
 
 
 

http://waikato.researchgateway.ac.nz/ 
 
 

Research Commons at the University of Waikato 
 
Copyright Statement: 

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). 

The thesis may be consulted by you, provided you comply with the provisions of the Act 

and the following conditions of use:  

 Any use you make of these documents or images must be for research or private 

study purposes only, and you may not make them available to any other person.  

 Authors control the copyright of their thesis. You will recognise the author’s right to 

be identified as the author of the thesis, and due acknowledgement will be made to 

the author where appropriate.  

 You will obtain the author’s permission before publishing any material from the 
thesis.  

 

http://waikato.researchgateway.ac.nz/


 
 
 
 
 
 
 

Selection of Components in 

Compositional Verification of 

Safety Properties 

 

Jinjian Shi 

 
 
 
 
 
 
 
 
 
 

This thesis is submitted in partial fulfillment of the requirements for the 

Degree of Master of Science at the University of Waikato. 

 

 

July 2009 

© 2009 Jinjian Shi



 

 

Abstract 

 

 

 

This report presents a two-step components selection method to compose the 

components for compositional verification. This method employs different 

methods for the selection of components to be composed during compositional 

verification. Also, this report presents some automata transformation strategies to 

improve the efficiency of composing and projection. This enhanced compositional 

verification method is applied to a set of large and complex realistic industrial 

examples to evaluate and compare the performance of different methods for 

components selection. The example profisafe_i6 [MM03] [MM02] [PN02], which 

was never verified for the language inclusion check before, is verified first by this 

enhanced compositional verification method.



i 
 

 

Contents 
 

 

Chapter 1 Introduction .........................................................................................1 

Chapter 2 Preliminaries........................................................................................5 

2.1 Automata Theory....................................................................................5 

2.1.1 Automaton.......................................................................................5 

2.1.2 Event ...............................................................................................6 

2.1.3 Transition ........................................................................................7 

2.1.4 Automata Type ................................................................................8 

2.2 Synchronous Product..............................................................................8 

2.3 Safety Property.....................................................................................10 

2.3.1 Controllability ...............................................................................10 

2.3.2 Language Inclusion........................................................................12 

2.3.3 Counterexample.............................................................................13 

2.4 Projection .............................................................................................13 

2.5 Model Checker .....................................................................................14 

2.5.1 Native Model Checker ...................................................................14 

2.5.2 BDD Model Checker .....................................................................15 

2.5.3 Modular Model Checker ................................................................15 

2.6 Examples for Evaluation.......................................................................15 

2.7 Implementation ....................................................................................17 



ii 
 

Chapter 3 Enhanced Compositional Verification................................................18 

3.1 Introduction..........................................................................................18 

3.2 Algorithm.............................................................................................21 

3.3 Counterexample Extension for Projection.............................................24 

Chapter 4 Automata Transformation ..................................................................27 

4.1 Automata Conversion ..............................................................................28 

4.1.1 Introduction ......................................................................................28 

4.1.2 Automata Conversion for Controllability Check................................29 

4.1.2.1 Specification Automata Conversion............................................29 

4.1.2.2 Plant Automata Conversion ........................................................31 

4.1.2.3 One-state specification creation ..................................................33 

4.1.2.4 Evaluation ..................................................................................34 

4.1.3 Automata Conversion for Language Inclusion Check........................39 

4.1.3.1 Property Automata Conversion...................................................40 

4.1.3.2 Non-property Automata Conversion ...........................................41 

4.1.3.3 One-state property creation.........................................................43 

4.1.3.4 Evaluation ..................................................................................44 

4.1.4 Counterexample Correction for Automata Conversion ......................49 

4.2 Automata Simplification ..........................................................................51 

4.2.1 Introduction ......................................................................................51 

4.2.2 Selfloop Check..................................................................................51 

4.2.3 Same Transition Check .....................................................................52 

4.2.4 Almost Same Transition Check .........................................................53 

4.2.5 Counterexample Correction for Almost Same Transition Check........55 



iii 
 

4.2.6 Evaluation.........................................................................................58 

Chapter 5 Candidates Construction and Selection...............................................66 

5.1 Candidates Construction ..........................................................................67 

5.1.1 Introduction ......................................................................................67 

5.1.2 MustL candidates construction algorithm ..........................................67 

5.2 Heuristic MaxL........................................................................................70 

5.2.1 Introduction ......................................................................................70 

5.2.2 Algorithm for calculating proportion of local events..........................71 

5.3 Heuristic MinS.........................................................................................72 

5.3.1 Introduction ......................................................................................72 

5.3.2 Algorithm for predicting the number of states of the synchronous 

product .........................................................................................................73 

5.3.3 Number of states prediction evaluation..............................................75 

5.4 Heuristic MinT ........................................................................................78 

5.4.1 Introduction ......................................................................................78 

5.4.2 Algorithm for predicting the number of transitions of the synchronous 

product .........................................................................................................79 

5.4.3 Number of transitions prediction evaluation ......................................80 

5.5 Heuristic MinCut .....................................................................................84 

5.5.1 Introduction ......................................................................................84 

5.5.2 Algorithm for calculating the cut number ..........................................86 

5.6 An Enhancement for Candidates Construction .........................................89 

5.6.1 Subsumption .....................................................................................89 

5.6.2 Subsumption evaluation ....................................................................91 



iv 
 

5.7 Evaluation ...............................................................................................98 

5.7.1 Introduction ......................................................................................98 

5.7.2 Controllability Check Results.......................................................... 100 

5.7.3 Language Inclusion Check Results .................................................. 105 

Chapter 6 Conclusion....................................................................................... 114 

References ....................................................................................................... 116 

Appendix Compositional Verification Results.................................................. 120 



1 
 

 

Chapter 1 

Introduction 

 

 
Safety is always the first issue which should be considered when designing a 

system. In a software system, the safety and reliability of software are the most 

important quality characteristics [MJD99]. Especially in industry, a precise 

safety-concerned design may save a lot of time, money, and even life. In order to 

design the system right and make the system reliable and safe to be used, there is 

a need to verify the model of the system. Verification is a measure to check the 

safety of the model and ensure the model is built correctly. According to Balci, 

“Verification deals with building the model right” [OB97], this is the objective of 

the term “verification”. Therefore, verification of safety properties is crucial and 

necessary for system design in order to build a right system. However, with 

increasing requirements and competition, systems become more powerful, more 

functional, and more effective. Meanwhile, with the development and upgrade of 

systems, their numbers of components are increasing and their complexities are 

mounting up, and the trend will continue in the future. This makes verification 

become a challenge because of the larger and more complex systems.  

 

Usually, a model checker for verification constructs a synchronous product of the 

model of a system in order to verify it. But it may encounter a problem of 

state-space explosion for models with a large number of components when 

constructing a synchronous product. This may cause the model checker to run out 

of time or out of memory.  



2 
 

 

The Native model checker [BBFLPP98], [JS06] and BDD model checker 

[BBFLPP98], [REB86] are two model checkers which construct the synchronous 

product by composing all components of the model. Both of them encounter the 

problem of state-space explosion easily, even though the BDD model checker 

represents the state space symbolically in order to save space. 

 

The Modular model checker [SW07], [BMM04] cuts down the state space 

consuming by analyzing the synchronous product of subsets of the components of 

the model instead of the synchronous product of the entire model. So are 

compositional verification and incremental verification [BMM04], [AFF02]. 

These three methods obtain improvements for large verification, but the problem 

of state-space explosion problem still exists. 

 

The Projecting model checker [SW07], [WM08] simplifies the size of the model 

by projecting some events out and then reducing the state space of synchronous 

product. This method enhances extremely the performance of verification for 

large models, but it still has some potential to be improved. 

 

This report presents an enhanced compositional verification method for language 

projection to reduce the state-space explosion problem. It uses a two-step method 

to select a set of automata, which is called a candidate, of the system to be 

composed. The first step is constructing a series of candidates based on the 

method mustL [FM06]. The second step is selecting the best candidate from the 

series of candidates according to a certain heuristic which could be maxL, minS, 

minT [FM06], or minCut. MinCut is first introduced in this report. After the 

candidate is chosen, projection is activated to compose all of the automata in the 

candidate into one automaton and project some events out to reduce the size and 



3 
 

complexity of this new automaton.  

 

In order to improve the compositional verification of safety properties, and project 

more events, a strategy named Automata Conversion [SW07], [WM08] is applied. 

As for the controllability check, this strategy converts the controllability problem 

into the language inclusion problem. Instead of checking whether uncontrollable 

events are enabled at a bad time, it only checks if a certain event can ever happen. 

This strategy converts all specification automata into plant automata by adding 

some selfloops and creates a new singleton-state specification automaton which 

declares what uncontrollable events cannot happen. Ideally, after composing and 

projection, the final model will have one state if the system is not controllable or 

zero states if the system is controllable. As for the language inclusion check, this 

strategy is still working by converting the property automaton into plant and 

creating a new singleton-state property automaton which tells what bad events can 

never happen, too. 

 

Furthermore, more improvements are made for enhancing the compositional 

method. In this project, subsumption test is adopted to remove some unnecessary 

candidates from the candidates list and reduce the size of it; Selfloop check, Same 

Transition check, and Almost Same Transition Check are also introduced in order 

to minimize the size of automata further. 

 

Since projection is introduced in this project, the counterexample is not original 

any more. Some of the events are projected. Therefore, a backward solution 

[SW07] is taken to extend the counterexample trace. Also, Almost Same 

Transition Check could change the trace, but will not change the length of the 

trace. Hence, the counterexample after Almost Same Transition Check needs to be 

corrected, too. 



4 
 

 

This enhanced compositional verification method is applied to a set of large and 

complex realistic industrial examples to evaluate and compare the performance of 

four different methods for components selection, and implemented as a toolkit of 

WATERS [WS]. The example profisafe_i6 [MM03] [MM02] [PN02], which was 

never verified for the language inclusion check before, is verified first by this 

enhanced compositional verification measure. 

 

Chapter 2 presents some of the required knowledge for understanding of this 

thesis. Chapter 3 describes compositional verification and its algorithm. Chapter 4 

presents the strategies of Automata Conversion and Automata Simplification. 

Chapter 5 discusses the method to construct the candidate list, and the heuristics 

employed for candidate selection in compositional verification and compares the 

performance of them according to the experimental data. Chapter 6 presents the 

conclusion of this project. 



5 
 

 

Chapter 2 

Preliminaries 

 

2.1  Automata Theory 

 

Automata theory is widely used in computer science for analyzing and verifying 

the finite state model of a system. It is the study of a theoretical model of software 

systems or computer hardware [MS05]. 

 

2.1.1 Automaton 

 

An automaton is a mathematical model for a finite-state machine. Usually, the aim 

of it is to study the capabilities and limitations of computing processes. A 

finite-state automaton (finite-state machine) is a machine that, given an input of 

symbols, jumps from one state to another according to the action of transitions. 

Formally, a finite-state automaton is described as a tuple [BBFLPP98] 

 

        A = (Q, Σ, T, q0, Qm) 

 

with 

finite set of states           Q = {q1, q2, q3, …} 

finite set of events          Σ= {a, b, c, …} 

transition relation           T ⊆ Q×E×Q 



6 
 

initial state                q0  ∈ Q 

set of marked states         Qm ⊆ Q 

 

For example: the following is an example automaton. 

 

 

 

Figure 2.1:  An example automaton 

 

According to Figure 2.1 and the definition of automaton, it displays that the finite 

state set Q is {s0, s1}; the finite event set Σ is {a, b}; there are two transitions 

which are s0→s1 labeled with event a and s1→s0 labeled with event b; the initial 

state is s0 which is an element of Q; and the marked state set is {s1} which is a 

subset of Q. Putting these information together, it makes up the complete 

automaton. 

 

2.1.2 Event 

 

In an automaton, events are used to connect states. An event may be moving up or 

down of an elevator, arrival or leaving of a train, termination of a computer 

program, start or finish of a task in a manufacturing factory, and so on. 

 

An event is an occurrence or an action affecting the state change of a finite-state 



7 
 

automaton [KG95]. For instance, in Figure 2.1, both “a” and “b” are events. State 

s0 can go to state s1 when event a happens in state s0. And state s1 can go back to 

state s0 when event b happens in state s1. There is one important thing for event is 

hidden selfloop. Events which are not described in an automaton can happen at 

any time and anywhere, but it will not affect the change of state. For example, 

event c is not mentioned in Figure 2.1 above,  

 

 

 

Figure 2.2: An example of Hidden Selfloop 

 

So c is not in set E but it can happen at any states anytime (both at state s0 and s1) 

as showed in Figure 2.2. Nevertheless, the happening of event c does not change 

the state. Then c is a hidden selfloop event and the transition labeled with c is a 

hidden selfloop transition. These selfloops are implicitly added to all states. 

 

2.1.3 Transition 

 

A transition is a passage from one state to another in an automaton [BBFLPP98]. 

It contains a source state, an event and a target state. For example, s0→s1 labeled 

with event a and s1→s0 labeled with event b are two transitions. 

 



8 
 

2.1.4 Automata Type 

 

In this project, there are three types of automata which are plant automaton, 

specification automaton, and property automaton. 

 

A plant automaton is an automaton representing a model of the system to be 

controlled. It describes all of the possible behaviors of the model [BBFLPP98]. 

 

A specification automaton is an automaton designed to control the plant. It 

restricts the behavior of the plant by dynamically disabling some of the 

controllable events to avoid some undesired uncontrollable events happen 

[BBFLPP98]. So, it describes the desired behaviors. 

 

A property automaton is an automaton which states that something bad should 

never happen [BBFLPP98]. For example, an elevator will never stop at the middle 

of two floors. 

 

2.2  Synchronous Product 

 

Systems are modeled using more than one automaton in real life, and they interact 

with each other when they run in parallel. When automata run in parallel, they all 

run at the same time. Therefore, the events can happen only if they can be 

accepted by all automata. In order to verify a system, it is needed to find a way to 

represent the entire system running in parallel. The synchronous product 

[BBFLPP98] is such a way to represent the system and the interaction of its 

components. 

 



9 
 

The synchronous product describes the current state of the whole system with a 

state tuple q = (q1, q2, … qn) [BBFLPP98]. 

 

For example, there are two automata: 

 

 

 

 

A1      A2 

 

Figure 2.3: Two example automata 

 

At first, both of them are at initial state, so the system composed by these two 

automata can be represented as (s0, s0). In Figure 2.3, there are three available 

events which are event a, b, and c. As for automaton A1, according to the 

definitions of selfloop, event a and c are enabled in the initial state while event b 

is not enabled, because event b is mentioned in this automaton but only enabled in 

state s1. And for automaton A2, event a and b are enabled while event c is not 

enabled for the similar reason with event b in A1. Hence, as for the entire system, 

only event a is enabled in the initial state by all automata. When event a happens, 

the system state goes to (s1, s1). In this state, both event b and c are enabled by the 

system, but not event a because it is only enabled by all automata in the initial 

state. Therefore, when event b happens, the current system state becomes (s0, s1) 

from (s1, s1); and when event c happens, the current system state becomes (s1, s0) 

from (s1, s1). Likewise the system can return to (s0, s0) from (s0, s1) when event c 



10 
 

happens and return to (s0, s0) from (s1, s0) when event b happens. In the example 

above, the system representation (s0, s0), (s1, s1), (s0, s1), (s1, s0) are the 

synchronous product states. The complete synchronous product is displayed in 

Figure 2.4: 

 

 

 

 

Figure 2.4: An example Synchronous Product 

 

 

2.3  Safety Property 

 

A safety property is a property indicating that something bad can never happen 

[BBFLPP98]. It aims to keep the system safe. In this project, there are two safety 

properties, which are controllability and language inclusion. 

 

2.3.1 Controllability 

 

In general, there are two types of event which are controllable events and uncontrollable 



11 
 

events. A controllable event is an event which can be disabled and enabled. An 

uncontrollable event is an event which cannot be prevented from happening. 

 

Let P (Plant) and S (Specification) be two automata. S is called controllable with 

respect to P if, for every state (qp, qs) reachable in the synchronous product of P 

and S, every uncontrollable event e which is enabled in qp also is enabled in qs 

[RW89]. 

 

As for controllability, plant automata and specification automata are considered 

only. The specifications send controllable events to the plants and tell the plants 

what to do, while the plants send back uncontrollable events to the specifications 

and tell the specifications what has happened to them. The idea of designing the 

specification is to limit the behaviors of the plant in order to make the plant 

behave as desired. However, is it possible that the specification automata can limit 

the behaviors of the plant automata? In order to know the possibility, it is needed 

to check the controllability of the system which includes both the plants and the 

specifications. If this system is controllable, then the specifications can limit the 

behaviors of the plants; that is to say that for any reachable states of the plants, if 

an uncontrollable event can happen, then the specifications should also allow this 

uncontrollable event to happen. Otherwise, if this system is not controllable, that 

is to say that an uncontrollable event is enabled in the plants but it is not enabled 

in the specifications, and then the specifications cannot limit the behaviors of the 

plants because an uncontrollable event cannot be prevented from happening. 

 

For example, as for the system in Figure 2.3, assume that A1 is a plant automaton 

and A2 is a specification automaton. Then in state (s0, s1), A1 allows event a and 

event c to happen while A2 only allows one event out of these two events to 

happen which is event c. Therefore, if event a is an uncontrollable event, then this 



12 
 

system is not controllable because specification A2 disables an uncontrollable 

event a while it cannot be disabled. 

 

2.3.2 Language Inclusion 

 

This project only considers deterministic discrete event systems (DES). The 

behavior of a deterministic DES can be described by the set of sequences of 

events [RW89]: 

 

σ0 σ1 ... σn 

 

and the initial state s0. One of these kinds of sequences of events is called a trace 

or string of the system, and a collection of traces is called a language. 

 

Language inclusion is used to check if the language of a model is included by the 

language of a given automaton [BMM04]. This given automaton is a property 

automaton. For example, if and only if every trace in the language of a set of 

automata A is also in the language of property automaton B, then A satisfies B. 

 

As for language inclusion, plant automata and specification automata are treated 

as the same automata which are non-property automata. The algorithm to check if 

the non-property automata satisfy the property automaton is to construct the 

synchronous product of both of the non-property automata and the property 

automaton, and check that if whenever all non-property automata enable an event, 

the property automaton will enable this event too. If this event is always enabled, 

then this property automaton is satisfied. 

 



13 
 

2.3.3 Counterexample 

 

A counterexample is a sequence of events which a specific instance of the falsity 

of a model. The counterexample trace represents that a bad event can happen 

eventually. If a model is failed to pass the verification of safety properties, then 

the model checker will automatically compute such a counterexample. 

[BBFLPP98] 

 

2.4  Projection 

 

There exist some events that are used exclusively by only one automaton or a set 

of automata, or can be removed away for other reasons in some large systems 

composed of several automata. As a result, the alphabet Σ is partitioned into the 

set Υ of events to be removed away and the set Ω of events to be retained. 

Typically, Υ consists of the events used exclusively by the automata considered. 

 

  Natural projection 

PΣ→ Ω: Σ* → Ω*  

 

is the operation that removes all events not in Ω from a string [RW89]. This 

operation can be extended to operate on languages as well.  

 

  Inverse projection 

P
−1
Σ← Ω: 2 Ω* 

→ 2Σ*  

 

inserts events into all strings at all possible positions [RW89].  

 

According to Simon Ware’s report, projection and inverse projection can also be 



14 
 

applied to automata. Projection is implemented by replacing all occurrences of the 

events to be hidden (the events in γ) by the silent event τ first, and then using a 

determinisation algorithm [HMU01] to make the resultant nondeterministic 

automaton deterministic. Inverse projection is achieved by adding selfloops with 

the hidden events to all the states of the automaton. [WM08] 

 

2.5  Model Checker 

 

There are three different kinds of model checkers used in this project to check 

controllability and language inclusion of the models. These three model checkers 

are Native model checker [BBFLPP98], [JS06], BDD model checker 

[BBFLPP98], [REB86] and modular model checker [SW07], [BMM04]. These 

three model checkers are available in WATERS [WS]. 

