mushroom dataset(Schlimmer, 1987), describing properties

of mushrooms like their colour, odour and stalk shape, is considerably larger

than the Titanic dataset. It comprises 22 variables, 119 categories and 8124

data items, making it a popular choice for demonstrating how categorical visu-

alisation techniques can (or cannot) scale to larger and more complex datasets.

At the internal representation level, Friendly and Meyer (2015) refer to

three main forms of categorical data:case form, frequency form and table

form, which are illustrated in Figure 3.1. Case form provides each data item

as a separate entry, with rows corresponding to data items and columns to

variables. This allows any data item to be traced back to its individual identi-

�er. In contrast, frequency form collapses identical combinations of categories

Figure 3.1: The Titanic dataset shown in (a) case form, (b) frequency form

and (c) table form. TheSurvived(yes/no) variable from Dawson's (1995) orig-

inal dataset has been renamedFate (survived/died) to give the two categories

semantically descriptive names.
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into a single row, reporting their counts in an additional column. Finally, ta-

ble form presents data in a contingency table, which involves cross-tabulating

some or all of the available variables.

3.3 Scope and Methodology

In this review, we focus on visualisation techniques that are capable of show-

ing purely categorical data, for any number of variables. We limit our analysis

to techniques that treat variables as havingat and disjoint categories. In

other words, the categories within each variable lacksub-categories, and are

mutually exclusive. Datasets that include multi-value categories are likely bet-

ter modelled as sets (Alsallakh et al., 2016). Furthermore, our review focuses

on exploratory data analysis rather than on statistical model building (see

Friendly and Meyer, 2015). Categorical data with special properties fall out-

side the scope of this review, including geospatial and time-oriented data, as

well as relational data with categorical attributes.1

This chapter synthesises ideas and techniques for visualising categorical

data from roughly 120 papers. The literature was extracted by paying special

attention to publications from IEEE Xplore, EuroGraphics, Sage Information

Visualization and the Journal of Computational and Graphical Statisticsthat

explicitly mentioned `categorical' data in the title or keywords. We also ex-

panded our search to include literature cited by these papers, as well as work

that cited them. The collected papers were tagged according to their primary

Contribution , the vast majority (80%) beingTechniquepapers:

� Technique: The paper introduces a speci�c technique or system for vi-

sualising categorical data.

� Evaluation: The paper provides an empirical, algorithmic or theoretical

evaluation of visualisation approaches for categorical data.

� Ordering Algorithm: The paper contributes an algorithm for rearranging

categorical data.

� Framework: The paper contributes a framework or paradigm for visual-

ising categorical data.

� Textbook: A textbook on the topic of visualising categorical data.

� Survey: The paper presents a survey of categorical data visualisation or

a related �eld.

Technique papers were tagged according to �ve further attributes that we

deemed important, as outlined in Table 3.1.

1We do, however, explore this further in our �nal case study, in Chapter 9.
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Table 3.1: Classi�cation system for technique papers.

Category Description

Family
Size-Encoding The technique uses bars (line marks) with the length channel, or

wedges (area marks) with the angle or length channels.
Space-Filling The technique �lls the available space and likely imposes a hierarchy

of variables.
Table The technique represents data in a 2D table or matrix, where each

cell contains visual encodings.
Glyph The technique uses glyphs or icons to represent individual items or

aggregates in the dataset.
Miscellaneous The technique represents frequencies (in line with theCatViz ap-

proach) but does not �t into any of the above categories.
Projection The technique converts categories into numerical values before rep-

resenting these visually (in line with theQuantViz approach).

Data Type
Homogeneous The technique only supports categorical (not quantitative) data.
Heterogeneous The technique supports a mixture of categorical and quantitative

data.

Dimensionality
Univariate The technique supports only one categorical variable.
Bivariate The technique supports up to (or exactly) two categorical variables.
Trivariate The technique supports up to (or exactly) three categorical vari-

ables.
Multivariate The technique can support more than three categorical variables.

