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ABSTRACT 

The problem of steady state, incompressible magnetic reconnection in three dimensions is addressed. It 
is shown that exact reconnection solutions can be constructed by superposing nonlinear disturbances 
onto three-dimensional magnetic X-points. There are two distinct families of reconnection solutions. 
These can be understood in terms of the eigenstructure of the null, that is, in terms of the " spine" curves 
and "fan" surfaces that define the separatrices of the field. One family of solutions is driven by dis­
turbances in the fan and involves quasi-cylindrical current structures aligned to the axis of the spine; the 
other is associated with advection across the spine and a global current sheet aligned to the fan. 
Although both spine and fan solutions reduce to the two-dimensional analytic, shear-flow solutions of 
Craig & Henton, the three-dimensional spine current formulation allows far richer reconnective current 
structures. 

Subject heading s: MHD �plasmas� Sun: activity 

1. INTRODUCTION 

It is well known that changes in magnetic field topology 
can only be effected by magnetic reconnection. Yet, despite 
intense theoretical investigation, the mechanisms under­
lying magnetic reconnection remain enigmatic. A recurring 
difficulty is achieving a significant reconnection speed given 
the low resistivities of astrophysical plasmas (e.g., Forbes & 
Priest 1987; Biskamp 1994). More fundamentally, while 
two-dimensional planar reconnection appears to be well 
understood, at least physically, the three-dimensional 
picture remains cloudy. The problem is compounded by the 
absence of exact two- and three-dimensional global recon­
nection solutions. 

Historically, X-type neutral points have provided the raw 
material of magnetic reconnection theory (e.g., Petschek 
1964). The conventional picture of planar reconnection 
involves the advection of material across identical 
separatrix planes, the field lines being cut and rejoined at 
the center of the X-point. Analytic models of this process 
are provided by linear X-point theory (Craig & McCly­
mont 1991, 1993; Hassam 1992). It is suspected, however, 
that more complicated flow topologies are required in the 
presence of three-dimensional neutral points (e.g., Rosenau 
1979). Certainly, the eigenstructure of magnetic nulls 
changes significantly in the transition from even to odd 
dimensionalities (e.g., Lau & Finn 1990). One separatrix 
plane of the two-dimensional X -point is lost in the tran­
sition to three-dimensions. What remains is a single 
separatrix plane plus a unique field line which threads the 
neutral point. Following Priest & Titov (1995), we call these 
the "fan" and "spine curve," respectively. The question is: 
how can spine and fan structures be extrapolated from two­
dimensional models that maintain strict parity between 
each separatrix surface? 

The purpose of this paper is to demonstrate that exact 
families of three-dimensional magnetic reconnection solu­
tions can be constructed analytically by extending the 
planar analysis of Craig & Henton (1995). We note that 
Craig & Henton derive an exact, nonlinear solution for 
incompressible reconnection by breaking the conventional 
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planar symmetries. We show that an extension into three 
dimensions involves two classes of solutions: in one class, 
nonlinear distortions of the fan lead to reconnection by 
quasi-cylindrical current structures along the spine; in the 
other, advection across the spine leads to global current 
sheets aligned to the fan. 

The paper is organized as follows. In§ 2 we review briefly 
the geometry of X-type neutral points in two and three 
dimensions. Section 3 describes the reconnection equations 
and outlines our method of solution. Our central results 
concerning spine and fan current reconnection are derived 
in § 4. We demonstrate, in particular, that analytic planar 
solutions (Craig & Henton 1995) can be derived by invok­
ing either the fan or spine formulations. Our conclusions 
are presented in § 5. 