 

2.5.1 Native Model Checker 

 

The Native model checker is one of the monolithic model checkers and is 

implemented in Java and refined in C++. It constructs the synchronous product of 

the model to be checked and explores all of the states of the synchronous product 

to verify the model. This method describes the state space of the synchronous 

product of the model explicitly and the memory used to represent the synchronous 

product directly depends on number of states. 

 



15 
 

2.5.2 BDD Model Checker 

 

The BDD model checker is a BDD-based model checker and is implemented in 

Java. BDD means binary decision diagram. A BDD is an ordered graph 

representation of a Boolean function. The BDD model checker is also one of the 

monolithic model checkers which constructs the synchronous product of the 

model to be checked and explores all of the states of the synchronous product. The 

difference is that the BDD model checker represents the state space symbolically 

with BDD nodes instead of listing the state space explicitly. The number of BDD 

nodes is usually smaller than the number of states. 

 

2.5.3 Modular Model Checker 

 

The modular model checker analyses the subsets of the automata of a model 

instead of checking the entire set of automata of the model at the same time. Since 

the synchronous product of a model is the intersection of all languages of the 

language of individual component of the model, if a subset of the specifications of 

a model is checked to be controllable with respect to a subset of plants of the 

model, then the entire system cannot contain a counterexample for the subset of 

specifications and plants. Therefore, it is possible to verify that a specification is 

controllable or a property is satisfied without composing the entire set of automata 

of the model. 

 

2.6  Examples for Evaluation 

 

A computer with an AMD3200+ (2GHz) CPU and a 2GB RAM is used for testing 

of this project. The following are the examples used for evaluation. The models of 



16 
 

these examples are available in WATERS [WS]. 

 

� big_bmw is the model of the BMW E65 CAS window lift controller [PD00] 

[PM03]. bmw_fh is a small version of it. 

� ftechnik, fzelle are about case studies of two different production cells [LL95] 

[LM96]. 

� rhone_alps, and rhone_tough describe an AIP automated manufacturing 

system [BC94] [RJL96]. 

� tbed_ctct, tbed_nocoll, tbed_noderail, tbed_uncont represent a train testbed 

[RJL96]. 

� verriegel4, ftuer, and koordwsp represent a central locking system. 

� small_factory_2 comes from the classical “small factory” example from 

[RW89]. bfactory is an upgrade version of small_factory_2. 

� tictactoe represents a model of a tic tac toe game. 

� mx27 represents a case of a maze game. 

 

The above examples are used for controllability check. small_factory_2, bfactory, 

bmw_fh, ftuer, koordwsp, tictactoe, and mx27 are small examples and the rest of 

them are large examples with more automata. 

 

� models beginning with profisafe represent the PROFIsafe field bus protocol 

[MM03], [MM02], [PN02]. 

 

These models are used for language inclusion check. They are extremely large 

examples. The verification of example profisafe_i6, which was never solved 

before, is solved first in this report. 

 



17 
 

2.7  Implementation 

 

This enhanced compositional verification method is implemented in Java and 

available in WATERS [WS]. The information of classes and data structures is 

available in [WS]. In order to switch different components selection methods 

efficiently, this implementation allows a methods selection option from the 

command line. This implementation also allows options for projection limit, state 

limit, model checker, and safety properties. 



18 
 

 

Chapter 3 

Enhanced Compositional Verification 

 

3.1  Introduction 

 

The verification of safety properties is an essential part for ensuring that the 

model is developed correctly and the model does not contain errors or bugs 

[CMM05]. Commonly, a model checker composes the entire set of automata of a 

model to obtain the synchronous product. This can easily cause the state-space 

explosion problem. Therefore, if a model checker can compose some automata 

first instead of the entire set of automata of the model, and then simplify the 

composition, the whole model could become smaller and the state-space 

explosion problem can be reduced. This strategy is called compositional 

verification. It composes a subset of the automata of the model first and simplifies 

the composition with projection [WM08]. 

 

One question in compositional verification is how the automata are composed and 

their events are projected. Different selection strategies and orders can lead to 

different performance. Hence, the automata selection is a substantial part of 

compositional verification. This report presents an enhanced compositional 

verification measure to solve the automata selection problem. The enhanced 

compositional verification uses a two-step method to select the automata to be 

composed out of the entire set of automata of the system. One set of selected 

automata is called a candidate. The candidates are groups of automata sharing the 



19 
 

events that can be removed because they are not used anywhere else but in this 

group of automata only. The first step is constructing a series of candidates 

according to a method called mustL [FM06]. The second step is selecting the most 

proper candidate from the series of candidates according to certain heuristics such 

as maxL, minS, minT [FM06], and minCut. The candidates construction method 

and candidates selection methods are discussed in detail in chapter 5. After the 

candidate is chosen, projection is employed to compose all of the automata in the 

candidate into one new automaton and project some events out to reduce the size 

and complexity of this new automaton. This new automaton is added in the model 

and the set of automata which are composed are removed from the model. Then 

the model is changed and has a new set of automata. This new set of automata can 

be composed and projected again with the two-step candidate selection method. In 

this way, the compositional model verifier can iteratively compose automata of 

the model and project some events out. Finally, the modified model is passed to a 

non-projection safety model checker for safety verification. 

 



20 
 

 

 

 

 

Figure 3.1 Simple process of Enhanced Compositional Verification 

 

 

Figure 3.1 displays a simple example process of enhanced compositional 

verification. There is a model with six automata which are plant P1, P2, P3, P4, 

P5 and specification S. With enhanced compositional verification, P1 and P2 are 

chosen at the first round, because they share some events which are not used 

anywhere else. These events, called local events [FM06], can be projected out. 

After composing P1 and P2 and projecting the local events, a new automaton N1 

is created. Then P1 and P2 are replaced by N1 and the model has five automata 

which are N1, P3, P4, P5 and S. At the second round, N1 and P3 are selected and 

they have some local events, too. After composing N1 and P3 and projecting out 

the local events, N2 is created. Then the model has four automata which are N2, 

P4, P5 and S. At the last round, there is only one candidate which is P5. P5 has 

one or more local events which can be projected. So P5 can be simplified just by 



21 
 

projecting the local events out and becomes to a new automaton N3. Then the 

original model becomes the simplified model which has four automata which are 

N2, P4, N3 and S. Then this simplified model can be verified by a non-projection 

safety model checker. 

 

3.2  Algorithm 

 

The following is the enhanced compositional verification algorithm based on 

Simon Ware’s projection algorithm [WM08]. In this algorithm, the hidden events 

set is the set of all events mentioned by plant automata only because 

compositional verification composes plant automata only. The reason is that 

wrong results may be produced if certain events from the property or specification 

automata are projected out during compositional verification. A candidate is a set 

of automata from which a set of events E can be projected because all events in E 

are local and not used anywhere else.  

 

 



22 
 

 

Let Plant be the plant set of the model. Let Events be the event set of the model. 

Let Hidden be the set of event that can be projected in the model. 

 

1. With Plant and Hidden as input, find every candidate according to the 

candidates construction method. Add these candidates into a list of candidates 

C. 

2. If C is empty, return. 

3. Select a proper candidate can with a set of local events E from C according to 

a given heuristic. 

4. Compose and project can. If the maximum state limit for the projection is not 

exceeded, then a new automaton aut is obtained. Otherwise remove can from 

C and go to 2. 

5. Replace the automata of can by aut in Plant. Remove E from Hidden and 

Events. 

 

 

Figure 3.2 Candidate Selection and Projection Algorithm 

 

 

Figure 3.2 presents an algorithm of candidate selection and projection. The events 

set E is a nonempty set of events and a subset of Hidden. According to the 

algorithm in Figure 3.2, the events in Hidden are not necessarily removed 

completely. That is because there is a state limit for the projection. If the number 

of states of the new composed automaton exceeds the limit, this candidate is not a 

proper candidate for reducing the size of the model. Therefore, this candidate is 

dropped and the events supposed to be hidden by this candidate are not hidden. 

The given heuristics mentioned at step 3 in Figure 3.2 are heuristic maxL, minS, 



23 
 

minT, and minCut. 

 

As for the whole model, the compositional way can be used iteratively in order to 

make the model as small as possible. The following is the iterative compositional 

verification algorithm. This algorithm assumes that all events, which are not 

mentioned by specification automata for controllability check or not mentioned by 

property automata for language inclusion check, can be projected. 

 

 

Let Plant be the plant set and Spec be the specification set of the model. Let 

Events be the event set of the model.  

 

1. Let Hidden be the set of events used in Plant only. 

2. With Plant and Hidden as input, do the composing and projection using the 

algorithm in Figure 3.2 and get the new Plant, new Events and new Hidden. 

3. If Plant and Hidden are not changed, go to 4. Else go to 1. 

4. Create a new model M with automata set Spec and Plant, and events set 

Events. 

5. Send M to a non-projection safety model checker for analyzing. 

 

 

Figure 3.3 Iterative Compositional Verification Algorithm 

 

 

Figure 3.3 presents an iterative algorithm of compositional verification. The idea 

of this iterative algorithm is continually composing a subset of the automata of the 

model first and projecting the local events of it to obtain a new automaton, and 

then replacing this set of automata with the new automaton. Also, for every time 



24 
 

of iteration, the set of automata of the model is different. Hence, the candidate list 

needs to be reconstructed for every time of iteration. 

 

3.3  Counterexample Extension for Projection 

 

The enhanced compositional verification in this report applies projection to 

improve the performance of verification. Projection simplifies automata by 

removing some events. However, this method has its drawback. With projection, 

some events which should in the counterexample trace may be projected, and the 

trace may not be complete any longer. 

 

If a model has a counterexample trace which contains an event σ before projection, 

the model must also have the counterexample trace which contains the event σ 

after projection. However, this event σ could be removed from the model by 

projection, and the counterexample trace obtained from the model after projection 

may not a proper trace for the original model. Therefore, there is a need to extend 

the trace by inserting the σ event back. Fortunately, according to Simon Ware’s 

study, the short counterexample trace can be extended to a complete trace which is 

a proper trace for the original model by inserting some of the removed events. The 

following is Simon’s algorithm [SW07] [WM08] to find such a trace. 

 



25 
 

 

Let t be a counterexample found in the model made of the events σ0, σ1 ... σn-1 

when n is the length of the trace t, also let A be the original automaton before it is 

projected. Let Q be a queue of tuples of states in A, length through t, and built-up 

trace, and let S be a set of pairs of state and length through t, and Σ’ be the set of 

kept events. 

 

1. Add the tuple (initialstate(A),0,[]) to Q and (initialstate(A),0) to S. 

2. Remove the first tuple (state,i,s) in Q. 

3. If i = n return s. 

4. If there is an outgoing transition from state labeled with σi to next add 

(next,i+1,sσi) to Q and (next,i+1) to S unless (next,i+1) ∈S. 

5. For every event α not in Σ’, if there is an outgoing transition from state 

labeled with α to next, then add (next,i,sα) to Q and (next,i) to S unless  

(next,i) ∈S. 

6. Go to 2. 

 

Figure 3.4: Find Trace Algorithm 

 

This algorithm takes a breadth first search through the original automaton and 

tries to insert some events which are removed by projection into the projected 

counterexample trace in order to make this counterexample trace acceptable by 

the original automaton. In other words, this algorithm runs the incomplete trace in 

the original automaton and inserts the proper missing events which are from the 

removed events into the trace. If the current event of the trace is enabled in the 

current state of the automaton, it remains the current event of the trace. Otherwise, 

if all events are tried in the current state, try the events which are hidden. Find all 

hidden events which are enabled in the current state and try each of them until 



26 
 

reach an event in the incomplete trace. Those events appear only in this automaton 

and do not appear in any other automata, so they can be inserted anywhere into 

the trace and other automata cannot reject the trace. 

 

If the model is iteratively projected, the following algorithm is adopted to find a 

proper counterexample trace. 

 

 

Let A1, …, An be the automata simplified by iterative projection, and let Σ’i be the 

set of events Ai is projected with respect to, and let t be the projected trace. 

 

1.  Set i to equal n. 

2.  If i equals 0 return t. 

3.  Find the trace s using the algorithm in Figure 3.4 with Ai and Σ’i as input. 

4.  Set the new value of t to s, and decrement i, then go to 2. 

 

Figure 3.5: Iterative Find Trace Algorithm 

 

This algorithm is based on the algorithm in Figure 3.4. It uses a backward strategy 

to extend the trace. It starts from the last automaton, which is projected to the first 

automaton. This algorithm needs to know which set of events are projected from 

which set of automata. 



27 
 

 

Chapter 4 

Automata Transformation 

 
Compositional verification with projection can effectively reduce the state-space 

explosion problem [RW89], but there are still some models which are too large to 

be verified. In order to reduce the state-space explosion problem further and take 

more advantage of compositional verification, it is necessary to employ more 

strategies to cut down the size of models. 

 

This chapter presents two types of strategies to improve the performance of 

projection and reduce the size of automata. These two types of strategies are 

Automata Conversion [SW07], [WM08] and Automata Simplification. Automata 

Conversion converts specifications into plants for controllability check, and 

properties into non-properties for language inclusion check to remove some 

events, which are used in specifications or properties. Automata Simplification 

tries to simplify the individual automaton by removing or replacing some 

unnecessary events. 

 

Also, the counterexample trace is changed and not accepted by the original model 

anymore after Automata Conversion and Almost Same Transition Check in 

Automata Simplification. This chapter describes some methods to correct the 

trace. 

 

 

 



28 
 

 

4.1 Automata Conversion 

 

4.1.1 Introduction 

 

According to Simon Ware’s paper, Automata Conversion converts the model into 

a new model which has more events that can be hidden and reduce the state-space 

explosion problem further by adding some selfloop events. Furthermore, after 

Automata Conversion, the model is easier for safety verification.  

 

Simon Ware [SW07], [WM08] presents a strategy of translating the controllability 

problem into a language inclusion problem for the standard controllability check. 

As for controllability check, Automata Conversion converts the standard 

controllability problem into a language inclusion problem. In this way, this 

strategy not only can project more controllable events which are used in 

specifications, but also converts the problem of checking if uncontrollable events 

can happen at an improper time into a much simpler problem of checking if 

certain bad events can happen [SW07].  

 

Since Automata Conversion works for controllability check, it should also have 

the probability of working for language inclusion check. Therefore, this project 

presents an Automata Conversion method for language inclusion check. As for 

language inclusion check, Automata Conversion converts the language inclusion 

problem into another language inclusion problem. The difference between these 



29 
 

two problems is that more events can be projected in the model after Automata 

Conversion. 

 

4.1.2 Automata Conversion for Controllability Check 

 

As for controllability check, Simon Ware’s method converts the plant P and the 

specification S in the original model into a plant P’ and a specification S’ by 

adding new γ events into the model such that for all the specifications Si and 

uncontrollable events vj, the event γij can happen only in a situation where vj is 

allowed by P but not allowed by Si [SW07], [WM08]. The following describes 

how to convert the specification automata and plant automata. 

 

4.1.2.1 Specification Automata Conversion 

 

For every uncontrollable event vj and for all states s in specification Si, if there is 

no outgoing transition labeled with vj in s, add the selfloop transition (s, γij, s). In a 

specification automaton, the γ events that are added have nothing to do with other 

specification automata. 

 

 



30 
 

 

 

Figure 4.1: Specification Buffer and Repair 

 

Figure 4.1 displays two specifications of the model small_factory_2 which are 

Buffer and Repair. This model comes from the classical “small factory” example 

from [RW89]. In specification Buffer, there is only one uncontrollable event 

finish1. In specification Repair, there is only one uncontrollable event break2. The 

rest of the events in these two specification automata are controllable. Then, 

according to the specification Automata Conversion algorithm above, these two 

specifications are converted to the modified automata displayed in Figure 4.2. 

 

 



31 
 

 

 

Figure 4.2: Modified Specification Buffer and Repair 

 

In Buffer, there are two states which are empty and full, and one uncontrollable 

event finish1. In state empty, there exists an outgoing transition (empty, finish1, 

full) labeled with finish1. So the γ event is not added in this state. But in state full, 

there is no outgoing transitions labeled with uncontrollable event finish1. 

Therefore, a selfloop transition (full, γBuffer,finish1, full) is added to this state. 

 

In Repair, there are two states which are m2ok and m2down, and one 

uncontrollable event break2. As for the uncontrollable event break2 in state m2ok, 

there exists an outgoing transition (m2ok, break2, m2down) labeled with break2. 

So the γ event is not added in this state. But in state m2down, there is no outgoing 

transition labeled with uncontrollable event break2. Therefore, a selfloop 

transition (m2down, γRepair,break2, m2down) is added to this state. 

 

4.1.2.2 Plant Automata Conversion 

 

After the conversion of specification automata, a set of γ events are obtained. The 



32 
 

plant automata also need to be converted by adding some γ events in order to 

make the model equivalent to the original model. The following is the method of 

plant Automata Conversion. 

 

For every uncontrollable event vj, which also is mentioned by specifications, and 

for all states s in plant Pk, if there is an outgoing transition labeled with vj in s, 

then add the selfloop transition (s, γij, s) for every possible i. Hence, once the plant 

Pk allows the event vj, it will also allow any event γ related to vj [SW07], [WM08]. 

 

 

 

 

Figure 4.3: Plant Machine1 and Machine2 

 

Figure 4.3 displays two plant automata, which are Machine1 and Machine2, of the 

model small_factory_2. There is one uncontrollable vj event, which is finish1, in 

plant Machine1. Also, in plant Machine2, there is one uncontrollable vj event 

break2. Then, these two plant automata are converted to the following modified 

automata according to the plant Automata Conversion method. 

 

 



33 
 

 

 

Figure 4.4: Modified Plant Machine1 and Machine2 

 

Figure 4.4 displays the modified plant automata of Machine1 and Machine2. In 

plant Machine1, there are three states, which are idle, working, and down, and one 

uncontrollable vj event, which is finish1. In state idle and down, there is no 

outgoing transition labeled with uncontrollable vj event finish1. Hence, the γ event 

is not added into these two states. In state working, there is an outgoing transition 

(working, finish1, idle) labeled with uncontrollable vj event finish1. So a selfloop 

transition (working, γBuffer,finish1, working) is added to this state.  

 

In plant Machine2, the situation is similar. In state idle and down, there is no 

outgoing transition labeled with uncontrollable vj event break2. Hence, the γ event 

is not added into these two states. In state working, there is an outgoing transition 

(working, break2, down) labeled with uncontrollable vj event break2. So a selfloop 

transition (working, γRepair,break2, working) is added to this state. 

 

4.1.2.3 One-state specification creation 

 

After the conversion of specifications and plants, the γij events can happen if and 



34 
 

only if the uncontrollable vj events are enabled in all plants but disabled in 

specification Si. Therefore, as for controllability check, the modified specification 

automata are treated as plant automata and a one-state specification is created for 

the checking. 

 

The one-state specification automaton contains a single state and a set of blocked 

events which are the γ events. Figure 4.5 displays such a specification of model 

small_factory_2. The main aim of this one-state specification is to tell the 

controllability checker that the γ events should not happen. For instance, in Figure 

4.5, event γBuffer,finish1 and event γRepair,break2 are not enabled in any states and can 

never happen. 

 

 

 

 

Figure 4.5: An Example One-state Specification 

 

 

4.1.2.4 Evaluation 

 

This test uses the heuristic minS for the second step of candidate selection and the 

projection limit is 1000. The non-projection model checker used for the checking 



35 
 

is the Modular Controllability Checker. The examples used in the evaluation are 

from [PD00], [PM03], [LL95], [LM96], [BC94], [RJL96]. 