Cardinality
Very Low The technique requires at least one binary variable.
Low The technique supports variables with roughly (only) 2-5 categories.
Moderate The technique can handle at least one variable with 6-10 categories.
High The technique is designed to support at least one variable with 10-

100 categories.
Very High The technique is designed to support at least one variable with

100+ categories.

Alignment
Linear The technique arranges data along perpendicular or parallel axes.
Radial The technique is laid out in elliptical form, and likely uses polar

coordinates.
Other The technique does not use a linear or radial layout (e.g., force-

directed).

The six `families', which form the basis of our proposed taxonomy, are ex-

plained in detail in Section 3.4. It was sometimes necessary to make subjective

judgements when assigning these tags, if relevant details were not overtly men-

tioned in the paper. We acknowledge that the interplay between a technique's
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supported cardinality and dimensionality is important, though this was not ex-

plicitly coded. Our �nal literature collection can be interactively explored at

https://cat-vis.github.io, which was created using theSurVis template (Beck

et al., 2015).

3.3.1 Technique Taxonomy

Given the focus of this thesis on visualisation methods, the technique papers

were fundamental to the current review. We have organised this body of lit-

erature into a two-level taxonomy, as shown in Figure 3.2. The �rst-level

classi�cation groups techniques intoCatViz (frequency-based) andQuantViz

(quanti�cation-based) approaches, following Johansson Fernstad and Johans-

son (2011).

The CatViz approach involves directly mapping the cell counts from a con-

tingency table, using a visual representation suitable forcategorical data. In

contrast, the QuantViz approach projects categories onto a (typically) two-

dimensional plane using quanti�cation methods, and then represents the data

visually using any technique designed fornumeric data. The quanti�cation

Figure 3.2: Our proposed taxonomy comprises six `families' of techniques:

size-encoding, space-�lling, table, glyph, miscellaneous(all frequency-based)

and projection (quanti�cation-based). The rectangle for projection is larger

to indicate that it encompasses many di�erent possible representations for

numeric data.
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approach aims to preserve relationships, such as distances, similarities and as-

sociations between data points. Each approach has its own merits: in an initial

user study (ibid), CatViz techniques were found to be superior forfrequency

tasks (e.g., identifying the most frequent category), while QuantViz techniques

were found to be better suited forsimilarity tasks (e.g., determining which two

categories are most alike).

In addition, we developed a second-level classi�cation, based on the afore-

mentioned `families' of visualisation techniques. We have identi�ed six main

groups but, as new techniques emerge, others can be added. Five of the six

families relate to the CatViz approach:size-encoding, space-�lling, table, glyph

and miscellaneous. The remaining category,projection, encompasses any visu-

alisation technique used as part of the quanti�cation approach. The projection

family is highly versatile, since converting categories to numbers fundamen-

tally changes what can be done with the visual representation. We note that

these families are not mutually exclusive: for instance,dimensional stacking

(Section 3.4.3.2) can be regarded as a hybrid table/space-�lling technique.

3.4 Overview of Technique Families

In this section, we describe the six families of techniques, breaking these down

into further sub-categories where appropriate. At least one visualisation tech-

nique is reviewed in each section, and references are given for related methods.

3.4.1 Size-Encoding Techniques

We de�ne size-encodingtechniques as those which usebars (line marks) with

the length channel, orwedges(area marks) with the angle or length channels.

Consequently, this family can be clearly divided into a bar family and a wedge

family. Most techniques in the bar family havelinear alignment, while those

in the wedge family areradial. Although equivalent from a mathematical

point of view, the wedge family is generally less e�ective than the bar family,

since angles are harder to compare than lengths (Munzner, 2014). TheTrellis

display frameworkBecker et al. (1996) can be applied to many size-encoding

techniques to encode additional categorical data via faceting.
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3.4.1.1 Bar Family

Dating back to the latter half of the 18th century (Playfair, 1786, as cited

in Friendly, 2006), the bar chart (or column chart) is a simple yet powerful

technique for encoding categorical data. As well as being easy to create and

interpret, bar charts are helpful for highlighting precise di�erences in category

counts. For nominal variables, the categories within a bar chart should gener-

ally be sorted by frequency (i.e., bar length); for ordinal variables, it may be

preferable to preserve the natural ordering of categories. While the classic bar

chart is limited to displaying a single categorical variable, numerous variations

exist, many of which enable additional variables to be encoded by leveraging

colour, texture and/or faceting. These extensions include:

