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Abstract

In the field of machine learning, methods for learning from single-table data
have received much more attention than those for learning from multi-table, or
relational data, which are generally more computationally complex. However,
a significant amount of the world’s data is relational. This indicates a need
for algorithms that can operate efficiently on relational data and exploit the
larger body of work produced in the area of single-table techniques.

This thesis presents algorithms for learning from relational data that mit-
igate, to some extent, the complexity normally associated with such learning.
All algorithms in this thesis are based on the generation of random relational
rules. The assumption is that random rules enable efficient and effective rela-
tional learning, and this thesis presents evidence that this is indeed the case. To
this end, a system for generating random relational rules is described, and al-
gorithms using these rules are evaluated. These algorithms include direct clas-
sification, classification by propositionalisation, clustering, semi-supervised
learning and generating random forests.

The experimental results show that these algorithms perform competitively
with previously published results for the datasets used, while often exhibiting
lower runtime than other tested systems. This demonstrates that sufficient
information for classification and clustering is retained in the rule generation
process and that learning with random rules is efficient.

Further applications of random rules are investigated. Propositionalisation
allows single-table algorithms for classification and clustering to be applied
to the resulting data, reducing the amount of relational processing required.
Further results show that techniques for utilising additional unlabeled training
data improve accuracy of classification in the semi-supervised setting. The
thesis also develops a novel algorithm for building random forests by making
efficient use of random rules to generate trees and leaves in parallel.
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Abstract

In the field of machine learning, methods for learning from single-table data
have received much more attention than those for learning from multi-table, or
relational data, which are generally more computationally complex. However,
a significant amount of the world’s data is relational. This indicates a need
for algorithms that can operate efficiently on relational data and exploit the
larger body of work produced in the area of single-table techniques.

This thesis presents algorithms for learning from relational data that mit-
igate, to some extent, the complexity normally associated with such learning.
All algorithms in this thesis are based on the generation of random relational
rules. The assumption is that random rules enable efficient and effective rela-
tional learning, and this thesis presents evidence that this is indeed the case. To
this end, a system for generating random relational rules is described, and al-
gorithms using these rules are evaluated. These algorithms include direct clas-
sification, classification by propositionalisation, clustering, semi-supervised
learning and generating random forests.

The experimental results show that these algorithms perform competitively
with previously published results for the datasets used, while often exhibiting
lower runtime than other tested systems. This demonstrates that sufficient
information for classification and clustering is retained in the rule generation
process and that learning with random rules is efficient.

Further applications of random rules are investigated. Propositionalisation
allows single-table algorithms for classification and clustering to be applied
to the resulting data, reducing the amount of relational processing required.
Further results show that techniques for utilising additional unlabeled training
data improve accuracy of classification in the semi-supervised setting. The
thesis also develops a novel algorithm for building random forests by making
efficient use of random rules to generate trees and leaves in parallel.

iii
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Chapter 1

Introduction

In 1950, Alan Turing published a paper asking the question “Can machines

think?” [79], referring several times to ‘learning machines’. Machine learning,

a term coined by Arthur Samuel later in the 1950s [71], has come to refer to

the study and development of algorithms that can learn new knowledge from

supervised and unsupervised data [29]. Generally, machine learning algorithms

learn new knowledge from single tables of data. The International Conference

on Machine Learning (ICML) was first held in 1982, and machine learning is

a very active field of research.

Data mining is the automated extraction of knowledge and patterns from

databases, and is closely related to machine learning, making use of techniques

developed in that area. Both are concerned with the discovery of patterns and

knowledge in data, with one of the main differences between the two fields

being the quantity of data analysed – data mining is especially focused on

large or complex databases [29]. Like machine learning algorithms, data mining

algorithms learn knowledge from single tables of data. Due to the scale of data

being analysed, algorithmic complexity is more important in data mining than

it is in machine learning. According to [81], the first book on data mining

was published in 1991, collecting papers from the first ‘Knowledge Discovery

in Databases’ workshop, held in 1989. Like machine learning, data mining is

currently a highly active field.

Inductive logic programming (ILP) is also related to machine learning – it

is a research area “at the intersection of logic programming and machine learn-

ing” [53]. It is concerned with learning from examples, within the framework

of clausal logic [56]. ILP is concerned with algorithms that can learn from re-

lational data and employ background knowledge. ILP-based algorithms learn

knowledge from multiple tables of data. The first ILP conference was held in

1



2 CHAPTER 1. INTRODUCTION

1991, and ILP is also an area of ongoing research.

Relational data mining (RDM) is the extraction of knowledge and patterns

from relational databases in particular [22]. By definition, therefore, RDM

algorithms must learn knowledge from multiple tables of data, and RDM makes

use of techniques from ILP just as techniques from machine learning are applied

to single-table data mining. Similarly to data mining, due to the nature of the

data involved, the complexity of the algorithms used for relational data mining

is more important than for ILP. Currently there are no conferences devoted to

relational data mining, although general data mining conferences include work

on RDM and there have been workshops in this area since 2001.