 

 

With composing and projection 

With model conversion, 

composing and projection Model  

States Events Time(s) States Events Time(s) 

γ 

Events 

R 

Events 

Original 

Events 

big_bmw 168 66 0.304 6 47 0.683 47 66 66 

Ftechnik 374297 117 2.408 24 156 5.479 117 117 117 

Fzelle 1448 82 0.670 4 113 1.610 113 82 88 

rhone_alps 1540 74 0.416 2 38 0.590 38 74 90 

rhone_tough O 76   366141 74 8.517 40 76 98 

tbed_ctct 1057536 88 4.452 O 200   131 88 116 

tbed_nocoll 81522 88 1.057 43976 190 15.641 138 88 116 

tbed_noderail 1308927 88 5.718 43572 190 14.863 138 88 122 

tbed_uncont 470752 88 3.326 8083 190 16.006 138 88 116 

small_factory_2 10 6 0.296 2 2 0.264 2 6 8 

Bfactory 19 5 0.297 1 2 0.264 2 5 12 

 

Table 4.1: Automata Conversion Results for Controllability Check 

 



36 
 

 

 

Figure 4.6: Peak number of States after projection  

with and without Automata Conversion 

 

 



37 
 

 

 

Figure 4.7: Controllablity Check Processing time 

with and without Automata Conversion 

 

 

Table 4.1 displays two test cases. The first case is to check the model with 

composing and projection. The second case is to check the model with Automata 

Conversion, composing and projection. The content of the test includes six parts 

which are States, Events, Time, γ Events, R Events, and Original Events. States is 

the peak number of the states of the synchronous product of the model after 

projection that the Modular Controllability Checker explores during the 

verification. Events is the amount of events of the model after projection. The 

Time is the processing timeof the model checking. γ Events is the created events 

during Automata Conversion. R Events is the events that shared by plants and 



38 
 

specifications. Original Events is the events of the model without Automata 

Conversion. 

 

According to Table 4.1, the synchronous product of the model after projection 

with Automata Conversion is smaller than the model without Automata 

Conversion. For example, as for model ftechnik [LL95], [LM96], the number of 

states explored by the model checker without Automata Conversion is 374297, 

which is fifteen thousand times larger than the number of states explored by the 

model checker with Automata Conversion which is 24. Furthermore, as for the 

model rhone_tough [BC94], [RJL96], it cannot be solved without Automata 

Conversion. But it can be solved with Automata Conversion. According to Figure 

4.6, with the increase of the peak number of states, the effect of Automata 

Conversion is much more observable. The peak number of states is much smaller 

after Automata Conversion. The number of events can also be cut down, if the 

model is small enough and the local events can be projected mostly or completely. 

For example, the model small_factory_2 [RW89] and bfactory are quite small and 

their numbers of events of the model with Automata Conversion, composing and 

projection are 3 and 2 respectively which are smaller than their numbers of events 

of the model without Automata Conversion, which are 6 and 5 respectively. In 

these two models, the numbers of R Events are 6 and 5 respectively, and the 

numbers of γ Events are 2 and 2 respectively. Therefore, without Automata 

Conversion, there are at least 6 events remaining for model small_factory_2 and 5 

events remaining for model bfactory. With Automata Conversion, there are at least 

2 events remaining for mdoel small_factory_2 and 2 events remaining for model 

bfactory. That is to say, as for model small_factory_2, there are four more events 

which are projected, and as for model bfactory, there are three more events which 

are projected. But often, the number of events increases. That is because the 

number of events that the Automata Conversion creates is much more than the 



39 
 

number of events that cannot be projected before but can be projected after. For 

instance, as for model tbed_nocoll [RJL96], its γ Events number is 138 while its 

original events number is 116. That is to say, the number of events created is 138 

and the number of events of the model after projection is at least 138, which is 

larger than the number of events of the original model. Figure 4.7 shows the result 

of the processing timewith and without Automata Conversion. The model 

checking processing timeof the model with Automata Conversion is longer than 

the processing timeof the model without Automata Conversion. The reason of 

slow checking time is because there are more projection after Automata 

Conversion and projection is time consuming. 

 

As a result, the Automata Conversion strategy can reduce the state-space problem 

and project more events for controllability check, but it needs a longer process 

time. Furthermore, some models can only be solved with Automata Conversion. 

 

4.1.3 Automata Conversion for Language Inclusion 

Check 

 

Since the controllability problem can be converted into a language inclusion 

problem and more events can be projected, a language conclusion problem can 

also has the possibility of being converted into another language inclusion 

problem in order to remove more events. Instead of removing more controllable 

events, which are used in specification automata, this strategy removes more 

events which are enabled in all states of property automata. However, this strategy 

only suits for the model with a property automaton which has some events that are 

enabled in all states of the property automaton. 

 



40 
 

4.1.3.1 Property Automata Conversion 

 

For every event vj which is not enabled in all states and for all states s in property 

Ri, if vj is not enabled in s, then add the selfloop transition (s, γij, s) to s. 

 

 

 

 

Figure 4.8: An example property 

 

Figure 4.8 displays an example property. This property automaton has two states 

which are s0 and s1, and two events which are events a and b. Event a is enabled 

in all states and event b is only enabled in state s0. According to the property 

Automata Conversion algorithm, this property is converted into the modified 

property in Figure 4.9. 

 

 



41 
 

 

 

Figure 4.9: Modified Property 

 

In the property automaton Property, there is one event b which is not enabled in 

all states. As for event b, it is enabled in state s0. So the γ event is added in state 

s0. In state s1, event b is not enabled. So the selfloop transition (s1, γProperty,b, s1) is 

added to this state. 

 

4.1.3.2 Non-property Automata Conversion 

 

For every event vj, which is not enabled in all states of the property automaton, 

and for all states s in non-property automaton NPi, if event vj is enabled in s, then 

add the selfloop transition (s, γij, s) for every possible non-property automaton NPi. 

Hence, once the non-property automaton NPi allows the event vj, it will also allow 

any event γ related to vj. 

 

 



42 
 

 

 

Figure 4.10: An example Non-Property 

 

Figure 4.10 displays an example non-property automaton. This automaton has 

three states which are s0, s1, and s2, and four events which are event a, b, c, and d. 

Thereinto, event b is not enabled in all states of property Property. According to 

the non-property Automata Conversion, the automaton in Figure 4.8 is converted 

into the modified automaton in Figure 4.11. 

 

 



43 
 

 
 

Figure 4.11: Modified Non-Property 

 

In the non-property automaton, there is one event b which is not enabled in all 

states of property Property. As for event b, it is not enabled in state s0 and s2. So 

the γ event is not added in state s0 and s2. In state s1, event b is enabled. So the 

selfloop transition (s1, γProperty,b, s1) is added to this state. 

 

4.1.3.3 One-state property creation 

 

After the conversion of property automata and non-property automata, the 

modified property automata are treated as non-property automata and a one-state 

property is created for the checking. The one-state property automaton contains a 

single state and a set of blocked events which are the γ events. Figure 4.12 

displays such a property. In this one-state property, event γProperty,b is not enabled in 

any states and shall never happen. 

 



44 
 

 

 

 

Figure 4.12: An example One-state Property 

 

 

4.1.3.4 Evaluation 

 

This test takes the heuristic minS for the second step of candidate selection and 

the projection limit is 1000. The non-projection model checker used for the 

checking is the BDD Language Inclusion Checker. The examples used in this 

evaluation are from the PROIsafe field bus protocol [MM03], [MM02], [PN02]. 

 

 



45 
 

With composing and projection 
With model conversion, 

composing and projection Model  Property 

Nodes Events Time(s) Nodes Events Time(s) 

OE EE γE RE 

profisafe

_i4_host 

HOST__fv 

_timeout 

__property 141 4 11.169 1 1 7.192 218 3 1 4 

profisafe

_i4_slave 

SLAVE__fv

__property 3642 32 2.825 1 21 1.512 130 11 21 32 

HOST__fv 

_crc 

__property 330116 195 29.543 288624 120 59.734 393 82 1 83 

HOST__fv 

_crc_noinit 

__property 1498633 201 90.120 134107 127 198.867 393 83 1 84 

HOST__fv 

_timeout 

__property O 99   29982 32 16.435 378 3 1 4 

profisafe

_i4 

SLAVE__fv

__property O 47   32499 37 16.606 378 11 6 17 

 

Table 4.2: Automata Conversion Results for Language Inclusion Check 

 



46 
 

 

 

Figure 4.13: Peak number of Nodes after projection  

with and without Automata Conversion 

 



47 
 

 

 

Figure 4.14: Language Inclusion Check Process Time 

 with and without Automata Conversion 

 

 

Table 4.2 displays two test cases. The first case is to check the model with 

composing and projection. The second case is to check the model with Automata 

Conversion, composing and projection. The content of the test includes three parts 

which are Nodes, Events, and Time. Nodes is the peak number of the nodes of the 

synchronous product of the model after projection that the BDD language 

inclusion checker explores. Events is the number of events of the model after 

projection. Time is the processing timefor the model checking. Also, Table 4.2 



48 
 

displays other four parts for evaluation which are OE, EE, γE, and RE. OE is the 

number of original events of the original model. EE is the number of events 

enabled in all states of the property which can be hidden after the Automata 

Conversion. γE is the γ events created during Automata Conversion. RE is the 

related events shared by both property automata and non-property automata. 

There is only one property in each example. 

 

According to Table 4.2, the peak number of nodes explored by the BDD checker 

after projection with Automata Conversion is smaller than the peak number of 

nodes after projection without Automata Conversion. For example, as for model 

profisafe_i4_host with the property HOST__fv_timeout__property, the peak nodes 

number of the synchronous product of the model without Automata Conversion is 

139289, which is one hundred and forty thousand times larger than the peak nodes 

number of the synchronous product of the model with Automata Conversion 

which is 1. Furthermore, as for the model profisafe_i4, it is not solved without 

Automata Conversion when checking the property HOST__fv_timeout__property 

and the property SLAVE__fv__property. But it is solved with Automata 

Conversion. According to Figure 4.13, Automata Conversion works well with 

large examples. The events number can be cut down even though there are many γ 

events that are created. However, the difference of the model checking processing 

timebetween the check with Automata Conversion and the check without 

Automata Conversion cannot be defined because of the different situation of the 

model. If the proportion of time for projection is higher in the entire check process 

time, then the entire check processing timewithout Automata Conversion is faster 

than the entire check processing timewith Automata Conversion because the 

model check with Automata Conversion has more projection. 

 

As a result, the Automata Conversion strategy can reduce the size of the 



49 
 

synchronous product of the model and project more events for language inclusion 

check. Furthermore, some models can only be solved with Automata Conversion. 

 

4.1.4 Counterexample Correction for Automata 

Conversion 

 

Automata Conversion can be used to project more events and make the model 

smaller. But this method has a drawback of modifying the counterexample. The 

counterexample trace contains one new γ event which cannot be accepted by the 

original model. Therefore, the counterexample trace needs to be fixed. 

 

The key strategy of automaton conversion is to build a singleton state 

specification automaton or property automaton with some new uncontrollable γ 

events which are created according to the original specification automata or 

property automata. In this singleton state automaton, these new uncontrollable γ 

events must not happen. In this way, the converted model is failed to pass the 

safety verification once one of these γ events happens. That is to say, the last event 

in the counterexample trace must be one of these new uncontrollable γ events. 

Therefore, the counterexample is changed and there is only one γ event needs to 

be renovated. 

 

Therefore, the source events, which the creation of new events relies on, need to 

be remembered when the automaton conversion proceeds. Thus, a map which 

takes the source events as key and the new events as value is built to track down 

the original events of the new events. Then, use the original event to replace the 

new event at the end of the counterexample trace and finish the counterexample 

correction for automaton transformation. 



50 
 

 

 

Let M be the map of storing source event αi and new event βi pairs. Let t be the 

counterexample trace and n be the length of trace t. 

 

1.  Find the last event βi of t which is at position n-1. 

2.  Find the source event αi of new event βi according to M. 

3.  Replace the new event βi with the source event αi in trace t, and return t. 

 

Figure 4.15: Counterexample Correction Algorithm  

for Automata Conversion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



51 
 

 

4.2 Automata Simplification 

 

4.2.1 Introduction 

 

All of the experimental data show that, the smaller automata are, the faster 

composing and projection are executed. Therefore keeping the automata as small 

as possible is vital not only for composing and projection, but also for verification. 

Especially for large models, they need composing and projection more than small 

models because of their huge sizes and complexity. However, many automata are 

not small and simple enough because of bad design or as a result of projection. 

For example, after projection, some states are amalgamated into one state. Hence, 

some transitions which originally have different sources or targets may share the 

same sources and targets after projection. Then those transitions may become 

unnecessary and not influence the result of verification. Consequently, they can be 

removed or replaced in order to keep the automata as small and simple as possible. 

The following are three aspects to simplify automata. 

 

4.2.2 Selfloop Check 

 

In an automaton, if an event is enabled at all states and used by selfloop only, this 

event and selfloops can be removed in this automaton. 

 



52 
 

 

 

Figure 4.16: An example of Selfloop Check 

 

For the example above, event x is enabled in all states and it is removed in this 

automaton. So are the selfloops labeled with event x.  

 

Furthermore, if event x only ever is used as selfloop events, and event x is 

controllable or it is used in plants only, then event x can be removed, too. The 

reason is that controllability verification is only interested in uncontrollable events 

in specifications, and event x cannot change the state because it is a selfloop event. 

Therefore, the result of verification cannot be influenced by removing such an 

event. 

 

4.2.3 Same Transition Check 

 

If two or more events are only enabled together (they share the source and target) 

in all automata, they are called same transition. They can be replaced by a single 



53 
 

event. 

 

 

 

Figure 4.17: An example of Same Transition Check 

 

For the example in Figure 4.17, this model has three automata which are A, B, and 

C. Event a and event b are only enabled together in them. Then event a and b are 

same transition and they can be replaced by a single event. 

 

4.2.4 Almost Same Transition Check 

 

If two or more events are only enabled together (they share the source and target) 

in all automata except one automaton, they are called Almost Same Transition. 

They can be replaced by a single event. The automaton in which the events are not 

enabled together is called an Almost Same Transition Automaton.   

 

A B C 



54 
 

 

 

Figure 4.18: An example of Almost Same Transition Check 

 

For the example in Figure 4.18, this model has four automata which are A, B, C, 

and D1. Events a and b are only enabled together in A, B (hidden selfloop), and C 

but not D1. So they are Almost Same Transition and can be replaced by a single 

event. So are events c and d. And D1 is the Almost Same Transition Automaton 

for events a and b. As for events c and d, D1 is the Almost Same Transition 

Automaton, too. As for a real model, the Almost Same Transition Automaton can 

be different and more than one. 

 

 

 

Figure 4.19: Nondeterminism Problem of Almost Same Transition Check 

 



55 
 

However, if those events share the same source in this particular automaton,  

they cannot be Almost Same Transition. That is because if they are replaced by a 

single event, then the automaton will become nondeterministic. For the example 

in Figure 4.19, events a and b share the same source state s0 in automaton D4. If 

they were replaced by a single event e for instance, there are two different 

successor states for state s0 and event e. This is not supported by non-projecting 

model checkers used in this project. Thus, this case cannot be treated as an 

instance of Almost Same Transition. 

 

4.2.5 Counterexample Correction for Almost Same 

Transition Check 

 

Almost Same Transition Check is the only automaton simplification strategy 

which changes the counterexample trace in the automaton simplification section. 

The point of Almost Same Transition Check is replacing some events with a new 

single event in a certain automaton. Hence this strategy does not change the length 

of the counterexample trace but changes the events of the trace. Also, there may 

be more than one group of events which can be replaced in one automaton. 

Therefore, the correction of such a counterexample trace is to find the new events 

in the trace and replace them with the original events replaced by them.  

 

In order to replace the new events in the counterexample trace with the original 

events, it is necessary to build a map M to store the replacement information. The 

construction of M can be done during the Almost Same Transition Check. For 

instance, in Figure 4.18, the Almost Same Transition Automaton is D1 and there 

are two sets of events replaced in D1. If events a and b are replaced by a single 

event e, and events c and d are replaced by a single event f, the map M is 



56 
 

M:  e  {a, b} 

    f  {c, d} 

 

The following is the algorithm of counterexample correction for events 

replacement in Almost Same Transition check. 

 

 

Let t be a counterexample found in the model with Almost Same Transition Check 

made of the events σ0, σ1 ... σn-1 when n is the length of the trace t, also let A be the 

Almost Same Transition Automaton. Let M be the replacement map which stores 

what new events replace what original events. 

 

1.  Set the current state state to the initial state of automaton A and i to 0. 

2.  If σi is enabled in state, then set current state state to the successor of state 

with event σi. Go to 4. 

3.  If σi is a new event then look up σi in M to find an original event which is 

enabled in state. Set state to the successor of state with event σi. 

4.  Increase i. If i = n return t. 

5.  Go to 2. 

 

 

Figure 4.20: Find Replaced Events Algorithm 

 

 

This algorithm only works for deterministic models. Also, the Almost Same 

Transition Check states that the group of events which are replaced cannot occur 

at the same place and cannot have the same source states, either. Hereby, if the 

counterexample trace has a new event, this event can be replaced by only one 



57 
 

original event. That is to say, in the current state, if there is an outgoing transition 

labeled with the new event, there is at least one outgoing transition labeled with 

the original events which are replaced by the new event. The original events may 

be more than one, but there is at least one event than can bring the system to the 

same state as the counterexample. 

 

As for a whole model, there may be more than one Almost Same Transition 

automaton. Also, the Almost Same Transition Check happens after every 

projection. The following algorithm is for such a trace correction. 

 

 

Let A1, …, An be the Almost Same Transition automata, and let M be the 

replacement map which stores what new events replace what original events, and 

let t be the trace with Almost Same Transition check. 

 

1.  Set i to equal 0. 

2.  If i equals n+1 return t. 

3.  Correct the trace t using the algorithm in Figure 4.20 with Ai and M as input. 

4.  Increase i, then go to 2. 

 

 

Figure 4.21 Counterexample Correction Algorithm 

for Almost Same Transition Check 

 

 

This algorithm is based on the algorithm in Figure 4.20 and needs to remember 

what new events replace what original events in what automata. 

 



58 
 

4.2.6 Evaluation 

 

This test takes the heuristic minS for the second step of candidate selection and 

the projection limit is 3000. The non-projection model checker used for the 

checking is the BDD Language Inclusion Checker. The examples used in this 

evaluation are from the PROIsafe field bus protocol [MM03], [MM02], [PN02]. 

 

 

Without Automata 

Simplification 

With Automata 

Simplification Model  Property  

  Nodes  Time(s)  O Nodes  Time(s)  O  

HOST__fv_crc__property  F  1 30.915 4 1 320.586 0 

HOST__fv_crc_noinit__property  T  482583 51.816 2 1 550.825 0 profisafe_i4_host  

HOST__fv_timeout__property  T  1 26.063 4 1 7.333 0 

profisafe_i4_slave  SLAVE__fv__property  T  1 1.174 0 1 1.431 0 

HOST__fv_crc__property  F  200701 70.888 13 127134 260.39 11 
profisafe_i4  

HOST__fv_crc_noinit__property  F  213800 74.151 13 125906 313.274 11 

HOST__fv_crc__property  F     O 18 1336962 575.188 18 
profisafe_o4  

HOST__fv_crc_noinit__property  F     O  21 769108 2037.814 16 

HOST__fv_crc__property  F  1 27.312 0 1 295.411 0 

HOST__fv_crc_noinit__property  T  1 60.223 2 1 497.484 0 profisafe_o4_host  

HOST__fv_timeout__property  T  1 14.95 1 1 7.908 0 

profisafe_o4_slave  SLAVE__fv__property  T  155472 19.571 4 1 62.745 0 

 

Table 4.3: Language Inclusion Check Results 

with and without Automata Simplification 

 



59 
 

 

 

Figure 4.22: Peak Nodes after projection 

with and without Automata Simpilification 

 



60 
 

 

 

Figure 4.23: Language Inclusion Check Process Time 

with and without Automata Simplification 

 



61 
 

 

 

Figure 4.24: Projection Overflows with and without Automata Simplification 

 

Table 4.3 displays two test cases. The first case is to check the model without 

Automata Simplification. The second case is to check the model with Automata 

Simplification. The content of the test includes three parts which are Nodes, Time, 

and O. The Nodes is the peak number of the nodes of the synchronous product of 

the model after projection that the BDD language inclusion checker explores. The 

Time is the processing timefor the model checking. The O states the overflows of 

projection. Furthermore, there is only one property in each example. 