� Stacked bar chartsand their variants (see Figure 3.3; Indratmo et al.,

2018; Streit and Gehlenborg, 2014):

{ Grouped bar charts (also called clustered bar charts, dodged bar

charts, multiple bar charts, and multi-series bar charts)

{ 100% stacked bar charts(also callednormalised bar charts)

{ Layered bar charts

{ Diverging stacked bar charts(also called abidirectional bar chart if

the coloured variable is binary)

{ Inverting stacked bar charts

{ Faceted bar charts

{ Relative multiples barcharts (rmb plots)

� Linked bar charts (Hummel, 1996), as implemented in tools likeMon-

drian (Theus, 2002) andHigh-D (Brodbeck and Girardin, 2019)

� Horizon bars (Lex et al., 2014)

� Du Bois wrapped bar charts(Karduni et al., 2020)

� Pareto charts (Wilkinson, 2006)

� Radial bar charts (Booshehrian et al., 2011)

� Circular bar charts (Skau and Kosara, 2016)

Taking one of the most popular examples from this list, the stacked bar chart

(Figure 3.3, top left) typically encodes the frequency of two categorical vari-

ables, rather than just one. The �rst variable determines the categories for

the bars along the x- or y-axis, as in a regular bar chart, while the second

variable is broken down into segments within each bar. These segments are

typically distinguished by colour and are consistently ordered across all bars.

Stacked bar charts show the marginal distribution of the �rst variable, and the

conditional distribution of the second variable given the �rst.



46

Figure 3.3: Six di�erent variations of stacked bar charts (Indratmo et al.,

2018).

Figure 3.4: `Multivariate' bar chart showing the joint frequency of all four

variables from the Titanic dataset. Colour redundantly encodes Fate (blue =

died, orange = survived). Created in Tableau.
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This means that reversing the roles of the variables would result in a di�erent

plot and potentially yield di�erent insights.

As with a regular bar chart, the scalability of a stacked bar chart ranges

from dozens to hundreds of categories for the axis variable, but is limited to

roughly a dozen categories for the second variable Munzner (2014). Comparing

both the total length and the bottom segment of each bar is straightforward

because they share a common baseline, but comparing other segments is more

challenging.

Bar charts can display more than two variables by `chaining' multiple vari-

ables along the same or di�erent axes, as shown in Figure 3.4. The bars in the

resulting visualisation show the joint frequency of each combination of cate-

gories involving all variables. Dozens to hundreds of bars can be shown, and

up to roughly eight variables. However, the more variables that are shown, the

less room there is to display the labels for each category. This kind of visu-

alisation imposes a hierarchy of variables (like mostspace-�lling techniques),

which means changing the order of variables can a�ect the patterns seen, even

though the values of the bars remain unchanged. Tooltips and drag-and-drop

reordering may help to make sense of patterns in the data.

3.4.1.2 Wedge Family

Members of the wedge family use area marks, rather than line marks, to show

frequency. Pie charts (Playfair, 1801) and their close cousins,donut charts

(Skau and Kosara, 2016), are useful for representing proportions or percent-

ages of a whole when there are 12 categories or fewer. They are e�ective for

comparing one category relative to the whole dataset, but not for comparing

the proportion of one category to another, except when the variation is ex-

treme, or there are only two categories. Other members of this family include:

� Nightingale rose chart(Nightingale, 1857), also known assector graphics,

Coxcomb chartsand polar area diagrams

� Wind roses Sanderson and Peacock (2020)

� Four-fold displays(Fienberg, 1975; Friendly, 1995))

Although aesthetically pleasing, perceptually, pie and donut charts are known

to be less precise than bar charts. Figure 3.5 provides an example of afaceted

pie chart, representing three of the four variables in the Titanic dataset. How-

ever, such charts should be used with caution. In his bookThe Visual Display

of Quantitative Information, Edward Tufte (1983, p. 178) remarked: \the only

thing worse than a pie chart is several of them, for then the viewer is asked to
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Figure 3.5: A faceted pie chart of the Titanic dataset: Class is shown on the

x-axis, Sex on the y-axis and Fate is mapped to colour (blue = died, orange

= survived). It is clear that many more men than women died in each class.

compare quantities located in spatial disarray both within and between pies".