2. THE THREE-DIMENSIONAL RECONNECTION TOPOLOGY 

2.1. Geometry of Null Points 
We begin by considering the field line topology close to a 

null point of the field B(x) . We expand the magnetic field in 
the neighborhood of the point x = x0 (say) according to 

B;(x0 + dx) = Blx0) + Bi)x0)dxi, (2.1) 

where B;,i is an element of the Jacobian matrix oB/ox. 
The constraint V · B = 0 then implies the trace condition 
B;,; = 0. Obviously, the current density at x0 , namely, 

(2.2) 

vanishes identically only in the case of symmetric Bk,i· 
Suppose now that x0 locates a null point of the field. 

Nulls can be classified according to the geometry of the field 
lines threading the neutral point; in other words, in terms of 
separatrices isolating topologically distinct regions of mag­
netic flux. The differential field line equations y dx = B give 

(B;,i - yl;)dxi = 0 ,  (2.3) 

where I is the identity matrix, and so the eigenvectors dxi 
determine field line directions in the vicinity of the null. The 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 

http://adsabs.harvard.edu/abs/1996ApJ...462..969C


1
9
9
6
A
p
J
.
.
.
4
6
2
.
.
9
6
9
C 970 CRAIG & FABLING Vol. 462 

eigensystem is generally complex, but the eigenvalues satisfy 

Yi + Y2 + Y3 = 0 , (2.4) 
by virtue of the trace condition B;,; = 0. Since B;,i is real, 
complex eigenvalues can only occur in conjugate pairs. 

2.2. X -Type Null Points 
Detailed discussions of the nature of magnetic nulls have 

already been given in the literature (e.g., Lau & Finn 1990) 
and we present only a brief discussion here. In two­
dimensional geometries, the nulls are either X-type or 
0-type depending on whether the eigenvalues are real or 
complex. The prototype for planar reconnection is the 
current-free X-point whose eigensystem is real and corre­
sponds to separatrix planes inclined at ± 45° to the x-axis. 
In contrast, the 0-point has a complex eigenstructure: there 
are no separatrix lines, only circular field lines surrounding 
the null. 

In three dimensions, there are natural extensions of 
planar X- and 0-point structures. Of central interest is the 
X-point topology. The eigenstructure is real, and eigen­
values of like sign possess eigenvectors which form a plane 
through the neutral point. This plane, the separatrix fan, 
contains all field lines emanating radially from the null. The 
remaining eigenvector defines a single line, the spine curve, 
which threads the null perpendicular to the surface of the 
fan. 

What are the physical implications of these results? Cer­
tainly, in the absence of resistivity, it is known that pertur­
bations of the X -point can lead to current singularities 
along the separatrices (Lau & Finn 1990; Priest & Titov 
1995). Such behavior is often taken as a signature of three­
dimensional reconnection, though, strictly speaking, mag­
netic annihilation may be sufficient to resolve the 
singularity (e.g., Biskamp 1994). In what follows, we show 
that the underlying forms of three-dimensional magnetic 
reconnection are implied by the eigensystem of the X-point. 

2.3. Two- and Three-dimensional X -Point Reconnection 
In planar reconnection modeling, it is natural to impose 

symmetries which reflect the underlying X-point topology. 
Under these "traditional" symmetries, only one quadrant 
of the reconnection region need be modeled (e.g., Forbes & 
Priest 1987). 

But we have already seen that the three-dimensional 
X-point topology involves only a single separatrix plane. It 
follows that, in the transition from two to three dimensions, 
one separatrix surface must collapse into a spine curve, in 
much the same way as a planar null line degenerates into a 
three-dimensional null point. It is hard to see how this can 
occur under two-dimensional reconnection symmetries 
which impose parity between each separatrix surface. 

Notably, in the only exact two-dimensional reconnection 
solution to date, there is a breakdown of the traditional 
reconnection symmetries (Craig & Henton 1995). The 
model involves the flow of material across one separatrix 
plane only: the other is contiguous with a global current 
sheet but has no flow across it. This solution generalizes 
naturally into three dimensions. 