 

According to Table 4.3, the peak number of nodes explored by the BDD checker 

after projection with Automata Simplification is smaller than the peak number of 

nodes after projection without Automata Simplification. In Figure 4.22, it shows 

that result clearly. Furthermore, there are two examples which are not solved 

without Automata Simplification, but solved with Automata Simplification. There 



62 
 

two examples are property HOST__fv_crc__property and property 

HOST__fv_crc_noinit__property in model profisafe_o4 [MM03], [MM02], 

[PN02]. The model checking processing timewith Automata Simplification is 

slower than the processing timewithout Automata Simplification, except for the 

models which cannot be solved without Automata Simplification. After Automata 

Simplification, the model becomes small enough for the compositional model 

checker to do more projection with the same projection limit. With Automata 

Simplification, the model is smaller and the number of projection overflows is 

smaller, too. According to Figure 4.24, no model with Automata Simplification 

has more overflows than the model without Automata Simplification. 

 

 

Without AS With AS 
Model Property 

P Time(s) P Time(s) S Time(s) W Time(s) 

HOST__fv_crc__property 26.304 5.873 279.148 320.586 

HOST__fv_crc_noinit__property 19.013 8.466 513.358 550.825 profisafe_i4_host 

HOST__fv_timeout__property 22.494 1.302 5.072 7.333 

profisafe_i4_slave SLAVE__fv__property 0.740 0.474 0.580 1.431 

HOST__fv_crc__property 22.412 6.979 174.293 260.390 
profisafe_i4 

HOST__fv_crc_noinit__property 24.923 6.002 205.019 313.274 

HOST__fv_crc__property 25.085 13.607 390.413 575.188 
profisafe_o4 

HOST__fv_crc_noinit__property 15.458 13.695 1838.376 2037.814 

HOST__fv_crc__property 26.695 5.677 285.195 295.411 

HOST__fv_crc_noinit__property 56.612 8.469 480.952 497.484 profisafe_o4_host 

HOST__fv_timeout__property 12.643 1.389 4.669 7.908 

profisafe_o4_slave SLAVE__fv__property 8.118 2.570 47.259 62.745 

 

Table 4.4: Projection Time and Almost Same Transition Check Time 

 

 



63 
 

 

 

Figure 4.25: Projection Time with and without Automata Simplification 

 



64 
 

 

 

Figure 4.26: Whole Processing timeand Almost Same Transition Check Time 

 

Table 4.4 describes the projection time with and without Automata Simplification, 

the Almost Same Transition Check time, and the whole processing time with 

Automata Simplification. In Table 4.4, P time represents projection time; S time 

represents Almost Same Transition Check time; W time represents the whole 

processing time of model checking with Automata Simplification. According to 

Table 4.4 and Figure 4.25, the projection time with Automata Simplification is 

longer than the projection time with Automata Simplification. The reason is that 

the automata of the model are smaller after Automata Simplification and that 

makes projection faster even though there are more projections after Automata 



65 
 

Simplification. However, Almost Same Transition Check is very time consuming, 

which can be seen from Table 4.4 and Figure 4.26, too. According to Figure 4.26, 

the Almost Same Transition Check time occupies nearly or over ninety percent of 

the whole model checking processing time. Therefore, Almost Same Transition 

Check is the most time consuming check in Automata Simplification, while 

selfloop check and same transition check are not very time consuming. 

 

As a result, the Automata Simplification strategy can reduce the size of the 

synchronous product of the model and improve the performance of verification 

for large examples. Furthermore, some examples can only be solved with 

Automata Simplification. However, this is a time consuming strategy. 



66 
 

 

Chapter 5 

Candidates Construction and Selection 

 

 
The approach of the compositional verification in this report is constructing a 

candidate list, choosing a candidate from it, and applying projection. If the 

automata are composed in different order, the performance of verification is 

different. This chapter presents the method mustL [FM06] to construct a candidate 

list, and four heuristics which are maxL, minS, minT, [FM06] and minCut to pick 

a candidate from the candidate list. MustL is explained first and revisited later for 

its enhancement. The four heuristics are used to explore how the different order 

influences the different performance. Also, this chapter gives some evaluation for 

these heuristics. 

 

 

 

 

 

 

 

 

 

 

 

 



67 
 

  

5.1 Candidates Construction  

 

5.1.1 Introduction 

 

A key issue in compositional verification is in which order and what automata 

should be composed. Before choosing a proper set of automata for composing, it 

is necessary to construct a set of candidates to be chosen from. There is more than 

one automaton in a model usually and these automata can be combined variously. 

Therefore, constructing a proper set of candidates is an important part in 

compositional verification. This set of candidates needs to be small enough and 

has good value in use of compositional verification. MustL [FM06] is such a 

method to construct a series of candidates for automata composing and projection.  

 

5.1.2 MustL candidates construction algorithm 

 

In a candidate, there are two factors should be considered in this algorithm. One 

of them is the set of automata which forms the candidate. And the other factor is 

the set of hidden events which is local in this candidate and can be projected. 

Candidates are “equal” if their sets of automata are equal no matter whether their 

sets of hidden events are equal. If their sets of hidden events are not equal, then 

integrate the sets of hidden events into one as the set of hidden events of the 

candidates. 



68 
 

 

 

Let P be the plant automata set of the model and C be the candidate list. Let E be 

the events set which contains all events mentioned by P only. 

 

1. Initialize candidate list C to be empty. Let E = {e1, … en} and i = 1. 

2. Find the set of automata using ei in P and form it into a candidate can with the 

hidden event ei. 

3. If can is a new candidate, then go to 4. Else go to 6.  

4. If can is a subset of some existent candidates in C, then find the existent 

candidates and add ei into each of them as a hidden event. If can includes 

some existent candidates in C, then set the hidden events of can to be the 

union of the sets of hidden events of the existent candidates plus event ei. 

5. Add can to C. Go to 7. 

6. If can is not a new candidate, then find the existent candidate and the 

candidates which subsume can in C and add the new hidden event ei. 

7. Let i = i + 1, if i ≤ n, go to 2. Else go to 8. 

8. Return candidate list C. 

 

Figure 5.1: MustL candidates construction algorithm 

 

Figure 5.1 describes the mustL candidates construction algorithm. In a model, for 

each event, there exists a candidate which is the set of automata using that 

particular event; therefore it is possible to find out all of the different 

combinations of automata shared some local events with this method. These 

different combinations are candidates for further candidate selection. Also, this 

method is based on the local events, and compositional verification uses 

projection to improve the performance of verification. Thus this method is 



69 
 

suitable for projection which is an effective way to simplify a model by removing 

some local events. Generally, this algorithm picks some sets of automata which 

share some local events from the model and forms them into a candidate list for 

the next step.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



70 
 

 

5.2 Heuristic MaxL 

 

5.2.1 Introduction 

 

Heuristic maxL is a method used to pick a candidate with the maximum 

proportion of local events from a list of candidates [FM06].  

 

This project uses projection as a way to simplify automata. The major idea of 

projection is to remove certain events, which are local events, in order to simplify 

an automaton. Therefore, if the local events occupy a large proportion of all 

events of the automaton, the automaton after projection is likely to be much 

smaller than the original automaton. A candidate normally contains more than one 

automaton. The automata in a candidate will be composed into one automaton and 

simplified. Therefore, if the local events occupy larger proportion of all events of 

the automata in the candidate, the automaton after composing and projection is 

likely to be much smaller too. That is to say, if the candidate has the maximum 

proportion of local events, the new automaton of this candidate is likely to be the 

furthest simplified automaton in all candidates. 

 

Consequently, heuristic maxL is capable of candidate selection. 

 



71 
 

5.2.2 Algorithm for calculating proportion of local events 

 

A candidate has two properties which are local events and all events. Local events 

are events shared by the automata in the candidate only. All events are all of 

events used by the automata in the candidate. Set the size of local events with L 

and set the size of all events with E. Then the proportion of local events is  

 

L / E 

 

For example, in a candidate, the size of local events is 6 and the size of all events 

is 20. Then the proportion of local events is  

 

6 / 20 = 30% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



72 
 

 

5.3 Heuristic MinS 

 

5.3.1 Introduction 

 

Heuristic minS is a method used to select the candidate with the minimum number 

of states of the synchronous product [FM06]. This heuristic tries to keep the 

synchronous product of the candidate after composing and projection as small as 

possible. 

 

Model verifiers prefer small and simple models. The smaller the model is, the 

faster the verifier can check the model. The aim of composing and projection is to 

reduce the size of large models and enable the verifier to verify them. Hence, if 

the synchronous product of a candidate is not small enough, this candidate is not 

considered to be composed and projected. Heuristic minS is such a heuristic to 

choose the candidate with the smallest number of states of the synchronous 

product. 

 

However, it is unwise to calculate the actual and precise number of states, because 

constructing the synchronous product is the only way to obtain the actual and 

precise number of states, while synchronous product constructing is a time and 

space consuming procedure, especially for large models. Therefore, for heuristic 

minS, it is better to predict the number of states of the synchronous product rather 

than calculate the real number of states. 

 



73 
 

5.3.2 Algorithm for predicting the number of states of the 

synchronous product 

 

There are many algorithms for predicting the number of states of the synchronous 

product. For example, machine learning techniques [PS08] can be used for the 

prediction and the machine learning way produces a more accurate result also. 

Machine learning has its drawbacks. It costs too much time and memory to train 

the data. This project takes a much more ordinary algorithm to predict the number 

of states of the synchronous product of a candidate in order to validate the 

feasibility of heuristic minS. 

 

This algorithm assumes that the number of states of the synchronous product of a 

candidate is the product of multiplying every number of states of the automata in 

the candidate, if these automata are composed without projection. With projection, 

the states number of the synchronous product is reduced in proportion to the 

amount of local events in all events. For automata A1, … An with number of states 

P1, … Pn, set the number of local events to L and set the number of all events to E. 

Then the estimated number of states of the synchronous product of the candidate 

is 

 

P1 × … × Pn × (E – L) / E 

 



74 
 

For example, there are three automata which are automaton A, automaton B and 

automaton C in a candidate. The numbers of states of A, B and C are 3, 5, and 4 

respectively. The number of local events is 6 and the number of all events is 20. 

Then the estimated number of states of the synchronous product of this candidate 

is  

 

(3 × 5 × 4) × (20 - 6) / 20 = 42 

 

 



75 
 

5.3.3 Number of states prediction evaluation 

 
 

Model Candidate 

Predicted 

state 

number 

Real 

state 

number 

machine3 0.75 1 

machine1:plant 1.5 2 bfactory 

machine2:plant 1.5 2 

SLAVE__out_ps_status_bit4_FV__app_process_data__INPUT:plant 

SLAVE__uncont:plant 7.8 7 

SLAVE__got_msg  SLAVE__main  SLAVE__polling 35.57 17 

SLAVE__fv__property:plant  SLAVE__polling 

SLAVE__uncont:plant 51.55 16 

SLAVE__fv__property:plant  SLAVE__got_slave_timeout:plant 

SLAVE__slave_timeout:plant  SLAVE__uncont:plant 102.92 290 

SLAVE__fv__property:plant  SLAVE__got_msg 

SLAVE__in_CRC  SLAVE__in_cons_num__4 

SLAVE__uncont:plant 853.89 1325 

SLAVE__in_CRC  SLAVE__in_cons_num__4 

SLAVE__main  SLAVE__out_cons_num_spec__4 

SLAVE__polling 1523.57 489 

SLAVE__got_slave_timeout:plant  SLAVE__main 

SLAVE__number_ok_cycles__INPUT 

SLAVE__out_ps_status_bit3_TO:plant 

SLAVE__polling  SLAVE__slave_timeout:plant 1711.38 47 

Profisafe 

_i4_slave  

 

SLAVE 

__fv 

__property 

SLAVE__got_slave_timeout:plant  SLAVE__in_cons_num__4 

SLAVE__main  SLAVE__number_ok_cycles__INPUT 

SLAVE__out_cons_num_plant__4:plant 

SLAVE__out_cons_num_spec__4 

SLAVE__out_ps_status_bit2_CRCNO:plant  SLAVE__polling 

SLAVE__slave_timeout:plant 206526.31 O 

 

Table 5.1: Predicted state number and real state number for 

controllability check and language inclusion check 

 

In order to evaluate the states number prediction algorithm, this section uses two 

candidate lists of two models to do the evaluation. The first model is bfactory with 



76 
 

a candidate list which has three candidates. This model is verified for 

controllability. The second model is Profisafe_i4_slave with property 

SLAVE__fv__property and a candidate list which has eight candidates. This model 

is verified for language inclusion. The state limit for projection is 1000. Table 5.1 

describes the candidates and the automata in it, and the predicted state number and 

real state number of the synchronous product of these candidates. 

 

 

 

 

Figure 5.2: Profisafe_i4_slave predicted states nubmer and real states number 

for language inclusion check 

 

According to Table 5.1, the predicted state number is different from the real state 

number. The projection for the eighth candidate of model profisafe_i4_slave is 

overflow, and the real number of states of it cannot be calculated. However, 

according to Figure 5.2, the trend of the increment of the predicted state number is 



77 
 

similar to the trend of increment of the real state number. This is enough for 

candidate selection because this project only considers the candidate with the 

minimum number of states of the synchronous product, and not the real and 

accurate number of states. Since this algorithm still cannot completely represent 

the proper trend at some places, some improvement may be possible to enhance 

the prediction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



78 
 

 

5.4 Heuristic MinT 

 

5.4.1 Introduction 

 

Heuristic minT is a method used to choose the candidate with the minimum 

number of transitions of the synchronous product [FM06].  

 

This heuristic focuses on the structure of automata, too. Furthermore, heuristic 

minT is keen to keep the synchronous product of the candidate after composing 

and projection as small as possible like heuristic minS. Instead of using the 

number of states as the measure of complexity of an automaton, this heuristic uses 

the number of transitions. The number of states is not the only factor to evaluate if 

an automaton is small or not, because there is another factor needs to be 

considered which is number of transitions. For example, if an automaton has two 

states, but it has two hundred transitions, this automaton is not a small automaton. 

 

Accordingly, heuristic minT is also a strategy which is capable of selecting the 

candidate with a small synchronous product. 

 



79 
 

5.4.2 Algorithm for predicting the number of transitions 

of the synchronous product  

 

The number of transitions of the synchronous product of a candidate cannot be 

calculated directly because of the same reason of calculating the number of states 

of the synchronous product. Therefore, finding a method to predict the number of 

transitions of the synchronous product is necessary for heuristic minT. 

 

This algorithm only considers the transitions labeled with events which are not 

local events. For each event which is not a local event, find all the transitions 

labeled with it in every automaton in the candidate. Multiply the number of these 

transitions of every automaton and obtain the product. Then add the entire product 

of all events except local events together and obtain a sum. This algorithm 

assumes the sum as the predicted number of transitions of the synchronous 

product of the candidate. For automata A1, … An with number of σ transitions     

T1, σ, … Tn, σ, set the non-local events set to NE. Then the estimated number of 

transitions of the synchronous product of the candidate is 

 

 

 

 

For example, there is a candidate with three automata which are automaton A, 

automaton B, and automaton C. This candidate has three events which are event a, 

event b, and event c. These events are not local. The numbers of transitions 

labeled with event a are 1 in automaton A, 4 in automaton B, and 7 in automaton 



80 
 

C. The numbers of transitions labeled with event b are 2, 5, and 8 in automaton A, 

B, and C respectively. The numbers of transitions of event c are 3, 6, and 9 

respectively. Then the predicted transitions number of the synchronous product of 

the candidate is 

 

(1 × 4 × 7) + (2 × 5 × 8) + (3 × 6 × 9) = 28 + 80 + 162 = 270 

 

5.4.3 Number of transitions prediction evaluation 

 

This section uses two candidate lists of two models in order to evaluate the 

number of transitions prediction algorithm. The first model is bfactory with a 

candidate list which has three candidates. This model is verified for controllability. 

The second model is Profisafe_i4_slave with property SLAVE__fv__property and 

a candidate list which has eight candidates. This model is verified for language 

inclusion. The node limit for projection is 1000. 



81 
 

 

Model Candidate 

Predicted 

transition 

number 

Real 

transition 

number 

machine3 1 1 

machine1:plant 3 4 bfactory 

machine2:plant 3 4 

SLAVE__got_msg  SLAVE__main  SLAVE__polling 1716 253 

SLAVE__out_ps_status_bit4_FV__app_process_data__INPUT:plant 

SLAVE__uncont:plant 
1732 345 

SLAVE__fv__property:plant  SLAVE__got_slave_timeout:plant 

SLAVE__slave_timeout:plant  SLAVE__uncont:plant 
53752 23274 

SLAVE__fv__property:plant  SLAVE__polling 

SLAVE__uncont:plant 
113889 1564 

SLAVE__fv__property:plant  SLAVE__got_msg 

SLAVE__in_CRC  SLAVE__in_cons_num__4 

SLAVE__uncont:plant 

134094 80936 

SLAVE__in_CRC  SLAVE__in_cons_num__4  SLAVE__polling 

SLAVE__main  SLAVE__out_cons_num_spec__4 
3655286 5669 

SLAVE__got_slave_timeout:plant  SLAVE__main 

SLAVE__number_ok_cycles__INPUT 

SLAVE__out_ps_status_bit3_TO:plant  SLAVE__polling 

SLAVE__slave_timeout:plant 

2.15E8 1103 

Profisafe 

_i4 

_slave  

 

 

SLAVE 

__fv 

__property 

SLAVE__got_slave_timeout:plant  SLAVE__in_cons_num__4 

SLAVE__main  SLAVE__number_ok_cycles__INPUT 

SLAVE__out_cons_num_plant__4:plant 

SLAVE__out_cons_num_spec__4 

SLAVE__out_ps_status_bit2_CRCNO:plant  SLAVE__polling 

SLAVE__slave_timeout:plant 

5.92E13 O 

 

Table 5.2: Predicted transition number and real transition number for 

controllability check and language inclusion check 



82 
 

 

 

 

Figure 5.3: Profisafe_i4_slave predicted transition nubmer 

 and real transition number for language inclusion check 

 

According to Table 5.2, the predicted number of transitions is different from the 

real number of transitions. The projection for the eighth candidate of model 

profisafe_i4_slave is overflow, and the real number of transitions of it cannot be 

calculated. However, according to Figure 5.3, the trend of the increment of the 

predicted number of transitions is similar to the trend of increment of the real 

transitions number. At least, the candidates with the minimum number of 

transitions are same. This is enough for candidate selection because this project 

only considers the candidate with the minimum transitions number of the 

synchronous product and not the real and accurate transitions number. Since this 



83 
 

algorithm still cannot completely represent the proper trend at some places, some 

improvement may be possible to enhance the prediction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



84 
 

 

5.5 Heuristic MinCut 

 

5.5.1 Introduction 

 

The three heuristics above are all based on the structure of automata such as 

events, states, and transitions. Respectively, heuristic maxL concentrates on events; 

heuristic minS concentrates on states; and heuristic minT concentrates on 

transitions. Apart from that, according the study of modular structure of those 

models, a quite different new heuristic minCut is introduced in this project. This 

heuristic is based on the connections between automata instead of the structure of 

single automaton. 

 

 

Figure 5.4: Simple modular structure graph 

A 

B 

C 

E D 

F 

G 



85 
 

 

Figure 5.4 describes a modular structure of a model. In the graph of Figure 5.4, 

every letter represents an automaton of the model, and the line between them 

represents that they share an event. More lines mean more events are shared. In 

the structure graph, the automata with more shared events are grouped together 

and therefore the model is partitioned into several groups. For example in Figure 

5.4, there are seven automata A, B, C, D, E, F, and G. In these automata, A, B, and 

C are close to each other and grouped together. In this way, there are two more 

groups which are D and E, and F and G. Therefore, if the automata in one group 

are composed first, the synchronous product of this group could be simplified 

much further, and more local events can be projected out. The reason is in one 

group, the automata share much more events with each other than the rest of the 

groups. Also, if the group has fewer connections with outside, then the 

synchronous product of the group could be smaller. For example, if the group has 

no connections with other groups, the group could be eliminated from the model 

entirely. Hence, finding the group with the fewest connections with outside and 

composing its automata first is another possible approach to improve the 

performance of composing and projection. 