Despite their limitations, pie and donut charts are pervasive and participants

in a user study expressed a subjective preference for them over bar charts

(Siirtola, 2014).

3.4.2 Space-Filling Techniques

As the name suggests, space-�lling techniques are arranged so that the lay-

out consumes all available space in the view. In the context of multivariate

categorical data, these techniques typically use area or containment marks to

show di�erent combinations of categories. Space-�lling techniques are geared

towards high information density, but the fact that they use all the available

space does not necessarily mean they do so e�ciently (Munzner, 2014, p. 175).

A variety of space-�lling techniques can be applied to multivariate categor-

ical data by creating a hierarchy of variables (Reza and Watson, 2019; Kosara,

2008). This is despite the fact that the data in question are not inherently

hierarchical (i.e., there are no sub-categories). The hierarchy is derived by

mapping each categorical variable to a di�erent level, with all categories of

the �rst variable at the top level, all categories of the second variable at the

second level, and so on. This results in a fully balanced tree whose nodes rep-

resent di�erent combinations of categories. Figure 3.6 shows an example for

the Titanic data, together with a correspondingtreemap (see Section 3.4.2.3).

The order of variables in the hierarchy is signi�cant as it a�ects the user's

ability to perceive structures. This ordering becomes even more crucial as the

number of variables increases. It is therefore important for the user to be able
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Figure 3.6: Left: Hierarchy derived from three of the four variables in the

Titanic dataset, splitting �rst by Class, then Sex, then Fate. Right: Treemap

using the same hierarchical structure, which shows values at the leaves of the

tree (the frequency of combinations of all three variables), as well as aggregates

at higher levels (Kosara, 2008).

to reorder, add or remove variables as desired (Kosara, 2008). Relevant factors

for determining an appropriate order may include the position of the response

variable, the perceived importance of other variables, and the distribution of

variable cardinalities. An e�ective ordering for one technique might not work

well for another. Colour also plays an important role, and is commonly used

to highlight the response variable.

3.4.2.1 ParSets Family

Several categorical visualisation techniques adaptparallel coordinatesfor nu-

meric data (Inselberg, 1985) by substituting data points with a frequency-

based representation.Parallel Sets (Kosara, 2010; Kosara et al., 2006), pic-

tured in Figure 3.7, is the most well-known technique among this family. Remi-

niscent of aSankey diagram(Schmidt, 2006), this technique arranges variables

along the y-axis in bands of equal width, which are then partitioned accord-

ing to category frequencies. Associations between subgroups are shown using

shaded parallelograms (or ribbons) that connect categories from adjacent di-

mensions. The widths of individual categories indicate marginal frequencies,

while the widths of parallelograms reect both joint frequencies (relative to

the width of the display) and conditional frequencies (relative to the width of

the previous subset). Numeric variables can be binned but not shown directly.
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Figure 3.7: A Parallel Sets visualisation of the Titanic dataset, showing all

four variables (Davies, 2012).

Two variations of Parallel Sets are possible:hierarchical and pairwise (see

Hofmann and Vendettuoli, 2013). In the hierarchical variation (described

above, and shown in Figure 3.7), the parallelograms are split according to

every preceding variable, resulting in increasingly complex, and less frequent,

subsets. In contrast, the pairwise variation displays two-dimensional subsets

relating to each pair of neighbouring variables. The hierarchical view is more

useful for visualising multivariate relationships but is inevitably more clut-

tered.

The main advantage of Parallel Sets is that it can handle roughly 10{15

variables in an interactive environment and 20-30 categories in total, which

exceeds the limits of most frequency-based techniques. In addition, the order

in which the hierarchy is derived is clearly readable|from top to bottom|

and categories and variables can be exibly reordered, facilitating detection of

complex patterns in the data. Parallel Sets can also display numeric variables

by binning them.