This thesis presents algorithms for learning from relational data that alle-

viate, to some degree, the complexity normally present in relational learning,

and thus contributes to the field of relational data mining. All of these al-

gorithms are based around the generation of random relational rules. This

thesis presents evidence to confirm the hypothesis that these rules enable effi-

cient and accurate relational learning. The algorithm used to generate random

relational rules is described, and a number of algorithms using the rules are

evaluated.

The remainder of this chapter gives background information applicable to

subsequent chapters of the thesis. Section 1.1 provides the motivation for

this thesis. Sections 1.2-1.3 define and provide examples for classification and

evaluation. Section 1.4 briefly discusses two attribute-value algorithms that are

used in Chapters 3 and 5, while Section 1.5 discusses techniques for producing

ensembles of models, as ensembles are employed in Chapters 2 and 6. Section

1.6 defines relational data and gives examples of algorithms that use relational

data. Section 1.7 discusses two families of methods for learning from unlabeled

data that are applied in Chapters 4 and 5. Section 1.8 describes the content

of the remaining chapters of the thesis.

1.1 Motivation

Substantial amounts of the world’s data are stored in relational databases. Ac-

cording to the International Data Corporation (IDC), relational databases were

a multi-billion dollar industry in 2006 [57]. Operations on relational data can

have high computational complexity [65]. Nevertheless, relational approaches

are often preferred to single-table methods for use with structured data. The

latter must necessarily ignore the structure of the data, and thus cannot make
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use of any information contained therein. Given this heavy reliance on rela-

tional data, there is a need for learning methods that operate efficiently on

this data – that is, relational data mining algorithms. This need provides the

motivation for this thesis – to provide algorithms to extract information from

relational data, while taking measures to alleviate the computational com-

plexity arising from processing such structured data. In addition, the body

of work in flat-file learning is currently much larger than that in relational

learning. Therefore, a secondary goal of this research is to determine methods

for allowing relational learning techniques to make use of sophisticated flat-file

approaches.

1.2 Classification

One common data mining task is classification. This task is performed by

several algorithms that are described in later chapters, and is thus described

in this section. Usually data for this task will be in the form of a set of examples

(also called instances), each labeled with a class. An example dataset of this

form is shown in Table 1.1 – this dataset (from [63]) is based on deciding if

weather conditions are suitable for playing golf, so the class is ‘play’ and the

label for each instance is either ‘yes’ or ‘no’. A classification algorithm will seek

to build a model, or classifier, based on patterns in the dataset that relates the

qualities of the instances to the class labels of those instances. The instance

qualities, such as ‘outlook’ and ‘humidity’, are also called attributes.

A model based on this dataset could be:

if (Outlook = overcast) Play = yes

else if (Outlook = sunny AND Humidity = high) Play = no

else if (Outlook = rainy AND Windy = true) Play = no

else Play = yes

This model gives the correct yes/no choice for Play for each instance in the

dataset. A ‘model’ that described each attribute of each instance would also

give the correct yes/no choices, as shown here:

if (Outlook = sunny AND Temperature = hot

AND Humidity = high AND Windy = false) Play = no

if (Outlook = sunny AND Temperature = hot

AND Humidity = high AND Windy = true) Play = no
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Table 1.1: Example Dataset – Weather

Outlook Temperature Humidity Windy Play
sunny hot high false no
sunny hot high true no
overcast hot high false yes
rainy mild high false yes
rainy cool normal false yes
rainy cool normal true no
overcast cool normal true yes
sunny mild high false no
sunny cool normal false yes
rainy mild normal false yes
sunny mild normal true yes
overcast mild high true yes
overcast hot normal false yes
rainy mild high true no

if (Outlook = overcast AND Temperature = hot

AND Humidity = high AND Windy = false) Play = yes

...

This model still gives the correct choices, but does not generalise based on

the patterns in the dataset, which could make it less accurate on new instances

that have properties that differ from those already seen. When a model is

accurate on the data used to construct it, at the expense of the ability to

generalise to new data, it is said to be overfitting.

1.3 Evaluation

This section discusses the evaluation of a model and two methods that are

used to evaluate the performance of algorithms in subsequent chapters of this

thesis.

Evaluating a model on the data used to train it can result in overly op-

timistic estimates of the quality of that model. To avoid this, models are

generally evaluated by testing their ability to generalise to new data. This is

accomplished by dividing the dataset into training and test sets – the model

is constructed on the training set, and then used to predict the class of each

instance in the test set. This allows the proportion of correct predictions to

be used as an estimate of the quality of the model. The proportion of correct
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predictions is also called accuracy (also often represented as a percentage),

while the proportion of incorrect predictions is also known as the error rate.

For example, if the first seven instances from the weather data above were

used for training, and the remaining seven set aside as test instances, the

following model could be produced:

if (Outlook = sunny) Play = no

else if (Outlook = rainy AND Windy = true) Play = no

else Play = yes

This model produces correct results on the first seven instances. However,

if this model is applied to the test instances, it predicts 5 of the 7 instances

correctly (incorrectly predicting ‘no’ for the two Sunny outlooks that in fact

are of class ‘yes’), giving an accuracy of 5
7

and an error rate of 2
7
.