 

In order to find such a group according to the modular structure, a new strategy 

based on graph theory is introduced. Just as its name implies, graph theory is the 

study of graphs [GC85]. As for this project, the graphs are modular structure 

graphs of models. The modular structure graph shows the relations between 

automata by events they share. In graph theory, a theorem named max-flow 

min-cut is used to determine the best way to cut a graph. It states that “the 

maximum amount of flow is equal to the capacity of a minimum cut.” [MFMC] 

However, this method needs a source and a sink (target) for calculating the flows, 

while the modular structure graph is an undirected graph and does not have a 



86 
 

source state and a sink state. Fortunately, the idea of adopting max-flow min-cut 

theorem is to find the minimum cut and the cut number can be calculated without 

knowing the amount of flow. Thus, a reformative max-flow min-cut method 

named “minCut” is introduced to select the candidate. 

 

MinCut is a heuristic to select the candidate with the minimum cut number. It 

comes from the max-flow min-cut theorem and focus on the connections of 

automata. This heuristic does not calculate the cut number by the flow like the 

max-flow min-cut theorem does. It obtains the cut number by counting the shared 

events instead. This heuristic divides the model into two groups. One group is the 

candidate to be composed and the rest of the model is another group. The number 

of events shared by the two groups is the cut number. 

 

5.5.2 Algorithm for calculating the cut number 

 

The way of calculating the cut number is picking a group out, which is taken as 

the source, taking the rest of the automata in the model as the sink, and then 

adding every shared event between every automaton in the source and every 

automaton in the sink. The amount of shared events is the cut number. For 

example, 

 



87 
 

 

Figure 5.5: A sample of cut number calculation 

 

This model in Figure 5.5 has five automata which are A, B, C, D, and E. In which, 

A, B, and C are grouped together and taken as source and the rest automata which 

are D and E are taken as sink. So for every automaton in source, every event is 

counted once for each time it is shared with an automaton in sink. Furthermore, if 

this event is shared more than once, it should be counted more than once. In the 

example in Figure 5.5, the event a in automaton A is shared by automaton D and E, 

so event a is counted twice with respect to automaton A. So is the event a in 

automaton B. In this way, the cut number for group ABC is six. 

 

One of the disadvantages of heuristic minCut is that it is hard to form the groups. 

It will grow exponentially with the number of automata in the model if all of the 

combinations of the automata are considered. Accordingly, this heuristic cannot be 

used alone for candidate selection of large systems. Nevertheless, in this project, 

a 

b 

a 

d 

a 

e 

f 
b 

c 

e 

a 

e 

Source  Sink (Target) 

Cut number: 6 

A 

B 

C 

D 

E 



88 
 

some candidates have been constructed already at the first step and they can be 

treated as the sources. In this way, minCut can be adopted to select the candidate.  

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



89 
 

 

5.6 An Enhancement for Candidates 

Construction 

 

5.6.1 Subsumption 

 

The first section of this chapter describes a candidates construction method musL. 

This method constructs a candidate list. However, this candidate list may not be 

small enough. There may be some candidates which are subsets of other 

candidates in the candidate list. If the compositional verification composes the 

larger candidates first, it is slower than composing the subset of those larger 

candidates first. That means this method only needs to consider the smaller 

candidates and abandon the larger candidates which contain these smaller 

candidates. The subsumption test is to check whether a candidate subsumes 

another candidate. The benefits of subsumption test are making the candidate list 

short and improving the candidate selection speed by removing those larger 

candidates from the candidate list. Therefore, some improvements can be made 

using subsumption test in the algorithm in Figure 5.1.  

 



90 
 

 

Let P be the plant automata set of the model and C be the candidate list. Let E be 

the events set which contains all events mentioned by P only. 

 

1. Initialize candidate list C to be empty. 

2. Let E = {e1, … en} and i = 1, find the set of automata using ei in P and form it 

into a candidate can with the hidden event ei. 

3. If can is a new candidate, then go to 4 and check subsumption. Else go to 6.  

4. If can is a subset of some existent candidates in C, then replace these existent 

candidates with can and go to 7. If can includes some existent candidates in C, 

then drop can and go to 7. 

5. Add can into C. 

6. If can is not a new candidate, then find the existent candidate in C and add the 

new hidden event ei. 

7. Let i = i + 1, if i ≤ n, go to 2. Else go to 8. 

8. Return candidate list C. 

 

Figure 5.6: MustL candidates construction algorithm with subsumption test 

 

According to the algorithm in Figure 5.6, only small candidates can remain in C. 

That is to say, if the new candidate is a subset of an existent candidate then replace 

the existent candidate with the new candidate in C or if there is an existent 

candidate which is a subset of the new candidate then drop the new candidate. In 

this way, candidates construction with subsumption test can minimize the size of 

C and speed up the candidate selection. Further, candidates construction with 

subsumption test can accelerate compositional verification. 

 

 



91 
 

5.6.2 Subsumption evaluation 

 

This test uses mustL as the first step and the maxL as the second step and does the 

controllability test of the examples. The states limit for projection is 1000. The 

non-projection model checker used in the test is the Modular model checker. 

 

 

without subsumption test with subsumption test 
Model 

States Time (s) States Time (s) 

big_bmw 0 1.063 0 1.417 

ftechnik 1 13.199 1 11.343 

fzelle 0 4.107 0 6.624 

rhone_alps 0 0.413 0 3.274 

rhone_tough 235256 15.6 5804890 39.273 

tbed_ctct 697531 45.454 646329 18.06 

tbed_nocoll 7798 59.67 8438 21.095 

tbed_noderail 7464 55.535 8016 23.138 

tbed_uncont 2550 53.033 2699 29.759 

verriegel4 0 18.475 0 4.68 

 

Table 5.3: Subsumption test with maxL 

 

 

 



92 
 

 

 

Figure 5.7: MaxL Processing Time with and without subsumption test 

 

This test considers two parts for evaluation. One of parts is States and the other 

part is Time. States is the peak number of states encountered by the modular 

controllability checker when analyzing the simplified model. Time is the whole 

processing time of verification. The data in Table 5.3 shows that verification with 

subsumption test is faster than verification without it in most cases. But for some 

cases, especially for rhone_rough, it is slower. The reason is that subsumption test 

changes the order of composing with heuristic maxL too much and some improper 

candidates are selected. For example, there is a candidate list with two candidates 

C1 and C2. C1 subsumes C2. The model checker takes C1 for projection without 

subsumption test. However, with subsumption test, C1 is removed from the 

candidate list and the model checker can only takes C2 for projection. Since the 

model checker takes different candidates when subsumption test is employed, the 

processing time is different. If subsumption test does not change the order of 

composing too much and only reduces the size of candidate list, the whole 

processing time can be cut down. Otherwise, the whole processing time may not 



93 
 

be cut down. 

 

Since subsumption retains small candidates and removes large candidates, it is 

similar to heuristic minS. Both of these two methods prefer small candidates. 

Therefore, the subsumption will not change the order of composing for heuristic 

minS. The following test evaluates verification with heuristic minS and 

subsumption test. 

 

The second test takes mustL as the first step and minS as the second step and does 

the controllability test of the examples. The states limit for projection is 1000. The 

non-projection model checker used in the test is the Modular model checker. 

 



94 
 

without subsumption test with subsumption test 
Model 

States Time (s) States Time (s) 

big_bmw 0 0.506 0 0.482 

ftechnik 1 6.223 2 3.534 

fzelle 0 0.8 0 0.716 

rhone_alps 0 0.236 0 0.224 

rhone_tough 193297 3.907 193297 3.515 

tbed_ctct 646329 10.485 646329 7.264 

tbed_nocoll 7263 13.437 7263 8.393 

tbed_noderail 7247 13.672 7247 7.718 

tbed_uncont 2418 13.348 2418 7.947 

verriegel4 0 2.304 0 2.021 

 

Table 5.4: Subsumption test with minS 

 

 
 

Figure 5.8: MinS Processing Time with and without subsumption test 



95 
 

 

This test considers two parts for evaluation. One of the parts is States and the 

other part is Time. States is the peak number of states encountered by the modular 

controllability checker when analyzing the simplified model. Time is the whole 

processing time of verification. According to the results in Table 5.4 and Figure 

5.8, with subsumption test the verification time is almost cut down to half of the 

verification time without subsumption test. Meanwhile, it does not change the 

peak number of states in most of the examples because of the resemblance of 

minS and subsumption test which makes the subsumption test only reduce the 

number of candidates. The results in Table 5.2 prove that the subsumption test can 

really speed up the composing. 

 

In order to explain why it can speed up processing, an example is considered for 

further analyzing. The example is tbed_nocoll, and its verification time is almost 

cut down to half of the original time after subsumption test is introduced. 



96 
 

 

step 

without 

subsumption 

test 

with 

subsumption 

test 

 step 

without 

subsumption 

test 

with 

subsumption 

test 

1 105 58  29 73 54 

2 104 59  30 72 53 

3 103 59  31 71 52 

4 102 60  32 70 51 

5 101 59  33 69 51 

6 100 60  34 68 51 

7 99 60  35 67 51 

8 98 59  36 66 49 

9 97 60  37 65 49 

10 96 60  38 64 45 

11 95 60  39 63 42 

12 94 59  40 62 38 

13 91 58  41 61 37 

14 90 57  42 60 38 

15 89 58  43 59 38 

16 88 59  44 58 39 

17 87 60  45 57 38 

18 86 61  46 55 36 

19 85 61  47 52 35 

20 84 62  48 50 36 

21 81 61  49 49 36 

22 80 60  50 47 33 

23 79 59  51 46 30 

24 78 59  52 44 29 

25 77 59  53 43 26 

26 76 57  54 41 21 

27 75 56  55 39 21 

28 74 55  56 37 19 

 

Table 5.5: Candidates Number for every step 

with and without subsumption test for tbed_nocoll 



97 
 

 

 

 

Figure 5.9: Candidates Number for every step 

with and without subsumption test for tbed_nocoll 

 

This example takes 56 steps to do the projection. That is to say, it chooses 56 

candidates in total. At each step, there are some candidates to be chosen according 

to some method. Hence, if the candidates are too many, it will be more expensive 

to compare and choose the candidates. Table 5.5 shows the number of candidates 

in the candidate list for every step with and without subsumption test. It is clear 

from Table 5.5 and Figure 5.9 that at each step the candidate list with subsumption 

test has fewer candidates than the candidate list without subsumption test. The 

candidate list with subsumption test only has about half the number of candidates. 

That explains why the program with subsumption test is round about twice as fast. 

 

 

 



98 
 

 

5.7 Evaluation 

 

5.7.1 Introduction 

 

This project employs the results of controllability check and language inclusion 

check for the evaluation. Both controllability check and language inclusion check 

use four different heuristics, which are heuristic maxL, minS, minT and minCut, 

as the heuristic of the second step of candidate selection to check the model. As 

for the non-projection model checker, the state limit is set to ten million. That is to 

say, if the number of the states of the synchronous product of the model after 

composing and projection exceeds ten million, the checking will be terminated in 

order to prevent the non-projection model checker from running out of memory. 

Also, for the projection, there are two different state limits, which are three 

thousand and one thousand respectively. That means the number of the states of 

the new automaton, which is obtained by composing a set of automata and 

projecting the composition, cannot be larger than three thousand or one thousand. 

If the number exceeds the state limit, the composing and projection of this 

candidate stop. If the composing and projection of a candidate stop, this situation 

is called a projection overflow. 

 

As for the controllability check, three aspects are examined. These three aspects 

are States, Time, and O. States represents the number of the states explored by the 

model checker. Time represents the processing time of the checking. O represents 

the number of the projection overflows. The non-projection controllability 



99 
 

checkers employed for the controllability check are Modular controllability 

checker, BDD controllability checker, and Native controllability checker. Nodes is 

examined instead of States for BDD controllability checker. 

 

As for the BDD language inclusion check, four aspects are examined. These four 

aspects are States, Nodes, Time and O. States represents the sum of the number of 

states of the new automata created by the composing and projection. Nodes 

represents the peak number of the nodes explored by BDD model checker. Time 

represents the processing time of the checking. O represents the number of the 

projection overflows. This project takes only one property at a time to do the 

language inclusion check. 

 

As for the Modular language inclusion check, three aspects are examined. These 

three aspects are States, Time and O. States represents the peak number of the 

states explored by Modular model checker. Time represents the processing time of 

the checking. O represents the number of the projection overflows. This project 

takes only one property at a time to do the language inclusion check. 

 



100 
 

5.7.2 Controllability Check Results 

 

Table A1 and Table A2 in the appendix show the results of controllability check 

with projection limit three thousand and one thousand respectively for the 

Modular controllability checker. Data is summarized in Figure 5.10, 5.11 and 

5.12.  

 
 

 
 

Figure 5.10: Peak number of states with Modular controllability checker 
Projection limit 3000 

 
 
 
 
 
 
 
 
 
 



101 
 

 

 

 
Figure 5.11: Processing time with Modular controllability checker 

Projection limit 3000 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



102 
 

 
 

 
 

Figure 5.12: Number of projection overflows with Projection limit 3000 
 
 

 

According to Table A1, heuristic minCut is the only heuristic that can solve all of 

the models. The other three heuristics cannot solve the model tbed_ctct. Figure 

5.10 and Figure 5.12 show that heuristic maxL has a small number of the states 

explored by model checker but the largest number of the projection overflows. 

Especially for small models, it has the smallest number of states. Whereas, for the 

model tbed_nocoll and tbed_noderail, the number of the states with maxL is about 

two times larger than the number of the states with minCut. As for the heuristic 

minS, it has faster processing time of model checking than the other three 

heuristics. It can be seen from figure 5.11. However, for the model rhone_tough, 

the processing time of minS is slower than the processing time of the other three 

heuristics. As for the heuristic minT, it has similar performance with the heuristic 

minS except that minT has a larger number of the states and slower processing 



103 
 

time of the model checking. Nevertheless, for the model tbed_noderail, the 

number of with heuristic minT is smaller than the number of states with minS. As 

for the heuristic minCut, its processing time of model checking is fast and close to 

the processing time of model checking with the heuristic minS. For the model 

tbed_nocoll, tbed_noderail and mx27, the number of states with the heuristic 

minCut is smaller than the number of states with the other three heuristics. 

 

 

 

Figure 5.13: MinCut Processing Time with projection limit 3000 and 1000 

For Modular controllability checker 

 

 

 

 

 



104 
 

 

 

Figure 5.14: MinS number of projection overflows with  

projection limit 3000 and 1000 

 

 

According to Table A2, these four heuristics have similar behavior with their 

behavior in Table A1. With the comparing of these two tables, it shows that the 

processing time with larger projection limit is slower and the number of the 

projection overflows with larger projection limit is smaller. The reason is that 

large projection limit allows more projection and more projection means more 

processing time. At the same time, the large projection limit allows more 

candidates pass the projection without selecting the next candidate, so its number 

of projection overflows is small. It can be seen from Figure 5.13 and Figure 5.14. 

Composing and projection are expensive and slow. Therefore, if the compositional 

model checker does more composing and projection, the processing time of model 

checking will be longer. However, if the compositional model checker does less 

composing and projection, then the model may not be small enough for the 

non-projection controllability checker to handle. The state space problem still 

exists. Consequently, for small models, the projection limit should be smaller 



105 
 

while for large models, the projection limit should be larger. 

 

Table A3 and Table A4 in the appendix show the results of controllability check 

with projection limit three thousand and one thousand respectively for the BDD 

controllability checker. Table A5 and Table A6 in the appendix show the results of 

controllability check with projection limit three thousand and one thousand 

respectively for the Native controllability checker. The four heuristics for these 

two non-projection controllability checkers have similar behaviors to the 

heuristics for the Modular controllability checker. However, as for Native 

controllability checker, all the examples can be solved by these four heuristics.  

 

5.7.3 Language Inclusion Check Results 

 

Table A7, A8, A9 and A10 in the appendix show the results of language inclusion 

check with projection limit three thousand for the BDD language inclusion 

checker. Table A11, A12, A13, and A14 show the results of language inclusion 

check with projection limit one thousand for the BDD language inclusion checker. 

Data is summarized in Figure 5.15, 5.16, 5.17, and 5.18. 



106 
 

 

 

 

Figure 5.15: Number of states of the new automata for  

BDD language inclusion check with projection limit 3000 

 
 
 
 
 
 
 
 
 



107 
 

 

 

Figure 5.16: Peak Number of nodes for BDD language inclusion check  

with projection limit 3000 

 



108 
 

 

 

Figure 5.17: Processing time for BDD language inclusion check  

with projection limit 3000 

 



109 
 

 

 

Figure 5.18: Number of projection overflows for BDD language inclusion check  

with projection limit 3000 

 
 

 

According to Table A7, A8, A9 and A10, heuristic maxL is the heuristic that can 

solve most of the models. It cannot solve the model profisafe_i4 with the property 

SLAVE__fv__property. Figure 5.15, 5.16, 5.17 and 5.18 show that the heuristic 

maxL has the largest number of the states of the new automata, the largest peak 

number of the nodes explored by the BDD model checker, the longest processing 

time of model checking and the largest number of projection overflows. That is 

because the compositional model checker can project more events out and do 

more composing and projection with maxL. Whereas, for the model profisafe_o4 

with the properties HOST__fv_crc__property and 

HOST__fv_crc_noinit__property, the peak number of the nodes with maxL is 



110 
 

about half less than the peak number of the nodes with the other three heuristics. 

As for the heuristic minS, it has faster processing time of model checking than the 

other three heuristics for most of the models according to Figure 5.17. Especially 

for the large examples, it has faster processing time. For example, the processing 

time of model checking with minS for the model profisafe_i5 with the properties 

fv__host_to__3__property and fv__host_to__3r__property, is the fastest. However, 

for some smaller models as profisafe_i4_host with the properties 

HOST__fv_crc__property and HOST__fv_crc_noinit__property, the processing 

time with minS is slower than the processing time with minCut. According to 

Figure 5.18, the number of projection overflows with minS is the smallest. That is 

because that minS selects the small candidates first, it is not easy to exceed the 

projection limit. Unfortunately, heuristic minS is the heuristic which can solve the 

least models according to Table A7, A8, A9 and A10. As for the heuristic minT, it 

has similar performance to heuristic minS except that minT has slower processing 

time of model checking. Nevertheless, for the model profisafe_i5_host with the 

property HOST__fv_crc_noinit__property, the processing time of model checking 

with heuristic minT is faster than the processing time of model checking with 

minS. As for the heuristic minCut, its processing time of model checking is faster 

than the processing time of model checking with minS for small models and 

slower than the processing time of model checking with minS for large models. 

For the model profisafe_i4 with the property SLAVE__fv__property, it cannot 

complete the composing part. 

 

 

 

 

 

 



111 
 

 

 

 

Figure 5.19: MinS Processing time with projection limit 3000 and 1000 

for BDD language inclusion checker 



112 
 

 

 

 

Figure 5.20: MinS number of projection overflows with  

projection limit 3000 and 1000 

 

According to Table A11, A12, A13, and A14, these four heuristics have similar 

behavior with their behaviors in Table A7, A8, A9 and A10. With the comparing 

of these tables, it shows that the processing time of model checking with larger 

projection limit is slower than the processing time of model checking with smaller 

projection limit according to Figure 5.19. That is because that composing and 

projection are expensive and slow and large projection limit allows more 

projection. Also, the number of projection overflows with small projection limit is 

large for most of the examples according to Figure 5.20. Since the non-projection 

BDD model checker can handle the model with around ten million nodes well, 

choosing the proper projection limit and making the number of nodes of the 

model after composing and projection to be around ten million is still a challenge. 

 



113 
 

Table A15, A16, A17 and A18 show the results of language inclusion check with 

projection limit three thousand for the Modular language inclusion checker. Table 

A19, A20, A21, and A22 show the results of language inclusion check with 

projection limit one thousand for the Modular language inclusion checker. The 

four heuristics for the non-projection Modular language inclusion checker have 

similar behaviors to the heuristics for the BDD language inclusion checker except 

that the Modular model checker solves fewer examples.  