Key limitations of Parallel Sets include visual interference from line cross-

ings and poor visibility of small parallelograms representing infrequent com-

binations. These issues are exacerbated when handling large numbers of cat-

egories and variables. For example, the Mushroom dataset requires 22 layers

and 8123 combinations, which is untenable (Dennig et al., 2024). To alleviate

visual clutter, research has focused on measuring and improving the layouts of

Parallel Sets (Alsakran et al., 2014; Dennig et al., 2021; Zhang et al., 2019).

Other techniques in the ParSets family, all of which can display mixed data,

areHammock Plots(Schonlau, 2003, 2024),CPCP (Pilh•ofer and Unwin, 2013),
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GPCP (VanderPlas et al., 2023),Parallel Assemblies Plots(Cantu et al., 2023)

and SET-STAT-MAP (Wang et al., 2022). Hofmann and Vendettuoli (2013)

observed that Parallel Sets and Hammock Plots su�er from theline width

illusion and reverse line width illusion, respectively. They proposedCommon

Angle Plots to overcome these distortions, while Schonlau (2024) suggested a

correction to Hammock Plots by replacing the parallelograms with rectangles.

Finally, we note that chord diagrams(inspired by Krzywinski, 2009) can be

used to visualise relationships between two categorical variables (Humayoun

et al., 2018). Chord diagrams are related to techniques in the ParSets family

as they emphasise the ow of category subsets, but they are limited to showing

only two variables in the same plot.

3.4.2.2 Mosaic Family

Techniques in the mosaic family are largely area-proportional, with colour of-

ten being used to highlight particular variables or statistical information. The

technique after which this family is named, themosaic plot, was introduced

by Hartigan and Kleiner (1981) and further developed by Friendly (1999).

An example of a mosaic plot is given in Figure 3.8. In this technique, area-

proportional tiles are created by recursively subdividing the space along the

axes based on the categories of each variable. In addition to showing joint

frequencies through the size of the tiles, mosaic plots show the marginal pro-

portion of the �rst variable used for splitting, and the conditional proportions

for each subsequent variable based on the previous ones. A useful property

of mosaic plots is that the cells are aligned when variables are independent

Friendly (1999). Unfortunately, mosaic plots become di�cult to read when

representing more than three variables, or a large number of categories.

Figure 3.8: Mosaic plot of the Titanic dataset, illustrating the splitting

process for three variables: (a) �rst by Class, (b) then by Sex, (c) then by

Survived. Age is not shown. Inspired by Tominski and Schumann (2020).
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Residual-based shading of the tiles in a mosaic plot can visually indicate

the lack of �t of a speci�c log-linear model (Friendly, 1994) or the statistical

signi�cance of test results (Zeileis et al., 2007). Commonly, two shades for

both positive (blue) and negative (red) residuals are used. The shading usu-

ally either reects signi�cance at 90% or 99% con�dence levels, or employs

�xed cut-o�s at ± 2 and ± 4, corresponding toindividual signi�cance at alpha

levels of � = 0:05 and � = 0:001, respectively (Friendly, 1994). The use of

residuals works well for large tiles but not for smaller ones as it is di�cult to

make out the colours. Moreover, the di�erence of size and colour may lead to

misinterpretations of the data; for instance, if two tiles have the same colour

but are drastically di�erent sizes, a viewer may mistakenly believe the larger

one has a larger residual.

In addition to the traditional mosaic plot, the mosaic family comprises the

following chart types:

� Spine plots(Hummel, 1996, Figure 3.8a)

� Line mosaic plots(Huh, 2004)

� Marimekko charts (Miyamoto et al., 2022)

� Eikosograms(Cherry and Oldford, 2003)

� Double-decker plots(Hofmann et al., 2000; Hofmann, 2001)

� Sieve plotsor parquet diagrams(Riedwyl and Sch•upbach, 1994)

� Association plots(Cohen, 1980)

� Fluctuation diagrams (Hofmann et al., 2000)

� Equal bin size plots(Hofmann et al., 2000)

� Faceted mosaic plots(Meyer et al., 2008)