3. STEADY STATE RECONNECTION EQUATIONS 

3.1. Momentum and Induction Equations 
We consider the steady state momentum and induction 

equations for an incompressible inviscid plasma. These are 

written conveniently in the nondimensional form 

(v • V)w - (a, • V)v = (B • V)/ - (/ • V)B , 

(v • V)B - (B • V)v = r,V2 B , 
where the magnetic and velocity fields satisfy 

(3.1) 

(3.2) 

V • B = 0 , V • v = 0 , (3.3) 
and the current density and fluid vorticity are given by 

I = V x B , a, = V x v . (3.4) 
The remarkable feature of this system is the symmetry in 

the v and B fields. This is broken only by the resistive term 
which provides an energy sink for the system. The fact that 
the dimensionless resistivity r, is typically very small, of 
order 10- 10, implies that resistive effects can be significant 
only in localized regions of high current density. However, 
since resistive dissipation is a key ingredient of magnetic 
reconnection, it appears that a collapse to small length 
scales must occur if rapid changes in the global field topol­
ogy are to be achieved. 

3.2. Analytic Forms for Spine and Fan Reconnection 
The reconnection problem is nonlinear, but solutions can 

be constructed by exploiting the symmetry in the B and v 
fields. Following Craig & Henton (1995), we consider solu­
tions constructed by superposing some nonlinear "dis­
placement field" onto background potential field solutions. 

The simplest potential field of interest has the stagnation 
point form 

P(x) = a[ -x.i + KYY + (1 - K)zi] , (3.5) 
where a and K govern the strength and isotropy of the field. 
We can assign a special role to the x-axis by taking 
0 � K � 1. If P is identified as a velocity field, then all planes 
I x I > 0 correspond to material inflow for positive a. Inter­
preted as a magnetic field, P can be identified as a three­
dimensional X-point. The x-axis defines a spine curve into 
the null (a > 0), and the fan comprises all outgoing field 
lines in the plane x = 0. The eigenvalues Yi form the set 
a[ -1, K, (1 - K)], and the special case K = f corresponds to 
rotational symmetry about the x-axis. Either y or z can be 
made ignorable by the choice K = 0 or K = 1, respectively. 

Of course, potential field solutions are of little interest in 
problems of magnetic reconnection. To construct more 
general solutions, we consider field superpositions of the 
generic form P(x) + Q(x), where 

Q(x) = X(y, z).i + Y(x, z)y + Z(x, y)i . (3.6) 
Although Q(x) has no directional asymmetry, an inherent 
"grain" has been imposed on the problem by the represen­
tation of P. Specifically, since x is a nonignorable coordi­
nate, there is a unique one-variable form for Q, namely, 

Q(x) = Y(x)y + Z(x)i . (3.7) 
We know from Craig & Henton (1995) that of all the poten­
tial fields, equation (3.5) is the only background field that 
admits superpositions of the form P + Q(x). The analysis of 
Craig et al. (1995) shows that equation (3.7) leads to recon­
nection by currents in the fan surface x = 0. 

There is, however, a two-variable analog to equation 
(3.7), namely, 

Q(y, z) = X(y, z).i . (3.8) 
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As shown below, this form leads to reconnection by cur­rents along the spine. Finally, we remark that more general disturbances­formed, say, by the superposition of equations (3.7) and (3.8}-are forbidden by the nonlinearity of the reconnection system. 

4. STEADY STATE RECONNECTION SOLUTIONS 

4.1. Introduction First we discuss spine reconnection using the displace­ment field of equation (3.8). Both Cartesian and cylindrical forms of the spine reconnection equations are employed (in §§ 4.2 and 4.3, respectively). Fan reconnection solutions are discussed in § 4.4. In § 4.5, we illustrate how two­dimensional reconnection models can be derived using either the fan or spine formulations. The features common to all these reconnection solutions are summarized in§ 4.6. 
4.2. Solution for Spine Current Reconnection 