114 
 

 

Chapter 6 

Conclusion 

 

 

This project presents an enhanced compositional verification method to improve 

the performance of the verification of safety properties of models. This method 

tries to reduce the complexity and size of the model by composing a proper subset 

of the automata of the model and projecting some events out iteratively, and then 

obtain a smaller and less complex model. Experimental results show that the 

method can reduce the complexity and size of models indeed and improve the 

performance of verification of safety properties. Especially for the large industrial 

examples, this method can cope quite well with them. The example profisafe_i6, 

which was never verified for the language inclusion check before, is verified by 

this method. 

 

The enhanced compositional verification method employs a two-step method for 

choosing a set of automata to compose. There are four heuristics, which are 

heuristic maxL, minS minT and minCut, at the second step of automata selection. 

According to the experimental data, these heuristics are good at checking different 

examples. Heuristic maxL can verify most of the large models for language 

inclusion check, while heuristic minCut is the only heuristic which can verify all 

of the models considered in the test suite for controllability check with all 

different model checkers. Heuristic minS and minT have similar behaviors and are 

stable at checking large models in short processing time for both controllability 

check and language inclusion check. 



115 
 

 

There are still some ways that can improve the compositional verification of 

safety properties method. How to select the maximum state limit for projection is 

the first challenge. A small maximum state limit for projection can speed up the 

checking, but the model may not be simplified enough for checking. A large 

maximum state limit for projection can simplify the model more, but it will cost 

more time. As for heuristic minS and minT, the prediction of the number of states 

and the number of transitions of the synchronous product of a set of automata can 

be more accurate in order to improve the automata selection by taking some more 

reliable new algorithms. Last but not least, different heuristics for the automata 

selection and new effective automaton simplification approaches can also be 

studied. For example, automatically select the proper heuristic for different 

models, or find a new simple way to represent models. 



116 
 

 

References 

 
[AFF02] Knut Åkesson, Martin Fabian, Hugo Flordal, “Exploiting modularity for 

synthesis and verification of supervisors”, Proc. 15
th

 IFAC World Congress on 

Automatic Control, Barcelona, Spain, 2002. 

 

[BBFLPP98] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, 

Ph. Schnoebelen, “Systems and Software Verification”, Springer, 1998. 

 

[BC94] Bertil Brandin, François Charbonnier, “The supervisory control of the 

automated manufacturing system of the AIP”, Proceedings of Rensselaer’s 4
th

 

International Conference on Computer Integrated Manufacturing and Automation 

Technology, pages 319-324, Troy, NY, USA, 1994. 

 

[BMM04] B. A. Brandin, R. Malik, P. Malik, “Incremental verification and 

synthesis of discrete-event systems guided by counter-examples”, IEEE Trans. 

Contr. Syst. Technol., vol. 12, no. 3, pp. 387-401, May 2004. 

 

[CMM05] Charles M. Macal, “Verification and Validation”, Workshop on "Threat 

Anticipation: Social Science Methods and Models", The University of Chicago 

and Argonne National Laboratory, Chicago, IL, April 7-9, 2005. 

 

[FM06] Hugo Flordal, Robi Malik, “Modular Nonbloking Verification Using 

Conflict Equivalence”, Proceedings of the 8
th

 International Workshop on Discrete 

Event Systems, Ann Arbor, Michigan, USA, pp. 100-106, July 10-12, 2006. 

 



117 
 

[GC85] Gary Chartrand, “Introductory Graph Theory”, New York, Dover Pubns, 

1985. 

 

[HMU01] J. E. Hopcroft, R. Motwani, J. D. Ullman, “Introduction to Automata 

Theory, Languages, and Computation”, Addison-Wesley, 2001. 

 

[JS06] Jinjian Shi, “FSM Controllability Checker: A Plug-in for Waters Toolkits”, 

Department of Computer Science, The University of Waikato, 2006. 

 

[KG95] R. Kumar, V. K. Garg, “Modeling and control of logical discrete event 

systems”, Kluwer Academic Publishers, 1995. 

 

[LL95] C. Lewerentz, T, Linder, “Case Study ‘Production Cell’”, volume 891 of 

LNCS. Springer-Verlag, 1995. 

 

[LM96] Annette Lötzbeyer, Reinhard Mühlfeld, “Task description of a flexible 

production cell with real time properties”, Technical report, FZI, Karlsruhe, 

Germany, 1996. 

 

[MFMC] “Max-flow min-cut theorem”, [Online], Available: 

http://en.wikipedia.org/wiki/Max-flow_min-cut_theorem  

 

[MJD99] Musa J.D. “Software reliability engineering”, McGraw Hill, 1999. 

 

[MM02] Robi Malik, Reinhard Mühlfeld, “Testing the PROFIsafe protocol using 

automatically generated test cases based on a formally verified model”, Technical 

report, Siemens AG, Corporate Technology, Software and Engineering 1, Munich, 

Germany, 2002. 



118 
 

 

[MM03] Robi Malik, Reinhard Mühlfeld, “A case study in verification of UML 

statecharts: the PROFIsafe protocol”, Journal of Universal Computer Science, 

9(2):138-151, February, 2003. 

 

[MS05] Michael Sipser, “Introduction to the Theory of Computation”, Course 

Technology, 2005. 

 

[OB97] O. Balci. “Verification validation and accreditation of simulation models”, 

In D. H. Withers, B. L. Nelson, S. Andradóttir, and K. J. Healy, editors, Proc. of 

the 29th WSC, pages 135– 141, 1997. 

 

[PD00] Petra Dietrich, “Projekt BMW E65 CAS – FH-Master – eine Modellierung 

in DCD”, Technical report, Siemens AG, Corporate Technology, Software and 

Engineering 4, Munich, Germany, 2000. 

 

[PM03] Petra Malik, “From supervisory Control to Nonblocking Controllers for 

Discrete Event Systems”, PhD thesis, University of Kaiserslautern, Kaiserslautern, 

Germany, 2003. 

 

[PN02] Profibus Nutzerorganisation e. V, “PROFIsafe – profile for safety 

technology, version 1.12”, 2002. 

 

[PS08] Peter Stringer, “Using Machine Learning Techniques to Predict Automata 

Sizes”, Department of Computer Science, The University of Waikato, 2008. 

 



119 
 

[REB86] Randal E. Bryant, "Graph-Based Algorithms for Boolean Function 

Manipulation", IEEE Transactions on Computers, Vol. C - 35, No. 8, pp 677–691, 

1986. 

 

[RJL96] R. J. Leduc, “PLC implementation of a DES supervisor for a 

manufacturing testbed: An implementation perspective”, Master’s Thesis, 

Department of Electrical Engineering, University of Toronto, Ontario, Canada, 

1996. 

 

[RW89] Peter J. G. Ramadge , W. Murray Wonham, “The control of discrete 

event systems”, Proc. of IEEE, vol. 77, no. 1, pp. January 81–98, 1989. 

 

[SW07] Simon Ware, “Modular Finite-State Machine Analysis”, Department of 

Computer Science, The University of Waikato, 2007. 

 

[WM08] Simon Ware, Robi Malik, “The Use of Language Projection for 

Compositional Verification of Discrete Event System”, Proc. 9
th

 International 

Workshop on Discrete Event Systems, WODES'08, 322-327, Göteborg, Sweden, 

28-30 May 2008. 

 

[WS] “WATERS”, [Online], Available: http://www.cs.waikato.ac.nz/~robi/waters/ 



120 
 

 

Appendix 

 

Compositional Verification Results 

 

 
MaxL MinS MinT MinCut 

Model 

States Time(s) O States Time(s) O States Time(s) O States Time(s) O 

big_bmw 1 1.517 0 6 0.629 0 6 1.420 0 7 0.688 0 

Ftechnik 8 16.211 14 18 9.900 6 23 12.845 6 18 9.815 6 

Fzelle 2 34.302 11 4 1.821 0 4 7.605 0 5 1.191 0 

rhone_alps 2 1.165 0 2 0.947 0 2 0.923 0 2 0.659 0 

rhone_tough 18181 59.214 92 496876 130.738 13 117128 25.506 15 56560 19.691 18 

tbed_ctct  O   O   O  4713148 51.425 35 

tbed_nocoll 7553 93.034 73 7227 31.695 17 7385 95.818 17 4994 87.560 37 

tbed_noderail 7023 82.716 66 7211 31.632 17 5521 90.784 12 3814 102.287 39 

tbed_uncont 2640 95.476 73 2612 37.282 16 2612 79.759 18 2664 71.136 23 

verriegel4 1 124.062 58 2 4.321 0 2 5.144 0 2 9.245 13 

small_factory_2 2 0.238 0 2 0.238 0 2 0.237 0 2 0.240 0 

Bfactory 1 0.496 0 1 0.250 0 1 0.271 0 1 0.392 0 

Tictactoe 1 68.532 2 1 1.385 0 1 1.215 0 1 3.718 0 

Mx27 10548 115.273 37 15465 6.206 8 17891 10.937 6 3752 11.117 17 

Bmw_fh 1 1.399 0 1 0.483 0 1 0.812 0 2 0.623 0 

Ftuer 1 0.715 0 1 0.344 0 1 0.378 0 1 0.693 0 

Koordwsp 1 29.107 22 2 0.956 0 2 1.940 0 2 0.686 0 

 
Table A1: Modular Controllability Check with Projection limit 3000 



121 
 

 
MaxL MinS MinT MinCut 

Model 

States Time(s) O States Time(s) O States Time(s) O States Time(s) O 

big_bmw 1 1.362 0 6 0.627 0 6 1.127 0 7 0.688 0 

Ftechnik 8 20.909 27 24 5.236 8 26 7.366 7 24 5.393 8 

Fzelle 2 7.427 15 4 1.579 0 5 3.571 0 5 1.194 0 

rhone_alps 2 1.058 0 2 0.570 0 2 1.008 0 2 0.652 0 

rhone_tough 132240 18.324 75 366141 8.088 14 122965 12.460 18 326990 10.028 27 

tbed_ctct  O   O   O  2849052 26.337 43 

tbed_nocoll 21121 28.998 88 43976 15.190 20 44348 60.019 22 33981 17.128 27 

tbed_noderail 19942 28.603 84 43572 14.831 20 16649 49.395 25 31328 15.824 22 

tbed_uncont 5082 30.266 88 8083 15.712 20 8083 58.803 21 9419 17.310 27 

verriegel4 2547 25.131 62 2 3.388 0 2 5.065 1 2 5.767 14 

small_factory_2 2 0.255 0 2 0.243 0 2 0.242 0 2 0.234 0 

Bfactory 1 0.246 0 1 0.252 0 1 0.255 0 1 0.263 0 

Tictactoe 6 7.766 9 1 0.966 0 1 1.537 0 1 1.662 6 

Mx27 15654 11.157 34 14835 2.545 12 5661 3.942 8 3752 9.135 17 

Bmw_fh 1 1.220 0 1 0.670 0 1 0.589 0 2 0.607 0 

Ftuer 1 0.497 0 1 0.382 0 1 0.793 0 1 0.397 0 

Koordwsp 1 16.283 29 2 0.968 0 2 1.655 1 2 0.667 0 

 
Table A2: Modular Controllability Check with Projection limit 1000 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



122 
 

MaxL MinS MinT MinCut 

Model 

Nodes Time(s) O Nodes Time(s) O Nodes Time(s) O Nodes Time(s) O 

big_bmw 1 1.509 0 1 0.657 0 1 1.153 0 1 0.711 0 

Ftechnik 1 16.822 14 76237 9.142 6 78481 10.337 6 76237 9.374 6 

Fzelle 1 35.960 11 1 1.606 0 1 7.771 0 1 1.246 0 

rhone_alps 1 1.133 0 1 0.611 0 1 1.044 0 1 0.759 0 

rhone_tough 113893 62.334 92 515529 182.698 13 261834 30.160 15 191721 27.026 18 

tbed_ctct   O     O     O   7970262 1500.452 35 

tbed_nocoll 422357 103.722 73 397028 38.297 17 402697 102.776 17 207488 78.792 37 

tbed_noderail 385741 93.119 66 394511 34.603 17 155854 100.902 12 114535 90.646 39 

tbed_uncont 330219 96.228 73 320476 31.015 16 435543 77.576 18 381368 49.047 23 

verriegel4 1 111.915 58 1 3.648 0 1 5.181 0 1 8.562 13 

small_factory_2 1 0.268 0 1 0.275 0 1 0.272 0 1 0.273 0 

Bfactory 1 0.279 0 1 0.291 0 1 0.324 0 1 0.328 0 

Tictactoe 61 66.709 2 61 0.971 0 58 1.173 0 61 3.040 0 

Mx27 254699 126.005 37 93156 7.010 8 273033 16.688 6 51856 11.613 17 

Bmw_fh 1 1.318 0 1 0.586 0 1 0.603 0 1 0.686 0 

Ftuer 1 0.521 0 1 0.388 0 1 0.392 0 1 0.377 0 

Koordwsp 1 28.872 22 1 0.993 0 1 1.638 0 1 0.846 0 

 
Table A3: BDD Controllability Check with Projection limit 3000 

 



123 
 

MaxL MinS MinT MinCut 

Model 

Nodes Time(s) O Nodes Time(s) O Nodes Time(s) O Nodes Time(s) O 

big_bmw 1 1.864 0 1 0.648 0 6 1.624 0 1 0.702 0 

Ftechnik 1 23.031 27 40952 4.455 8 87296 7.061 7 40952 5.303 8 

Fzelle 1 8.937 15 1 1.609 0 1 3.578 0 1 1.276 0 

rhone_alps 1 1.091 0 1 0.606 0 1 1.021 0 1 0.673 0 

rhone_tough 260982 28.161 75 133363 10.434 14 142188 14.858 24 195817 14.756 27 

tbed_ctct   O     O     O   8354751 1685.074 43 

tbed_nocoll 296563 34.667 88 326664 25.436 20 337156 69.783 21 309319 23.942 27 

tbed_noderail 305325 39.894 84 324322 21.749 20 277956 68.706 25 238891 20.367 22 

tbed_uncont 194459 30.444 88 235448 17.954 20 227293 58.803 21 208754 17.836 27 

verriegel4 29053 25.375 62 1 4.313 3 1 10.055 2 1 6.297 14 

small_factory_2 1 0.249 0 1 0.276 0 1 0.266 0 1 0.246 0 

Bfactory 1 0.267 0 1 0.520 0 1 0.268 0 1 0.261 0 

Tictactoe 11652 6.922 9 59 0.882 0 58 1.141 0 61 1.962 6 

Mx27 103812 11.845 34 17551 2.689 12 52808 4.642 8 55581 9.688 17 

Bmw_fh 1 1.235 0 1 0.556 0 1 0.961 0 1 0.595 0 

Ftuer 1 0.515 0 1 0.415 0 1 0.386 0 1 0.548 0 

Koordwsp 1 17.056 29 1 0.989 0 1 1.345 1 1 0.681 0 

 
Table A4: BDD Controllability Check with Projection limit 1000 

 
 



124 
 

MaxL MinS MinT MinCut 

Model 

States Time(s) O States Time(s) O States Time(s) O States Time(s) O 

big_bmw 0 1.439 0 0 0.612 0 0 1.124 0 0 0.663 0 

Ftechnik 1 14.686 14 1 8.100 6 2 9.480 6 1 8.040 6 

Fzelle 0 30.008 11 0 1.688 0 0 3.746 0 0 1.153 0 

rhone_alps 0 1.112 0 0 0.869 0 0 0.911 0 0 0.638 0 

rhone_tough 16680 51.848 92 289035 121.359 13 153587 107.832 14 56538 18.032 18 

tbed_ctct 1034643 53.217 77 612720 20.176 30 609022 78.987 32 587347 22.030 35 

tbed_nocoll 7095 69.884 73 6780 20.891 17 5573 95.946 15 4736 71.079 37 

tbed_noderail 6616 64.888 66 6764 20.083 17 5161 85.930 12 3624 86.691 39 

tbed_uncont 2182 73.838 73 2210 22.508 16 2210 74.068 19 2169 39.082 23 

verriegel4 0 109.927 58 0 3.576 0 0 4.910 0 0 8.601 13 

small_factory_2 0 0.217 0 0 0.218 0 1 0.218 0 0 0.221 0 

Bfactory 1 0.452 0 1 0.251 0 1 0.250 0 1 0.302 0 

Tictactoe 1 65.002 2 1 0.901 0 58 1.173 0 1 3.135 0 

Mx27 395 112.541 37 541 5.337 8 529 8.652 6 333 11.069 17 

Bmw_fh 0 1.249 0 0 0.594 0 0 0.830 0 1 0.671 0 

Ftuer 0 0.527 0 0 0.334 0 0 0.387 0 0 0.377 0 

Koordwsp 0 30.439 22 0 0.934 0 0 1.626 0 0 0.846 0 

 
Table A5: Native Controllability Check with Projection limit 3000 

 



125 
 

MaxL MinS MinT MinCut 

Model 

States Time(s) O States Time(s) O States Time(s) O States Time(s) O 

big_bmw 0 1.348 0 0 0.605 0 0 1.163 0 0 0.660 0 

Ftechnik 1 21.612 27 2 3.784 8 2 5.379 7 2 3.878 8 

Fzelle 0 7.400 15 0 1.555 0 0 3.665 0 0 1.180 0 

rhone_alps 0 1.040 0 0 0.552 0 0 0.990 0 0 0.635 0 

rhone_tough 63979 17.356 75 211479 6.491 14 122949 12.384 27 194327 7.723 27 

tbed_ctct 642589 22.320 109 646329 10.281 34 651172 65.901 40 626335 12.982 43 

tbed_nocoll 7933 23.998 88 7263 10.931 20 7417 61.152 20 7513 13.486 27 

tbed_noderail 7528 23.619 84 7247 9.894 20 7247 51.970 20 7012 11.757 22 

tbed_uncont 2445 25.020 88 2418 10.613 20 2477 53.889 23 2519 13.260 27 

verriegel4 2536 24.448 62 0 3.408 3 0 4.985 1 0 5.715 14 

small_factory_2 0 0.229 0 0 0.227 0 0 0.239 0 0 0.223 0 

Bfactory 1 0.433 0 1 0.402 0 1 0.240 0 1 0.287 0 

Tictactoe 4 6.425 9 1 1.120 0 1 1.407 0 1 2.011 6 

Mx27 495 10.753 34 487 2.382 12 439 3.660 8 333 9.222 17 

Bmw_fh 0 1.478 0 0 0.530 0 0 0.755 0 1 0.569 0 

Ftuer 0 0.859 0 0 0.335 0 0 0.382 0 0 0.411 0 

Koordwsp 0 17.865 29 0 0.992 0 0 1.280 1 0 0.736 0 

 
Table A6: Native Controllability Check with Projection limit 1000 

 
 
 



126 
 

MaxL MinS 

Model Property      

States Nodes Time(s) O States Nodes Time(s) O 

HOST__fv_crc__property F 3703 1 638.371 6 2108 1 320.586 0 

HOST__fv_crc_noinit__property T 3865 1 578.310 6 2896 1 550.825 0 profisafe_i4_host 

HOST__fv_timeout__property T 3644 1 621.217 6 541 1 7.333 0 

profisafe_i4_slave SLAVE__fv__property T 2906 1 1182.728 3 314 1 1.431 0 

HOST__fv_crc__property F 14487 483672 615.524 104 3933 127134 260.390 11 

HOST__fv_crc_noinit__property F 9258 1056551 635.400 87 4147 125906 313.274 11 

HOST__fv_timeout__property T 9957 1205408 1015.782 92 2935 30239 162.264 9 
profisafe_i4 

SLAVE__fv__property T    O  3660 31655 134.097 9 

HOST__fv_crc__property F 4470 1 1277.852 6 1680 34282 551.681 1 

HOST__fv_crc_noinit__property T 4675 1 1298.521 6 2237 35673 789.305 1 profisafe_i5_host 