� Further variations arising from the Product Plots framework (Wickham

and Hofmann, 2011)

These charts have di�erent strengths and weaknesses. For example, uctuation

diagrams and equal bin size plots are useful for emphasising patterns related to

data sparsity, including empty combinations Hofmann et al. (2000). S•onning

and Sch•utzler (2023) suggest that double-decker plots may be preferable to

traditional mosaic plots when a dataset comprises three or more variables, as

this avoids comparisons of non-aligned tile lengths. In turn,rmb plots (Sec-

tion 3.4.1.1) are generally a better option than double-decker plots when both

the frequencies of combinations of explanatory variables vary considerably, and

the conditional relative frequencies of response categories, or the di�erence be-

tween them, is small (Pilh•ofer and Unwin, 2013).
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Some techniques within the mosaic family represent observed frequencies

less directly than traditional mosaic plots, either by emphasising expected

frequencies (e.g., sieve plots) or deviations from expected independence (e.g.,

association plots). Association plots and uctuation diagrams were classi�ed

within the mosaic family, rather than the size-encoding family, since both the

width and heights of the bars vary.

3.4.2.3 Implicit Tree Family

Implicit tree visualisations constitute another relevant type of space-�lling

technique. These visualisations represent hierarchies without explicitly show-

ing parent-child relationships, instead using positional encodings of nodes, such

as node overlap or containment (Schulz et al., 2010). The techniques that work

best for multivariate categorical data emphasise thesize of nodes within a vi-

sualisation, corresponding to combination frequencies, more than they do the

structure of the tree.

A prominent technique in the Implicit Tree family is the sunburst diagram

(Stasko and Zhang, 2000). This technique shows the proportion of di�erent

categories and combinations of categories via a series of concentric rings. Each

ring corresponds to a di�erent variable, with the angle of each slice being

proportional to the frequency of the category (�rst level) or combination of

categories (subsequent levels) that it represents. Figure 3.9 illustrates two

examples for the Titanic dataset. Outer levels are conditioned on inner levels,

e�ectively showing conditional relative frequencies. If too many variables are

Figure 3.9: Left: Sunburst diagram showing all four variables of the Titanic

dataset. Right: One of the variables (Survived) is removed from the sunburst

itself and instead emphasised using colour (Clark, 2006).
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shown, the slices invariably become thin and unreadable. However, zoomable

versions of sunburst diagrams can help to accommodate a larger number of

categories and variables.

Other implicit tree techniques that can be applied to multivariate categor-

ical data include:

� Categorical Treemaps(Johnson, 1993), includingCatTrees (Kolatch and

Weinstein, 2001)2

� Voronoi treemaps(Balzer and Deussen, 2005)

� Circular treemaps (Wang et al., 2006), also calledcircle packing, packed

circles and pebbles

� Icicle plots (Kruskal and Landwehr, 1983)

� Radial Icicle Trees (Jin et al., 2023)

� Hi-D Maps (Reza and Watson, 2019)

3.4.2.4 Miscellaneous Space-Filling Techniques

A handful of space-�lling techniques for categorical data do not fall neatly

into the above families. These includeKarnaugh-Veitch-Maps(KVMaps; May

et al., 2007; 2010),Nested Rings(NRV ; Vivacqua and Garcia, 2008), the

Attribute Map View (Liu et al., 2009) and concentric pie charts (Wickham

and Hofmann, 2011). On the surface, Nested Rings appear similar to sunburst

diagrams but they are not recursively subdivided; instead, they show marginal

(univariate) frequencies for each variable. This is also how the Attribute Map

View di�ers from a regular treemap.

3.4.3 Table Techniques

Techniques in the table family utilise visual encodings within each cell of a

table, such as colours and bars, instead of displaying only raw text. We di-

vide these techniques into three sub-categories:tabular, graphical contingency

tables and pairwise matrices. Tabular techniques and pairwise matrices are

generally well-suited to heterogeneous data, while graphical contingency ta-

bles are designed for purely categorical data.