Suppose equation (3.8) is interpreted as a velocity field­say v = v(y, z).i. Then flow is imposed uniformly on all planes of constant x. There are disturbances in the fan, but the spine remains undistorted. The solution is obtained by substituting v = P + q(y, z) and B = ;._p + Q(y, z) into the momentum and induction equations. We obtain 
v = P + )..X(y, z).i, B = ;._p + X(y, z).i , (4.1) 

where X satisfies 
ex(l - )..2)[X + KyX y + (1 - K)ZX zJ = r,V2X .  (4.2) 

Equation (4.2) is the basic equation for spine reconnection. In what follows, we shall simplify the discussion by assuming that the sign of ex(l - )..2) is determined by ex. This is equivalent to restricting the curvature of the field lines according to I ;._ I < 1. It is readily seen that singularities develop in the absence of resistive effects. Suppose, for instance, that X = X 0(y) on the line z = 1 (say). Then, by the method of characteristics, we obtain a solution 
X(y, z) = z l /(K - l)Xo(yzK/(K-1))' 'I= 0' (4.3) 

which is clearly unbounded on z = 0. Obviously resistive diffusion is required to resolve the singularity. It is easy to verify that well-behaved particular solutions can be derived by assuming either multiplicative or additive separability, that is, X = f(y)g(z) or 
X = f(y) + g(z). Although general solutions can be con­structed by superposition, we find it more instructive to consider cylindrical mode solutions for the case of axisym­metric background fields. 

4.3. Cylindrical Spine Current Reconnection We assume " = ! and employ cylindrical coordinates (r, 
0) in the planes x = const. Then P takes the form 

P<.x, r) = ex( - xx + !rr) , (4.4 ) 
and equation (4.2) reduces to 

ex(l - ).. 2XX + !r X,) = r,V2 X . (4.5) 

The solution for vanishing r, is seen to be 
A(O) X(r, 0) = -2 , r, = 0 , r (4.6) 

which confirms that resistive diffusion is required to resolve the singularity along the spine. We now exploit the azimuthal symmetry by takmg 
X(r, 0) = f(r)eimlJ . (4.7) 

Equation (4.5) reduces to 
ex(l _ )..2)V + � rf') = ,,V,, +f- :r). (4.8) 

and it follows that the solution for small r has the form 
f(r) = fm rm + O(rm + 2). (4.9) 

Since the current density is given by 
J(r, O) = [im !�) r - f'(r)A }imlJ , (4.10) 

there can only be finite current at the origin if m = 1. It follows that only the m = 1 mode corresponds to topologi­cal reconnection. All other modes are associated with pure ohmic dissipation. Of course, the current density must also be bounde� at larger. Dimensional considerations imply that the diffusion region is limited to a thin cylinder of radius r ,..., r,112 sur­rounding the spine. Outside this region, we expect that the field should fall off as r-2 , in accordance with equation (4.6). In fact, all modes except m = 0 conform to this behavior. A discussion of the spine reconnection equation is given in the Appendix, where it is shown that closed form solu­tions can be derived for all even modes. In addition, we point out that all modes m > 0 can be approximated using boundary layer expansions for the diffusion region. The exceptional m = 0 solution is given by 
( µ2r2) 2 ex(l - ;._ 2) f(r) = fo exp - 2 ' µ = - 217 ' m = 0 . 

(4.11) 
The field is finite at the origin but falls off exponentially with distance provided that ex < 0, corresponding to inflow in the fan but outflow along the spine. This mode is unique in that the neutral point is displaced along the spine, resulting in flow through the null of the field. It is also the only mode that allows a net displacement (averaged over 0) of the fan. Although the inner field decays over the r,112 

length scale, the violation of equation (4.6) suggests that diffusion is important globally, and not just restricted to a small boundary layer surrounding the spine. Figure 1 illus­trates the magnetic field structure for the m = 0 solution. Consider now the reconnective m = 1 solution. The field vanishes at the origin, in common with all other modes 
m > 1, but the current density is maximum along the spine. Figure 2a shows how the radial structure of the field can be approximated by matching the outer field solution (4.6) to an inner expansion of the diffusion region (as described in the Appendix). The current density, shown in Figure 2b, is localized over the length scale r ,..., r, 1