HOST__fv_timeout__property T 4403 1 1366.733 6 592 1 9.037 0 

fv__host_crc__3__property F 16188 2293793 1683.469 82    O   

fv__host_crc__3r__property F 10567 8044925 2021.481 80    O   

fv__host_to__3__property F 14078 3420643 1579.686 106 2921 2883929 277.003 26 

fv__host_to__3r__property F 11378 2207089 1308.215 98 4372 3638864 880.442 27 

fv__slave_crc__3__property F 10577 569829 1854.939 86 4914 309917 114.149 26 

fv__slave_crc__3r__property F 10263 453107 1366.198 91 5297 494126 240.795 28 

fv__slave_to__3__property F 13019 732655 1338.195 104 6096 313276 1513.757 25 

profisafe_i5 

fv__slave_to__3r__property F 11232 912213 1326.380 108 4245 786683 671.978 31 

HOST__fv_crc__property F 5249 1 2555.211 6 2128 42091 1407.997 1 

HOST__fv_crc_noinit__property T 5669 1 2529.207 7 1872 1 313.336 2 profisafe_i6_host 

HOST__fv_timeout__property T 5174 1 2558.138 6 729 1 13.695 0 

fv__host_crc__3__property F 16147 9785240 2976.696 94    O   

fv__host_crc__3r__property F 9088 5019068 2206.985 91    O   

fv__host_to__3__property F 16321 4834128 2964.692 122 3532 4077851 1101.245 36 

fv__host_to__3r__property F 10046 1469791 2295.577 109 4711 2871724 462.235 38 

fv__slave_crc__3__property F 12000 717377 3170.970 97 4744 453502 326.417 39 

fv__slave_crc__3r__property F 11686 571632 2463.972 102 4710 537557 298.882 39 

fv__slave_to__3__property F 14203 654513 2358.595 118 7646 379971 3919.607 35 

profisafe_i6 

fv__slave_to__3r__property F 12166 745190 2396.362 121 3658 826984 740.206 42 

 
Table A7: BDD Language Inclusion Check with Heuristic maxL and minS 

for PROFIsafe Input-Slave Models 
Projection limit 3000 

 
 
 
 
 
 



127 
 

MinT MinCut 

Model Property      

States Nodes Time(s) O States Nodes Time(s) O 

HOST__fv_crc__property F 2098 1 324.447 0 550 1 12.851 0 

HOST__fv_crc_noinit__property T 2254 1 347.531 0 951 1 35.226 0 profisafe_i4_host 

HOST__fv_timeout__property T 542 1 11.075 0 441 1 6.907 0 

profisafe_i4_slave SLAVE__fv__property T 1342 1 5.771 0 519 1 4.302 0 

HOST__fv_crc__property F 3383 129274 306.010 15 4119 145937 669.678 28 

HOST__fv_crc_noinit__property F 3999 116717 316.978 15 4269 141994 663.279 28 

HOST__fv_timeout__property T 3279 29165 221.536 19    O  

profisafe_i4 

SLAVE__fv__property T 3755 31570 141.162 15    O(C)  

HOST__fv_crc__property F 2772 1 846.816 0 646 1 20.991 0 

HOST__fv_crc_noinit__property T 1031 43026 190.276 1 1077 1 59.577 0 profisafe_i5_host 

HOST__fv_timeout__property T 659 1 18.220 0 495 1 9.374 0 

fv__host_crc__3__property F 3004 1295599 328.279 23 1646 5898284 16667.012 43 

fv__host_crc__3r__property F    O      O   

fv__host_to__3__property F 4069 6906086 1907.793 33 2381 1166786 919.688 39 

fv__host_to__3r__property F 7246 3631893 3720.813 28 5708 5468201 13309.945 40 

fv__slave_crc__3__property F 3261 384974 201.219 32 3702 392745 245.634 44 

fv__slave_crc__3r__property F 4024 349096 222.795 26 3668 494369 229.597 44 

fv__slave_to__3__property F 3295 251424 233.142 33 4660 220396 506.892 50 

profisafe_i5 

fv__slave_to__3r__property F 4510 332135 299.546 28 5316 175119 207.378 48 

HOST__fv_crc__property F 2124 42091 1343.483 1 780 1 32.148 0 

HOST__fv_crc_noinit__property T 1234 47455 401.795 1 1245 1 95.200 0 profisafe_i6_host 

HOST__fv_timeout__property T 768 1 22.366 0 583 1 13.382 0 

fv__host_crc__3__property F    O   2778 6342190 3479.545 53 

fv__host_crc__3r__property F    O   2212 7460553 1549.695 57 

fv__host_to__3__property F 9424 1696732 8851.137 38 2477 1297223 1101.494 50 

fv__host_to__3r__property F 4918 1813103 564.495 36 6158 5806199 2875.322 54 

fv__slave_crc__3__property F 4280 380113 340.435 44 3777 458345 330.785 56 

fv__slave_crc__3r__property F 4064 513234 321.591 43 3743 568779 334.990 56 

fv__slave_to__3__property F 3587 238732 353.987 45 4868 267722 670.341 61 

profisafe_i6 

fv__slave_to__3r__property F 4011 193434 341.865 36 5603 219804 348.097 60 

 
Table A8: BDD Language Inclusion Check with Heuristic minT and minCut 

for PROFIsafe Input-Slave Models 
Projection limit 3000 

 
 
 
 
 
 



128 
 

 
 

MaxL MinS 
Model Property      

States Nodes Time(s) O States Nodes Time(s) O 

HOST__fv_crc__property F 8259 371531 602.369 137 7079 1336962 575.188 18 

HOST__fv_crc_noinit__property F 8229 387799 602.785 137 8767 769108 2037.814 16 

HOST__fv_timeout__property O                 
profisafe_o4 

SLAVE__fv__property O                 

HOST__fv_crc__property F 4216 1 642.252 6 2112 1 295.411 0 

HOST__fv_crc_noinit__property T 4209 1 653.892 6 2900 1 497.484 0 profisafe_o4_host 

HOST__fv_timeout__property T 3995 1 652.045 6 545 1 7.908 0 

profisafe_o4_slave SLAVE__fv__property T 501 1 20.465 3 1569 1 62.745 0 

fv__host_crc__3__property O                 

fv__host_crc__3r__property O                 

fv__host_to__3__property O                 

fv__host_to__3r__property O                 

fv__slave_crc__3__property O                 

fv__slave_crc__3r__property O                 

fv__slave_to__3__property O                 

profisafe_o5 

fv__slave_to__3r__property O                 

HOST__fv_crc__property F 5096 1 1323.265 6 1682 33191 523.873 1 

HOST__fv_crc_noinit__property T 5088 1 1321.574 6 2239 37511 794.359 1 profisafe_o5_host 

HOST__fv_timeout__property T 4826 1 1394.646 6 596 1 8.845 0 

fv__host_crc__3__property O                 

fv__host_crc__3r__property O                 

fv__host_to__3__property O                 

fv__host_to__3r__property O                 

fv__slave_crc__3__property O                 

fv__slave_crc__3r__property O                 

fv__slave_to__3__property O                 

profisafe_o6 

fv__slave_to__3r__property O                 

HOST__fv_crc__property F 5988 1 2614.525 6 2130 40253 1348.888 1 

HOST__fv_crc_noinit__property T 5979 1 2621.277 6 1877 1 313.969 2 profisafe_o6_host 

HOST__fv_timeout__property T 5669 1 2590.517 6 733 1 13.436 0 

 
Table A9: BDD Language Inclusion Check with Heuristic maxL and minS 

for PROFIsafe Output-Slave Models 
Projection limit 3000 

 
 
 
 



129 
 

 
 

MinT MinCut 
Model Property      

States Nodes Time(s) O States Nodes Time(s) O 

HOST__fv_crc__property F 5110 1380687 665.073 22 7253 763590 2034.983 42 

HOST__fv_crc_noinit__property F 6547 1222231 657.400 21 7667 766613 2109.196 42 

HOST__fv_timeout__property O                 
profisafe_o4 

SLAVE__fv__property O                 

HOST__fv_crc__property F 2096 1 349.709 0 552 1 11.175 0 

HOST__fv_crc_noinit__property T 2204 1 348.969 0 953 1 36.866 0 profisafe_o4_host 

HOST__fv_timeout__property T 481 1 10.170 0 443 1 6.793 0 

profisafe_o4_slave SLAVE__fv__property T 1704 1 8.209 0 531 1 11.572 0 

fv__host_crc__3__property O                 

fv__host_crc__3r__property O                 

fv__host_to__3__property O                 

fv__host_to__3r__property O                 

fv__slave_crc__3__property O                 

fv__slave_crc__3r__property O                 

fv__slave_to__3__property O                 

profisafe_o5 

fv__slave_to__3r__property O                 

HOST__fv_crc__property F 1686 33191 583.214 1 648 1 20.749 0 

HOST__fv_crc_noinit__property T 2293 37511 855.659 1 1079 1 53.614 0 profisafe_o5_host 

HOST__fv_timeout__property T 597 1 15.352 0 497 1 9.397 0 

fv__host_crc__3__property O                 

fv__host_crc__3r__property O                 

fv__host_to__3__property O                 

fv__host_to__3r__property O                 

fv__slave_crc__3__property O                 

fv__slave_crc__3r__property O                 

fv__slave_to__3__property O                 

profisafe_o6 

fv__slave_to__3r__property O                 

HOST__fv_crc__property F 2078 40253 1394.933 1 782 1 32.291 0 

HOST__fv_crc_noinit__property T 1235 47745 174.452 1 1247 1 90.528 0 profisafe_o6_host 

HOST__fv_timeout__property T 732 1 23.992 1 585 1 14.425 0 

 
Table A10: BDD Language Inclusion Check with Heuristic minT and minCut 

for PROFIsafe Output-Slave Models 
Projection limit 3000 

 
 
 
 



130 
 

 
MaxL MinS 

Model Property 

     States Nodes Time(s) O States Nodes Time(s) O 

HOST__fv_crc__property F 3703 1 564.391 6 1723 30157 238.383 1 

HOST__fv_crc_noinit__property T 3975 1 556.897 6 1032 38026 39.432 1 profisafe_i4_host 

HOST__fv_timeout__property T 3644 1 637.084 6 541 1 7.023 0 

profisafe_i4_slave SLAVE__fv__property T 1285 1 228.254 5 314 1 1.391 0 

HOST__fv_crc__property F 14487 483672 584.276 94 3253 286713 56.612 14 

HOST__fv_crc_noinit__property F 8915 326899 554.280 90 3763 134107 196.404 11 

HOST__fv_timeout__property T 8874 800678 544.177 87 2935 30377 15.552 9 
profisafe_i4 

SLAVE__fv__property T 7406 1085058 910.069 73 3079 31817 16.180 10 

HOST__fv_crc__property F 4233 1 1064.578 7 1196 1 101.278 2 

HOST__fv_crc_noinit__property T 4851 1 1186.065 8 1024 1 41.118 2 profisafe_i5_host 

HOST__fv_timeout__property T 4089 1 1093.973 7 592 1 8.444 0 

fv__host_crc__3__property F 9541 2926221 1860.284 95    O   

fv__host_crc__3r__property F 6132 4671844 1163.551 93    O   

fv__host_to__3__property F 7678 826670 780.461 104 2339 759276 101.646 26 

fv__host_to__3r__property F 6187 1269771 789.800 102 3558 2661660 191.457 32 

fv__slave_crc__3__property F 7097 338533 891.062 84 3677 264502 69.448 27 

fv__slave_crc__3r__property F 7084 380466 883.710 84 2856 454044 36.297 33 

fv__slave_to__3__property F 6819 212760 831.373 103 2953 140615 54.864 24 

profisafe_i5 

fv__slave_to__3r__property F 6881 291755 730.764 103 3008 676841 552.654 32 

HOST__fv_crc__property F 5602 150099 4394.671 22 1413 1 223.191 2 

HOST__fv_crc_noinit__property T 7975 33797 4616.216 29 1191 1 69.479 2 profisafe_i6_host 

HOST__fv_timeout__property T 7647 1 4677.349 26 729 1 13.123 0 

fv__host_crc__3__property F    O   2086 4748171 442.137 37 

fv__host_crc__3r__property F    O   2125 7057589 1428.294 37 

fv__host_to__3__property F    O 127 2343 821502 143.377 37 

fv__host_to__3r__property F 9808 4661953 4395.696 121 2768 2863354 186.742 43 

fv__slave_crc__3__property F 9676 381990 2336.047 120 3296 471590 60.266 39 

fv__slave_crc__3r__property F 9663 525630 2515.958 120 2964 503575 47.634 44 

fv__slave_to__3__property F 9608 207926 2247.112 121 2631 211698 84.313 36 

profisafe_i6 

fv__slave_to__3r__property F 10058 310661 2180.365 131 3116 761753 677.633 43 

 
Table A11: BDD Language Inclusion Check with Heuristic maxL and minS 

for PROFIsafe Input-Slave Models 
Projection limit 1000 

 
 
 
 
 



131 
 

 
MinT MinCut 

Model Property 

     States Nodes Time(s) O States Nodes Time(s) O 

HOST__fv_crc__property F 992 1 48.068 2 550 1 10.538 0 

HOST__fv_crc_noinit__property T 882 38535 77.495 1 951 1 36.794 0 profisafe_i4_host 

HOST__fv_timeout__property T 591 1 10.176 0 441 1 7.539 0 

profisafe_i4_slave SLAVE__fv__property T 1067 1 35.729 1 591 1 3.877 1 

HOST__fv_crc__property F 3400 122990 246.566 14 3735 155666 278.397 27 

HOST__fv_crc_noinit__property F 3015 378164 123.106 16 3885 157755 254.831 27 

HOST__fv_timeout__property T         O  

profisafe_i4 

SLAVE__fv__property T         O(C)  

HOST__fv_crc__property F 717 22665 76.294 1 646 1 18.188 0 

HOST__fv_crc_noinit__property T 884 1 44.227 1 1077 1 51.674 0 profisafe_i5_host 

HOST__fv_timeout__property T 752 1 17.392 0 495 1 9.341 0 

fv__host_crc__3__property F           O   

fv__host_crc__3r__property F           O   

fv__host_to__3__property F 4003 751127 174.373 28 3824 683644 80.802 53 

fv__host_to__3r__property F 2158 9961779 3075.516 36 2260 1649999 4047.174 39 

fv__slave_crc__3__property F 3819 370815 182.814 26 3160 327922 67.954 46 

fv__slave_crc__3r__property F 3916 592446 191.659 30 2464 501949 48.845 45 

fv__slave_to__3__property F 3016 148900 148.702 26 2954 197023 57.203 45 

profisafe_i5 

fv__slave_to__3r__property F 3812 247633 189.716 31 3397 272057 281.280 47 

HOST__fv_crc__property F 1417 1 211.925 1 780 1 37.716 0 

HOST__fv_crc_noinit__property T 1032 1 71.258 3 1245 1 87.548 0 profisafe_i6_host 

HOST__fv_timeout__property T 828 1 19.579 0 583 1 12.773 0 

fv__host_crc__3__property F        2778 6357354 3484.937 53 

fv__host_crc__3r__property F        2212 7460553 1467.243 57 

fv__host_to__3__property F 3101 624052 223.131 42 3166 761484 88.541 66 

fv__host_to__3r__property F 2379 1617974 1495.220 37 2356 1714203 1653.996 50 

fv__slave_crc__3__property F 3330 434467 207.969 39 2504 540115 64.476 55 

fv__slave_crc__3r__property F 2449 737531 229.534 35 2172 487316 48.145 56 

fv__slave_to__3__property F 2728 268848 215.914 35 2619 426883 45.017 55 

profisafe_i6 

fv__slave_to__3r__property F 3380 381872 214.689 43 3062 501782 338.100 57 

 
Table A12: BDD Language Inclusion Check with Heuristic minT and minCut 

for PROFIsafe Input-Slave Models 
Projection limit1000 

 
 
 
 
 



132 
 

 
MaxL MinS 

Model Property      

States Nodes Time(s) O States Nodes Time(s) O 

HOST__fv_crc__property F 7099 503418 529.375 132 3433 2233224 578.986 19 

HOST__fv_crc_noinit__property F 7051 504010 515.484 132 3071 1757519 236.065 17 

HOST__fv_timeout__property O                 
profisafe_o4 

SLAVE__fv__property O                 

HOST__fv_crc__property F 3691 1 566.197 7 1725 29632 242.828 1 

HOST__fv_crc_noinit__property T 3854 1 588.544 7 1034 38058 40.145 1 profisafe_o4_host 

HOST__fv_timeout__property T 3634 1 583.174 7 545 1 7.538 0 

profisafe_o4_slave SLAVE__fv__property T 501 1 5.961 3 531 1 9.932 1 

fv__host_crc__3__property O                 

fv__host_crc__3r__property O                 

fv__host_to__3__property O                 

fv__host_to__3r__property O                 

fv__slave_crc__3__property O                 

fv__slave_crc__3r__property O                 

fv__slave_to__3__property O                 

profisafe_o5 

fv__slave_to__3r__property O                 

HOST__fv_crc__property F 4221 1 1180.446 8 1201 1 94.974 2 

HOST__fv_crc_noinit__property T 4854 1 1262.445 9 1028 1 35.130 2 profisafe_o5_host 

HOST__fv_timeout__property T 4079 1 1094.131 8 596 1 9.009 0 

fv__host_crc__3__property O                 

fv__host_crc__3r__property O                 

fv__host_to__3__property O                 

fv__host_to__3r__property O                 

fv__slave_crc__3__property O                 

fv__slave_crc__3r__property O                 

fv__slave_to__3__property O                 

profisafe_o6 

fv__slave_to__3r__property O                 

HOST__fv_crc__property F 4616 1 2062.622 11 1418 1 217.808 2 

HOST__fv_crc_noinit__property T 5828 1 2332.349 14 1195 1 65.899 2 profisafe_o6_host 

HOST__fv_timeout__property T 4456 1 2031.426 11 733 1 14.293 0 

 
Table A13: BDD Language Inclusion Check with Heuristic maxL and minS 

for PROFIsafe Output-Slave Models 
Projection limit 1000 

 
 
 
 
 



133 
 

 
MinT MinCut 

Model Property      

States Nodes Time(s) O States Nodes Time(s) O 

HOST__fv_crc__property F 4448 1409334 391.026 22 2955 1695209 235.284 30 

HOST__fv_crc_noinit__property F 4179 892506 349.852 22 3211 1704409 235.663 30 

HOST__fv_timeout__property O                 
profisafe_o4 

SLAVE__fv__property O                 

HOST__fv_crc__property F 1021 1 50.479 2 552 1 10.804 0 

HOST__fv_crc_noinit__property T 1079 37580 79.855 1 953 1 31.522 0 profisafe_o4_host 

HOST__fv_timeout__property T 543 1 12.050 0 443 1 6.468 0 

profisafe_o4_slave SLAVE__fv__property T 1319 1 68.190 0 531 1 11.262 0 

fv__host_crc__3__property O                 

fv__host_crc__3r__property O                 

fv__host_to__3__property O                 

fv__host_to__3r__property O                 

fv__slave_crc__3__property O                 

fv__slave_crc__3r__property O                 

fv__slave_to__3__property O                 

profisafe_o5 

fv__slave_to__3r__property O                 

HOST__fv_crc__property F 1197 1 109.903 1 648 1 19.997 0 

HOST__fv_crc_noinit__property T 1082 1 56.726 2 1079 1 51.118 0 profisafe_o5_host 

HOST__fv_timeout__property T 595 1 13.681 0 497 1 9.162 0 

fv__host_crc__3__property O                 

fv__host_crc__3r__property O                 

fv__host_to__3__property O                 

fv__host_to__3r__property O                 

fv__slave_crc__3__property O                 

fv__slave_crc__3r__property O                 

fv__slave_to__3__property O                 

profisafe_o6 

fv__slave_to__3r__property O                 

HOST__fv_crc__property F 978 38452 79.037 3 782 1 33.678 0 

HOST__fv_crc_noinit__property T 1054 1 70.573 2 1247 1 88.199 0 profisafe_o6_host 