3.4.3.1 Tabular Family

Tabular visualisations leverage the intuitiveness of a spreadsheet, with each

row (or column) representing a data item or aggregate, and each column

(or row) representing a variable. Prominent examples of tabular techniques

2Although devised independently, these are similar to mosaic plots.
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that accommodate multiple categorical variables includeTable Lens(Rao and

Card, 1994) andTaggle (Furmanova et al., 2020). Table Lens displays each

categorical variable as a `blip'|a horizontal coloured line aligned with the

category's name|while Taggle provides additional multi-form encodings, in-

cluding a `matrix' arrangement and `colour' square with an adjacent text label.

Both techniques support common spreadsheet operations, such as sorting and

�ltering, as well as overview and detail displays. Another notable technique

in this family is the Tableplot (Tennekes and de Jonge, 2013; Tennekes et al.,

2013). This technique requires a continuous variable for sorting but supports

several high-cardinality categorical variables, as shown in Figure 3.10.

Figure 3.10: Tableplot of census data showing seven categorical variables

(Tennekes and de Jonge, 2013). The data and legend are not the focus here; the

�gure is simply included to provide the general look and feel of this technique.

3.4.3.2 Graphical Contingency Tables

Graphical contingency tables provide a visual representation of ann-way ta-

ble. The arrangement of variables and categories within the table a�ects the

patterns that can be seen.

Notable examples of techniques in this family aredimensional stacking

(LeBlanc et al., 1990),colour-coded text tablesand balloon plots (Jain and

Warnes, 2006). Dimensional stacking produces a heatmap, like the one in Fig-

ure 3.11, by embedding grids within grids. The heatmap contains one cell for

each possible combination of categories, and is helpful for identifying clusters,

outliers and patterns in the data. Dimensional stacking can be implemented
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Figure 3.11: Dimensional stacking showing bacteria resistance against eight

antibiotics, labelled a1 to a8. Adapted from Tominski and Schumann (2020).

in spreadsheet software usingPivot tablesin conjunction with conditional for-

matting.

In terms of scalability, dimensional stacking should be limited to nine vari-

ables, each with no more than roughly �ve categories (Ho�man and Grinstein,

2001). Balloon plots are similar to dimensional stacking, but they display

coloured circles in each cell, which are sized according to frequency. The

colour of the circles can either redundantly encode this value or highlight the

categories of a particular variable of interest.

3.4.3.3 Pairwise Matrices

The �nal type of table technique that we identi�ed is pairwise matrices. These

techniques feature a plot for each pair of variables in the data, thereby display-

ing all possible bivariate relationships. Univariate summaries can optionally

be shown along the main diagonal. Examples that support purely categorical

data are the Heatmap Matrix (Rocha and da Silva, 2018, 2022) andMosaic

Matrix (Friendly, 1999), while theGPLOM (Im et al., 2013) andGeneralized

Pairs Plot (Emerson et al., 2013) are suitable for mixed data. The GPLOM

uses a heatmap matrix for pairs of categorical variables, whereas the GPP of-

fers a choice between a mosaic plot, uctuation diagram, or faceted bar chart.

The GPLOM provides the richest interaction out of these techniques.

A shared property of most pairwise matrices|apart from displays involving

mosaic plots|is that they are fully symmetrical. This means that only half
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of the matrix needs to be displayed. Nevertheless, it can be bene�cial to keep

the full display, so that panels relating to each variable can be identi�ed in a

straight line, with the user focusing on either rows or columns. The Heatmap

Matrix di�ers from the other techniques in that it allocates a �xed amount of

space per category, rather than per variable. This enhances readability when

a small number of variables have more than �ve categories. One limitation of

pairwise matrices is that they do not display multivariate relationships directly,

though this can be accomplished via brushing and linking across panels. In

all cases, reordering rows and columns can be helpful for identifying relevant

patterns.