'2 but falls off rapidly, as r- 3, with increasing radius. Since the amplitude of the field builds up as ,,- 1 (assuming fixed conditions on r = 1, 
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l.o 
F10. !.-Distortion of the equilibrium fan surface (x = 0) by the pertur­

bation field X. For m = 0, the displacement field peaks on the spine axis, 
and so the null of the field is displaced from the origin. Parameters are 
IX= -2,l = 0.9,and 'I= 0.01. 
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say), the current density increases as ,,- 3/2• This guarantees fast reconnection (see § 4.6). Close to the spine axis, we note that 
J(r, (}) = J0(sin (Ji- cos IJ6) , m = 1 ,  (4.12) 

that is, I= JO z (to within an arbitrary phase). Figure 2c shows how the current density resembles two counter­rotating tubes aligned to the spine. Although similar current structures are present for m > 1 (there are m pairs of counterrotating tubes), the current density on the spine always vanishes for m -:!- 1. The field line structure of the reconnective mode is shown in Figure 3. Finally, in Figure 4, we show surfaces of the displacement field X(r, 0) for the cases m = 0, 1, 2, 3. Apart from m = 0, all displacement fields build up rapidly across the inner diffu­sive layer r � 11 1 '2• Outside this layer, all fields (m � 1) decay at the asymptotic rate r-2• Since the field line equations are given by 
dx dr (4.13) (1/2)cxlr ' -cxlx + X(r, 0) 

m=1 

f' 

0.0 0.2 0.4 0.6 0.8 1.0 

Fm. 2b 

-1.0u_������������������--"-' 

-1.0 -0.5 0.0 

y 
Fm. 2c 

0.5 1.0 

Fm. 2.-{a) Plot of the displacement field amplitudef(r) form= 1 spine reconnection. The inner solution/1 determined by an eight-term series expansion 
intersects the outer solution/

0 
= A/r2

• The exact solution is visually indistinguishable from the approximation obtained by matchingf,(r) tof
0
(r). Solution 

parameters are IX = -2, l = 0.9, and 'I = 0.001. (b) The buildup in current density as 'I is reduced for them = 1 mode. The factor of 8 increase is a reflection of 
the steepening field gradientf'(r) (solid line). By contrast, the field buildup is relatively weak (dashed line). Solution parameters are IX= -2, l = 0.9, and 
'I= 0.004, 0.002, 0.001. (c) Vector plot of the current density form= 1 spine reconnection. The current density falls off rapidly with increasing distance from 
the spine axis and resembles two counterrotating tubes aligned to the spine. Parameters are the same as in Fig. 1. 
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'O ·S 

'O 
·S 

/.o 
FIG. 3.-Shearing of the fan surface in the reconnective m = 1 mode. 

Field lines are reconnected as they advect across the fan surface. Param­
eters are the same as in Fig. 1. 

we note that dx = 0 corresponds to a turning point of a given field line. A particular value of the turning point, x = xP (say), defines a locus of points for which X(r, 0) = a.A.XP. T�us, X(r, 0) provides a measure of the field line penetration through the fan. 
4.4. Fan Current Reconnection Now we consider the displacement field of equation (3.7). Interpreted as a magnetic field, this form corresponds to straight field lines whose intensity and orientation vary with x. Accordingly, it is the spine curve of P, rather than the fan, which is distorted by the displacement field Q(x) . The result is reconnection driven by currents in the fan. 

x 

The solution is given by 
v = P + JQ(x) , B = JP + Q(x) , (4.14) 

where Q = Y(x)y + Z(x)z is subject to 
a(l - J2)(KY + xY') + nY" = 0 ,  

a(l - J2)[(1 - K)Z + xZ'] + nZ" = 0 .  
(4.15) 
(4.16) 