HOST__fv_timeout__property T 734 1 22.000 0 585 1 13.435 0 

 
Table A14: BDD Language Inclusion Check with Heuristic minT and minCut 

for PROFIsafe Output-Slave Models 
Projection limit 1000 

 
 
 
 
 



134 
 

 
MaxL MinS 

Model Property  

States Time(s) O States Time(s) O 

HOST__fv_crc__property FALSE 1 556.417 6 1 273.527 0 

HOST__fv_crc_noinit__property TRUE 1 599.088 6 1 511.760 0 profisafe_i4_host 

HOST__fv_timeout__property TRUE 1 606.392 6 1 6.866 0 

profisafe_i4_slave SLAVE__fv__property TRUE 1 1135.698 3 1 1.383 0 

HOST__fv_crc__property FALSE 3407088 621.469 104 80187 254.657 11 

HOST__fv_crc_noinit__property FALSE  O  80204 293.997 11 

HOST__fv_timeout__property TRUE 3071 1085.144 92 1 153.574 9 
profisafe_i4 

SLAVE__fv__property TRUE 1544 529.883 147 1 123.263 9 

HOST__fv_crc__property FALSE 1 1204.148 6 132 515.312 1 

HOST__fv_crc_noinit__property TRUE 1 1304.929 6 270 658.965 1 profisafe_i5_host 

HOST__fv_timeout__property TRUE 1 1225.607 6 1 8.455 0 

fv__host_crc__3__property FALSE  O    O   

fv__host_crc__3r__property FALSE  O    O   

fv__host_to__3__property FALSE  O   O  

fv__host_to__3r__property FALSE  O   O  

fv__slave_crc__3__property FALSE 8552464 1946.125 86  O  

fv__slave_crc__3r__property FALSE 2688049 1301.392 91  O  

fv__slave_to__3__property FALSE 2892 1208.016 104 696 1424.764 25 

profisafe_i5 

fv__slave_to__3r__property FALSE 2877 1185.254 108  O  

HOST__fv_crc__property FALSE 1 2502.716 6 148 1260.681 1 

HOST__fv_crc_noinit__property TRUE 1 2318.840 7 1 307.208 2 profisafe_i6_host 

HOST__fv_timeout__property TRUE 1 2389.893 6 1 13.118 0 

fv__host_crc__3__property FALSE  O    O   

fv__host_crc__3r__property FALSE  O    O   

fv__host_to__3__property FALSE  O   O  

fv__host_to__3r__property FALSE  O   O  

fv__slave_crc__3__property FALSE 8552464 3061.531 97  O  

fv__slave_crc__3r__property FALSE 2688049 2232.852 102  O  

fv__slave_to__3__property FALSE 2893 2135.731 118 883 3447.343 35 

profisafe_i6 

fv__slave_to__3r__property FALSE 2885 2322.494 121 3658 3447.343 42 

 
Table A15: Modular Language Inclusion Check with Heuristic maxL and minS 

for PROFIsafe Input-Slave Models 
Projection limit 3000 

 
 
 
 
 



135 
 

 
MinT MinCut 

Model Property  

States Time(s) O States Time(s) O 

HOST__fv_crc__property FALSE 1 337.883 0 1 10.965 0 

HOST__fv_crc_noinit__property TRUE 1 330.176 0 1 31.572 0 profisafe_i4_host 

HOST__fv_timeout__property TRUE 1 9.261 0 1 6.602 0 

profisafe_i4_slave SLAVE__fv__property TRUE 1 1.243 0 1 3.845 0 

HOST__fv_crc__property FALSE 98891 293.275 14 95901 652.839 28 

HOST__fv_crc_noinit__property FALSE 1695848 377.892 13 95901 654.238 28 

HOST__fv_timeout__property TRUE 1 243.121 18 1 62.272 34 
profisafe_i4 

SLAVE__fv__property TRUE 1 162.950 20   O(C)   

HOST__fv_crc__property FALSE 1 940.612 0 1 18.233 0 

HOST__fv_crc_noinit__property TRUE 704 77.988 1 1 53.077 0 profisafe_i5_host 

HOST__fv_timeout__property TRUE 1 14.125 0 1 8.981 0 

fv__host_crc__3__property FALSE 15672713 342.320 23  O  

fv__host_crc__3r__property FALSE   O     O   

fv__host_to__3__property FALSE  O  4486920 118.322 39 

fv__host_to__3r__property FALSE  O   O  

fv__slave_crc__3__property FALSE  O   O  

fv__slave_crc__3r__property FALSE  O   O  

fv__slave_to__3__property FALSE 3028 205.741 33 3016 461.820 50 

profisafe_i5 

fv__slave_to__3r__property FALSE  O  1123 189.456 48 

HOST__fv_crc__property FALSE 168 1546.556 1 1 33.475 0 

HOST__fv_crc_noinit__property TRUE 792 323.527 1 1 80.437 0 profisafe_i6_host 

HOST__fv_timeout__property TRUE 1 20.360 0 1 12.523 0 

fv__host_crc__3__property FALSE   O     O   

fv__host_crc__3r__property FALSE   O     O   

fv__host_to__3__property FALSE  O   O  

fv__host_to__3r__property FALSE 2173139 247.274 33  O  

fv__slave_crc__3__property FALSE  O   O  

fv__slave_crc__3r__property FALSE  O   O  

fv__slave_to__3__property FALSE 3028 359.776 44 3016 615.794 61 

profisafe_i6 

fv__slave_to__3r__property FALSE 3745 548.695 38 1230 320.412 60 

 
Table A16: Modular Language Inclusion Check with Heuristic minT and minCut 

for PROFIsafe Input-Slave Models 
Projection limit 3000 

 
 
 
 
 



136 
 

 
MaxL MinS 

Model Property  

States Time(s) O States Time(s) O 

HOST__fv_crc__property FALSE  O   O  

HOST__fv_crc_noinit__property FALSE  O   O  

HOST__fv_timeout__property TRUE 1 560.932 148 1 121.834 15 
profisafe_o4 

SLAVE__fv__property TRUE 1 574.082 153 1 74.286 16 

HOST__fv_crc__property FALSE 1 568.506 6 1 303.905 0 

HOST__fv_crc_noinit__property TRUE 1 663.112 6 1 515.460 0 profisafe_o4_host 

HOST__fv_timeout__property TRUE 1 614.401 6 1 7.046 0 

profisafe_o4_slave SLAVE__fv__property TRUE 1 20.200 3 1 52.107 0 

fv__host_crc__3__property OVERFLOW             

fv__host_crc__3r__property OVERFLOW             

fv__host_to__3__property OVERFLOW             

fv__host_to__3r__property OVERFLOW             

fv__slave_crc__3__property OVERFLOW             

fv__slave_crc__3r__property OVERFLOW             

fv__slave_to__3__property OVERFLOW             

profisafe_o5 

fv__slave_to__3r__property OVERFLOW             

HOST__fv_crc__property FALSE 1 1159.325 6 132 521.361 1 

HOST__fv_crc_noinit__property TRUE 1 1194.144 6 270 748.167 1 profisafe_o5_host 

HOST__fv_timeout__property TRUE 1 1269.770 6 1 8.377 0 

fv__host_crc__3__property OVERFLOW             

fv__host_crc__3r__property OVERFLOW             

fv__host_to__3__property OVERFLOW             

fv__host_to__3r__property OVERFLOW             

fv__slave_crc__3__property OVERFLOW             

fv__slave_crc__3r__property OVERFLOW             

fv__slave_to__3__property OVERFLOW             

profisafe_o6 

fv__slave_to__3r__property OVERFLOW             

HOST__fv_crc__property FALSE 1 2385.076 6 148 1365.328 1 

HOST__fv_crc_noinit__property TRUE 1 2498.394 6 1 314.453 2 profisafe_o6_host 

HOST__fv_timeout__property TRUE 1 2518.749 6 1 13.481 0 

 
Table A17: Modular Language Inclusion Check with Heuristic maxL and minS 

for PROFIsafe Output-Slave Models 
Projection limit 3000 

 
 
 
 
 



137 
 

 
MinT MinCut 

Model Property  

States Time(s) O States Time(s) O 

HOST__fv_crc__property FALSE  O   O  

HOST__fv_crc_noinit__property FALSE  O   O  

HOST__fv_timeout__property TRUE 1 183.474 21 1 139.552 44 
profisafe_o4 

SLAVE__fv__property TRUE 1 310.151 22 1 83.078 46 

HOST__fv_crc__property FALSE 1 321.365 0 1 10.643 0 

HOST__fv_crc_noinit__property TRUE 1 317.131 0 1 31.239 0 profisafe_o4_host 

HOST__fv_timeout__property TRUE 1 9.724 0 1 6.810 0 

profisafe_o4_slave SLAVE__fv__property TRUE 1 2.198 0 1 10.206 0 

fv__host_crc__3__property OVERFLOW             

fv__host_crc__3r__property OVERFLOW             

fv__host_to__3__property OVERFLOW             

fv__host_to__3r__property OVERFLOW             

fv__slave_crc__3__property OVERFLOW             

fv__slave_crc__3r__property OVERFLOW             

fv__slave_to__3__property OVERFLOW             

profisafe_o5 

fv__slave_to__3r__property OVERFLOW             

HOST__fv_crc__property FALSE 132 471.531 1 1 20.101 0 

HOST__fv_crc_noinit__property TRUE 704 106.273 1 1 50.895 0 profisafe_o5_host 

HOST__fv_timeout__property TRUE 1 13.715 0 1 9.378 0 

fv__host_crc__3__property OVERFLOW             

fv__host_crc__3r__property OVERFLOW             

fv__host_to__3__property OVERFLOW             

fv__host_to__3r__property OVERFLOW             

fv__slave_crc__3__property OVERFLOW             

fv__slave_crc__3r__property OVERFLOW             

fv__slave_to__3__property OVERFLOW             

profisafe_o6 

fv__slave_to__3r__property OVERFLOW             

HOST__fv_crc__property FALSE 148 1175.865 1 1 31.380 0 

HOST__fv_crc_noinit__property TRUE 1 328.276 2 1 81.563 0 profisafe_o6_host 

HOST__fv_timeout__property TRUE 1 23.098 1 1 12.992 0 

 
Table A18: Modular Language Inclusion Check with Heuristic minT and minCut 

for PROFIsafe Output-Slave Models 
Projection limit 3000 

 
 
 
 
 



138 
 

 
MaxL MinS 

Model Property  

States Time(s) O States Time(s) O 

HOST__fv_crc__property FALSE 1 553.009 6 130 231.400 0 

HOST__fv_crc_noinit__property TRUE 1 578.415 7 616 39.918 0 profisafe_i4_host 

HOST__fv_timeout__property TRUE 1 624.839 6 1 7.084 0 

profisafe_i4_slave SLAVE__fv__property TRUE 1 227.903 5 1 1.380 0 

HOST__fv_crc__property FALSE 5828428 619.767 94 1765774 58.474 14 

HOST__fv_crc_noinit__property FALSE  O  164497 187.469 11 

HOST__fv_timeout__property TRUE 1709 447.669 87 1 15.850 9 
profisafe_i4 

SLAVE__fv__property TRUE 7404 400.329 73 1 15.725 10 

HOST__fv_crc__property FALSE 1 1126.293 7 1 96.860 2 

HOST__fv_crc_noinit__property TRUE 1 1205.904 8 1 38.787 2 profisafe_i5_host 

HOST__fv_timeout__property TRUE 1 1041.700 7 1 8.096 0 

fv__host_crc__3__property FALSE  O    O   

fv__host_crc__3r__property FALSE  O    O   

fv__host_to__3__property FALSE  O  5782362 146.083 26 

fv__host_to__3r__property FALSE  O   O  

fv__slave_crc__3__property FALSE 34003378 1174.377 84  O  

fv__slave_crc__3r__property FALSE  O   O  

fv__slave_to__3__property FALSE 660 722.084 103 598 53.437 24 

profisafe_i5 

fv__slave_to__3r__property FALSE 786 738.386 103  O  

HOST__fv_crc__property FALSE  O  1 196.907 2 

HOST__fv_crc_noinit__property TRUE  O  1 60.065 2 profisafe_i6_host 

HOST__fv_timeout__property TRUE  O  1 13.485 0 

fv__host_crc__3__property FALSE  O    O   

fv__host_crc__3r__property FALSE  O    O   

fv__host_to__3__property FALSE  O  8086730 235.899 37 

fv__host_to__3r__property FALSE  O   O  

fv__slave_crc__3__property FALSE 14785501 2462.032 120  O  

fv__slave_crc__3r__property FALSE  O   O  

fv__slave_to__3__property FALSE 8289 2151.806 121 6872 85.735 36 

profisafe_i6 

fv__slave_to__3r__property FALSE 13781 2126.184 131  O  

 
Table A19: Modular Language Inclusion Check with Heuristic maxL and minS 

for PROFIsafe Input-Slave Models 
Projection limit 1000 

 
 
 
 
 



139 
 

 
MinT MinCut 

Model Property  

States Time(s) O States Time(s) O 

HOST__fv_crc__property FALSE 130 260.716 1 1 11.251 0 

HOST__fv_crc_noinit__property TRUE 616 65.558 2 1 30.171 0 profisafe_i4_host 

HOST__fv_timeout__property TRUE 1 11.723 1 1 6.672 0 

profisafe_i4_slave SLAVE__fv__property TRUE 1 1.490 1 1 3.804 0 

HOST__fv_crc__property FALSE 216958 259.715 13 60834 248.216 27 

HOST__fv_crc_noinit__property FALSE 1067974 277.337 12 60834 256.500 27 

HOST__fv_timeout__property TRUE 1 83.446 17 1 42.758 34 
profisafe_i4 

SLAVE__fv__property TRUE  O    O(C)   

HOST__fv_crc__property FALSE 204 61.280 15 1 19.836 0 

HOST__fv_crc_noinit__property TRUE 1 41.184 2 1 56.323 0 profisafe_i5_host 

HOST__fv_timeout__property TRUE 1 13.744 1 1 8.857 0 

fv__host_crc__3__property FALSE  O   O  

fv__host_crc__3r__property FALSE   O     O   

fv__host_to__3__property FALSE 8586721 233.289 29 9023488 142.780 53 

fv__host_to__3r__property FALSE  O  8852459 154.914 39 

fv__slave_crc__3__property FALSE  O  1562 51.883 46 

fv__slave_crc__3r__property FALSE  O   O  

fv__slave_to__3__property FALSE 3028 156.759 34 2949 49.731 45 

profisafe_i5 

fv__slave_to__3r__property FALSE  O  4367 261.913 47 

HOST__fv_crc__property FALSE 1 207.260 1 1 32.801 0 

HOST__fv_crc_noinit__property TRUE 1 80.116 1 1 91.934 0 profisafe_i6_host 

HOST__fv_timeout__property TRUE 1 19.229 0 1 12.771 0 

fv__host_crc__3__property FALSE   O     O   

fv__host_crc__3r__property FALSE   O     O   

fv__host_to__3__property FALSE  O  17315058 290.487 66 

fv__host_to__3r__property FALSE  O   O  

fv__slave_crc__3__property FALSE  O   O  

fv__slave_crc__3r__property FALSE  O   O  

fv__slave_to__3__property FALSE 3020 182.092 35 13898 39.329 55 

profisafe_i6 

fv__slave_to__3r__property FALSE 3767 225.012 42 20221 312.680 57 

 
Table A20: Modular Language Inclusion Check with Heuristic minT and minCut 

for PROFIsafe Input-Slave Models 
Projection limit1000 

 
 
 



140 
 

MaxL MinS 

Model Property  

States Time(s) O States Time(s) O 

HOST__fv_crc__property FALSE  O   O  

HOST__fv_crc_noinit__property FALSE  O   O  

HOST__fv_timeout__property TRUE 1 467.74 137 1 46.059 16 
profisafe_o4 

SLAVE__fv__property TRUE 3821 410.454 116 1 52.713 16 

HOST__fv_crc__property FALSE 1 595.702 7 130 248.098 1 

HOST__fv_crc_noinit__property TRUE 1 584.297 7 616 39.459 1 profisafe_o4_host 

HOST__fv_timeout__property TRUE 1 529.500 7 1 7.280 0 

profisafe_o4_slave SLAVE__fv__property TRUE 1 5.943 3 1 10.420 0 

fv__host_crc__3__property OVERFLOW             

fv__host_crc__3r__property OVERFLOW             

fv__host_to__3__property OVERFLOW             

fv__host_to__3r__property OVERFLOW             

fv__slave_crc__3__property OVERFLOW             

fv__slave_crc__3r__property OVERFLOW             

fv__slave_to__3__property OVERFLOW             

profisafe_o5 

fv__slave_to__3r__property OVERFLOW             

HOST__fv_crc__property FALSE 1 1102.754 8 1 92.165 2 

HOST__fv_crc_noinit__property TRUE 1 1276.276 9 1 38.803 2 profisafe_o5_host 

HOST__fv_timeout__property TRUE 1 1119.956 8 1 8.362 0 

fv__host_crc__3__property OVERFLOW             

fv__host_crc__3r__property OVERFLOW             

fv__host_to__3__property OVERFLOW             

fv__host_to__3r__property OVERFLOW             

fv__slave_crc__3__property OVERFLOW             

fv__slave_crc__3r__property OVERFLOW             

fv__slave_to__3__property OVERFLOW             

profisafe_o6 

fv__slave_to__3r__property OVERFLOW             

HOST__fv_crc__property FALSE 1 1993.971 11 1 194.342 2 

HOST__fv_crc_noinit__property TRUE 1 2393.661 14 1 64.977 2 profisafe_o6_host 

HOST__fv_timeout__property TRUE 1 1979.234 11 1 13.645 0 

 
Table A21: Modular Language Inclusion Check with Heuristic maxL and minS 

for PROFIsafe Output-Slave Models 
Projection limit 1000 

 
 
 
 
 
 



141 
 

 
MinT MinCut 

Model Property  

States Time(s) O States Time(s) O 

HOST__fv_crc__property FALSE  O   O  

HOST__fv_crc_noinit__property FALSE  O   O  

HOST__fv_timeout__property TRUE 1 162.954 25 1 63.378 43 
profisafe_o4 

SLAVE__fv__property TRUE 4790 182.378 24 1 54.574 45 

HOST__fv_crc__property FALSE 130 239.675 1 1 10.935 0 

HOST__fv_crc_noinit__property TRUE 616 84.321 2 1 32.347 0 profisafe_o4_host 

HOST__fv_timeout__property TRUE 1 12.786 0 1 6.726 0 

profisafe_o4_slave SLAVE__fv__property TRUE 1 63.830 0 1 11.216 0 

fv__host_crc__3__property OVERFLOW             

fv__host_crc__3r__property OVERFLOW             

fv__host_to__3__property OVERFLOW             

fv__host_to__3r__property OVERFLOW             

fv__slave_crc__3__property OVERFLOW             

fv__slave_crc__3r__property OVERFLOW             

fv__slave_to__3__property OVERFLOW             

profisafe_o5 

fv__slave_to__3r__property OVERFLOW             

HOST__fv_crc__property FALSE 204 69.530 1 1 19.774 0 

HOST__fv_crc_noinit__property TRUE 1 59.421 3 1 50.439 0 profisafe_o5_host 

HOST__fv_timeout__property TRUE 1 14.548 1 1 8.829 0 

fv__host_crc__3__property OVERFLOW             

fv__host_crc__3r__property OVERFLOW             

fv__host_to__3__property OVERFLOW             

fv__host_to__3r__property OVERFLOW             

fv__slave_crc__3__property OVERFLOW             

fv__slave_crc__3r__property OVERFLOW             

fv__slave_to__3__property OVERFLOW             

profisafe_o6 

fv__slave_to__3r__property OVERFLOW             

HOST__fv_crc__property FALSE 1 210.643 2 1 32.950 0 

HOST__fv_crc_noinit__property TRUE 1 78.894 1 1 88.229 0 profisafe_o6_host 

HOST__fv_timeout__property TRUE 1 22.831 0 1 13.131 0 

 
Table A22: Modular Language Inclusion Check with Heuristic minT and minCut 

for PROFIsafe Output-Slave Models 
Projection limit 1000 

 