3.4.4 Glyph Techniques

Glyphs and icons can also be used to represent categorical data, including pic-

torial, associative and geometric symbols (Robinson et al., 1984, p. 288). When

designing glyphs for categorical data, it is important to consider the number

of variables and internal categories to be represented, as well as suitable com-

binations of variables and encodings. Individual glyphs may be created for

individual items, or for each combination of categories. In the latter case, the

frequency of each combination can be mapped to the size of the glyph (e.g.,

Dennig et al., 2024). Incorporating a reference glyph can aid viewers in decod-

ing the mappings (Maguire et al., 2012). Additionally, sorting glyphs by one

or more variables can be bene�cial (Chung et al., 2015; Ancker et al., 2011).

Examples of glyph techniques includeStar plots (Coekin, 1969),Autoglyphs

(Beddow, 1990) andCherno� faces (Cherno�, 1973), but see Ward (2002) for a

detailed list. Cherno� faces involve mapping variables to facial features, such

as mouth size and face colour, and they support roughly a dozen variables.

They are well suited to low-cardinality categorical data where not many values

have to be discriminated. Disadvantages of Cherno� faces include that the

mappings can be unnatural, and may convey unintended emotional states.

De Soete and Do Corte (1985) found that only some facial features were clearly

perceptible to users. Consequently, they recommended using those features for

encoding the most important variables.

An advantage of glyphs over other techniques is that they enable designs

that leverage metaphors and semantic relations. Domain-speci�c encodings

promote `natural mappings' (Siirtola, 2005), which increases understanding of

glyphs and their memorisation (Maguire et al., 2012; Borgo et al., 2013). An

example of metaphorical glyphs, applied in the context of hearing loss context,

is shown in Figure 3.12 (Ramos et al., 2023).
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Figure 3.12: Metaphorical `emoji' glyph, where each glyph represents a per-

son (Ramos et al., 2023). Several categorical variables are encoded: hearing

loss in left and right ears (sunglasses or headphones), region (colour), ear test

appointment status (facial expression) and age (face colour).© 2023 IEEE.

Figure 3.13: Icon plot of the Titanic dataset where each full-sized item

represents 100 people (Wolf, 2021).
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When representing categorical data, glyphs are typically only feasible if

there is a relatively small number of categories per variable. Other, more

general disadvantages of glyphs relate to their size, the limited capacity of

visual channels and the cognitive demand they place on the viewer (Borgo

et al., 2013).

Alternatively, instead of using complex glyphs, simple icons can be organ-

ised within a grid display, typically just varying the use of colour and/or shape.

This approach is exempli�ed byfrequency grids(Micallef et al., 2012),Gath-

erplots (Park et al., 2023), andicon plots (Wolf, 2021). Figure 3.13 illustrates

an icon plot of the Titanic dataset, in which each full-sized icon represents 100

people. Such plots are relatively simple to interpret.

3.4.5 Miscellaneous Techniques

Several other frequency-based (CatViz) visualisation techniques for categorical

data do not �t into the above groups. These include but are not limited to:

� Cleveland dot plots(Cleveland, 1984) andlollipop charts

� Spreadplotsas implemented in ViSta (Valero-Mora et al., 2003)

� Granular Representation(Shiraishi et al., 2009)

� Kinetica (Rzeszotarski and Kittur, 2014)

� Cobweb diagrams(Upton, 2000)

� CatNetVis (Thane et al., 2023)

� Conditional Inference Trees(Hothorn et al., 2006)

� Multivariate bar charts with an explicit tree diagram (Kosara, 2007)

� ContingencyWheel(Alsallakh et al., 2011) andContingencyWheel++(Al-

sallakh et al., 2012)

� Worlds within worlds (Feiner and Beshers, 1990)

� Trilinear plots (Allen, 2002)

� Tetrahedrons (Fienberg and Gilbert, 1970)

� Various set and hypergraphrepresentations, where categories are repre-

sented as sets (e.g.,RectEuler; Paetzold et al., 2023) or hyperedges (e.g.,

PAOHVis ; Valdivia et al., 2019)

CatNetVis (Thane et al., 2023), shown in Figure 3.14, represents categories

as nodes in a force-directed network. Connected nodes are attracted to each

other, and non-connected nodes are repelled. An advantage of this layout is

that no order needs to be speci�ed for either the categories or variables. The

size of each node represents its frequency, while its colour is determined by

the mode response category. Node labels show the name of the corresponding
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