A discussion of this solution has already been given by Craig et al. (1995), and we shall summarize only the salient features. The outer field solutions, Y,.., x-", Z,.., x"-1, are valid outside the diffusion layer Ix I > 0(17 112). The inner solution is dominated by a global current sheet aligned to the fan surface x = 0 across which there is no flow. Recon­nection occurs when fluid particles are advected across the spine curve. Close to the neutral point, the spine has the linear form y = -a1 x/(1 + K), z = -a2 x/(2 - K), but for large x the spine is contiguous with the x-axis. The case ;. = O is degenerate (it corresponds to the stagnation flow, annihilation model of Sonnerup & Priest 1975), but, more generally, shear flows develop allowing curved field lines to reconnect across the neutral point. Figure 5 illustrates the separatrix field lines for various values of "· The solution for " = ! has radial field lines in the fan, but curvature develops as " is reduced. In the limit 
"-+ 0, the solution is near-planar, but separatrix field lines are still "channeled" through the null. 

4.5. Planar Reconnection Solutions We can obtain planar reconnection solutions from both spine and fan current formulations. Consider first the spine formulation of equation (4.2). On taking K = 1 and assuming that z is ignorable, we obtain 

x 

E + a(l - J2)X = 17X', X = X(y) , (4.17) 

-- ':,,,.__-::;;;;:;;---.:.C-

z ------
y y 

o-• o.• 

x x 

z 
-- --.,...___--= 
------

y 
z 

-- ...,,__ __ -= ------

y 
FIG. 4.-Surfaces of the displacement field for the m = 0, 1, 2, 3 modes. Parameters are the same as in Fig. 1. 
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K= 0 . 2  K= 0 . 3 

y y 

z z 

K= 0 . 4  K = 0 . 5  

y y 

z z 

FIG. 5.-Separatrix field lines for fan-current reconnection in the cases 
K = 0.2, 0.3, 0.4, 0.5. Solution parameters are r, = 0.05, o,; = 2, 2 = 0.9, and 
E = 0.1. 

where E is a constant of integration. The solution can be expressed in terms of the Dawson integral, via 
Q(y) = !!._ daw (µy)i , daw (s) = r· exp (t2 - s2)dt , 

11µ Jo 
(4.18) 

where µ2 = - (oc/211)(1 - .A.2). This is just the planar recon­nection solution of Craig & Henton (1995) with outflow along the x-axis (since we must take oc < 0). Reconnection takes place when fluid is advected across a separatrix "flow" plane which intersects the current plane at the angle 2oc)..11/E. The width of the current layer is governed by the behavior of daw (µy). The disturbance field Q(y) piles up at the edge of the diffusion layer y "' 0(11 1 12) but diminishes rapidly, as 1/(2µy), for larger y. The fact that E can be chosen independently of 11 without upsetting the external field conditions at large y qualifies the reconnection solu­tion as "fast" (Craig & Henton 1995). However, it seems likely that the reconnection rate must ultimately be limited by external factors, for instance, the magnitude of magneto­convective forces driving the merging (see§ 4.6). Slightly more general planar models can be constructed using the fan current formulation of§ 4.4. Choosing z as the ignorable coordinate (i.e., K = 1) yields the explicit form 
Q(x) = � daw (µx)y + [ {: Z'(O) erf (µx) + Z(O)} , 

(4. 19) 

where µ2 = (oc/211)(1 - ).,2) and we take oc > 0. Apart from the reversed velocity field, this solution is physically identi­cal to that of equation (4.18) in the case Z(O) = Z'(O) = 0. Obviously, by allowing Z(O) and Z'(O) to be nonzero both 

uniform and highly sheared z-components can be super­posed onto the intrinsic planar solution. In contrast to the Dawson function behavior, the error function solution is not associated with flux pileup at the onset of the current layer. In the case I Z(O) I > 0, planar reconnection occurs in the absence of a null point in the field. Finally, we note that the planar solutions described above can be generalized slightly by superposing an exter­nal shear flow onto the solution (Craig & Henton 1995). Such external flows are forbidden in the fully three­dimensional solutions (Craig et al. 1995). 
4.6. Discussion It is clear that the previous reconnection solutions have the generic form 

v = P + .A.Q , B = ).,P + Q , 
with )., nonzero. For spine reconnection, the vector field Q has a two-variable form Q = X(y, z)i aligned to the direc­tion of the spine. Fan reconnection, however, is defined by the one-variable form Q = Y(x)y + Z(x)z, whose direction is perpendicular to the x-axis. The plasma pressure associated with spine reconnection is given by 

p(x, y, z) = Po - !(P2 + X2) + DC.A.XX , (4.20) 

where P is given by equation (3.5). For fan reconnection, we have that 
p(x, y, z) = Po - !(P2 + Y2 + Z2) - oc.A.[Ky Y + (1 - K)zZ] . 

(4.21) 

The fact that all solutions maintain fast dissipation by piling up flux at the onset of the diffusion region places stringent requirements on the plasma pressure. If we exclude the exceptional behavior of the m = 0 spine mode, then all fields build up according to QM "' 11 - 11, where ! :$; p :$; 1. Clearly, to maintain positive pressures, Po must increase as 
Qit "' 11 - 2/J, For example, the spine solutions scale as QM "' 11 -1 for 
m ::2:: 1. The weakest buildup is associated with K = ! fan current reconnection. The pressure buildup is relatively modest, Po "' 11 - 112

, but a fast ohmic dissipation rate W,, "' 11J2 �x "' 11° is still maintained by virtue of the scalings J "' 11- 314, �x "' 11 1 12• More generally, the ohmic dissipation rate is superfast ; that is, W,, increases with reductions in the plasma resistivity ! On physical grounds, however, the flux pileup must reflect the magnitude of external forces driving the recon­nection. For instance, if footpoint motions drive the merging, then QM may be identified with the magnitude of fields at the base of the solar atmosphere. Either way, since the magnetoconvention forces powering the merging cannot increase indefinitely, there must be a physical limit to the flux pileup that can be achieved. To what extent this limits the reconnection speed is unclear, but obviously arbi­trarily fast merging in the limit of small 11 is not permitted. 
5. CONCLUSIONS 

We have constructed exact solutions for steady state, incompressible magnetic reconnection in three dimensions. All solutions can be naturally interpreted in terms of the separatrix structure of the field, as defined by the spine and fan eigenstructure close to the null point. In particular, we 
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have shown that motions across the plane of the fan lead to quasi-cylindrical current structures aligned to the spine, in other words, to spine current reconnection. By the same token, advection across the spine is associated with a global current sheet aligned to the fan. Both spine and fan formulations naturally reproduce the analytic, two-dimensional, shear flow solutions of Craig & Henton (1995). A key feature of the two-dimensional solu­tion is a breakdown of the strict X -point symmetry tradi­tionally associated with planar reconnection models. Only one separatrix plane has flow across it ;  the other is aligned to a global current sheet (of width 17 112) across which there is no flow. Fast reconnection is maintained by the pileup of flux at the onset of the sheet. Conversely, the morphology of the three-dimensional solution can be anticipated from the planar analysis. Whether spine or fan reconnection is achieved depends upon which of the two-dimensional separatrix planes col­lapses into the spine. This is governed, in the present analysis, by the form of the nonlinear disturbance field Q. For instance, in spine reconnection, the current plane col­lapses but the advection plane is preserved as the fan. What 

remains are tubes of current aligned to the spine axis, and it is the distribution of current over the spine that determines whether reconnection occurs. Thus, in the axisymmetric case, it is only the m = 1 azimuthal mode that allows recon­nection, all other modes having vanishing currents at the neutral point. By contrast, a much simpler current structure is associated with fan reconnection, namely, a one­dimensional current sheet overlying the neutral point. In summary, for isolated X-points we have argued that spine and fan reconnection provide the archetypal forms for steady state magnetic merging in three dimensions. Of course, in more general circumstances-for example, in dynamic compressible plasmas-we would not expect "pure" spine or fan reconnection to occur. In such cases, it seems likely that hybrid forms of reconnection may evolve in which localized currents are distributed over all the separatrices of the field. 
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APPENDIX 
THE CYLINDRICAL SPINE EQUATION 

Al .  BOUNDARY LAYER ANALYSIS 

Suppose we consider equation (4.8) on the assumption that the resistive term 
11(!" + � - ;: f) = 0 

determines an inner solution, valid for small r. Solutions which remain finite at the origin are given by 
fi(r) =rm . 

The outer solutionf0(r) = A/r2 (eq. [ 4.6] ) is obtained by solving 
f + !rf' = 0 .  

(Al ) 

(A2) 
(A3) 

This is just the spine equation in the case 17 = 0. The inner solution (A2) implies that equation (A3) has a contribution of order rm as r --+  0. The fact that equation (A3) maintains a finite contribution for m = 0 implies that the inner and outer approximations break down for this mode. 
A2. SERIES SOLUTIONS 

If we write the spine equation (4.8) in the form 
where 

and assume the series expansion 

x2f" + (x + ! x3)f' + (x2 
- m2)f = 0 , 

[ J - 1/2 
f = f(x) , x = a.()/- l ) r , 

00 f(x) = x• I a1 x
1 , 

l = O  

we obtain the two-term recurrence relation 
1 + (1/2)(v + l) a1 + 2 = a, m2 - (v + l + 2)2' V =  ± m , 

(A4) 

(AS) 

(A6) 

where a0 = 1, a 1 = 0. In the case v = -m, the series terminates for even m. Given these particular integrals, p(x) say, we can 
© American Astronomical Society • Provided by the NASA Astrophysics Data System 

http://adsabs.harvard.edu/abs/1996ApJ...462..969C


1
9
9
6
A
p
J
.
.
.
4
6
2
.
.
9
6
9
C 976 

deduce general solutions, for example, 
1 

p(x) = 2' x 

CRAIG & FABLING 

f(x) = � [a + b(x2 + 4)e-"'2

'
4] 

x 
m = 2 .  (A7) 

The unknown coefficients must be chosen to ensure the good behavior of the solution close to the origin (i.e., b = -a/4). Similarly, 
1 1 p(x) = x4 - 12x2 ' 

1 f(x) = 4 [a(x2 
- 12) + b(x4 + 16x2 + 96)e-"'2

'4] , 
x 

with b = a/8. Obviously, we can obtain general solutions of this form for all even m .  
A3. THE RECONNECTION SOLUTION 

m= 4 , (AS) 

The case of most interest physically is m = 1. This is the only mode which allows finite current at the neutral point, and hence topological reconnection. Although it is not possible to obtain closed form solutions for odd m, we can use the series expansion (A5) as an inner approximation to match the outer solution/0(r) = A/r2 • The result of matching the outer solution to an eight-term inner expansion is shown in Figure 2a (see § 4.3). Finally, we mention the scaling of the reconnection rate with resistivity. If we normalize the outer field so that/0(1) = 1, then the inner solution/1(r) = ar + O(r3) must achieve the amplitude 1/r2 when r2 
� r,. Thus, a must scale as r,- 312 to maintain a fixed field amplitude on the outer boundary. Accordingly, the current density at the neutral point must build up as r, - 312• This implies that both the ohmic dissipation rate and the flux annihilation rate achieve the superfast scaling r,- 1 and r,-1 12• 
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