Cross-validation

One standard method for evaluating classification algorithms is stratified ten-

fold cross-validation. This method allows for efficient use of a dataset by

ensuring that each instance is used both for training and testing, where a

simple train-test split would use the training instances solely for training and

the test instances only for testing. It randomly divides the dataset into ten

parts, or ‘folds’. The folds are stratified, meaning that the classes of data are

represented in each fold in approximately the same distribution as in the full

dataset. Each fold is used once as a test set, while the remaining nine folds

form the training set for the classification algorithm. The combination of the

ten results is regarded as providing a reasonable estimate of the quality of

a classification algorithm, and the average result of repeated ten-fold cross-

validation can provide an even more accurate estimate.

AUC

Another measure of classifier quality is the Area Under the ‘Receiver Operating

Characteristic’ (ROC) Curve, or AUC [8]. In a setting with two classes, an

ROC curve depicts the relationship between the proportion of true positives

(correctly classified instances of the positive class) and the proportion of false

positives (incorrectly classified instances of the negative class) as the threshold

for predicting ‘positive’ moves from one to zero. The predictions are sorted

according to a measure of confidence in their prediction of the positive class,
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and the predictions are included in order from highest confidence to least.

Thus the most desirable point on such a curve is (0.0, 1.0), indicating that

all the positive instances are included, without any negative instances (false

positives). This formulation for AUC only applies to two-class problems. In

this thesis all but one of the classification problems are such two-class problems,

and therefore AUC can be computed and used for comparison in almost all

cases.

The area under the ROC curve is equivalent to the probability that, if

one positive and one negative instance are selected at random, the confidence

in positive class prediction will be greater for the positive instance than for

the negative instance. Thus, higher AUC values represent better predictions.

As each axis on the ROC curve ranges from zero to one, the area under the

ROC curve can also range from zero to one. An AUC value of greater than

0.5 indicates the classifier performs better than randomly assigning classes

to instances, with higher values indicating increasingly accurate classification

results. An AUC value of 0.5 is a result equivalent to that which would be

expected from a classifier that did not discriminate between the classes at all,

with performance no better than random. An AUC of less than 0.5 indicates

that the classifier would actually be improved if its predictions were inverted

(positive predictions becoming negative and negative predictions becoming

positive).

An example ROC curve based on an arbitrary assignment of confidence

ordering to a dataset of 50 instances, split evenly into 25 positive and 25

negative instances, is shown in Figure 1.1. The curve is always above the line

of no discrimination, and the area under the curve is 0.7264, indicating that

the hypothetical classifier discriminates between classes to a reasonable extent.

1.4 Attribute-value Learning Algorithms

This section briefly discusses two attribute-value algorithms that are used in

subsequent chapters, due to their accuracy and efficiency on propositionalised

data.

1.4.1 Smo

A linear Support Vector Machine (SVM) is a hyperplane that separates a set of

positive instances from a set of negative instances with the maximum margin
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Figure 1.1: An example ROC curve

[81], assuming that the data is linearly separable. The calculation required

to train an SVM is a complex Quadratic Programming problem. Sequential

Minimal Optimisation (Smo) [60] is an SVM algorithm that decomposes the

calculation into a series of smaller computations, solving the smallest possible

optimisation problem at each step. This decomposition results in a substantial

speed improvement and the ability to run in a relatively small amount of

memory.

Test instances are classified by determining the side of the hyperplane on

which they lie and assigning the class that matches the training instances on

that side.

As Smo is based on the computation of dot products, it has linear com-

plexity with regard to the number of attributes in the data. Smo for training

a linear SVM has a complexity of approximately O(MN2) where M is the

number of attributes and N is the number of instances in the dataset [78].

1.4.2 Logistic Regression

Logistic regression produces an equation to describe training data, assigning

regression coefficients (numeric weights) to each attribute in the data with the

aim of maximising the accuracy of probability estimates for classes.

A logistic regression algorithm classifies new instances by applying the re-

gression equation to their attributes to obtain a probability distribution across
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the possible classes. In a nominal classification case, this results in the class

with the highest probability being predicted.

In addition, ridge estimators can be used to improve the models generated

by logistic regression in situations which produce unstable parameter estimates

– in particular, with large numbers of attributes or highly correlated attributes

[47].

A simple logistic regression algorithm has a complexity of O(M2N + M3),

where M is the number of attributes and N is the number of instances in the

dataset [39].

1.5 Ensemble Methods

This section discusses, and gives examples of, methods for ensemble learning.

Ensemble methods can combine classifiers to produce a model with greater

accuracy than its components, and are thus of interest in the context of random

relational rules.

The output from multiple classifiers can be combined, with the aim of pro-

ducing more accurate results than can be obtained by the individual classifiers.

Some ensemble methods, such as Bagging and Boosting, are generalised pro-

cedures that can be applied to arbitrary classification algorithms. Random

Forests are a specialised case of bagging, with a randomised tree used as the

classification algorithm. Random forests have been shown to be accurate and

efficient [12]. A random forest algorithm based on random relational rules is

described in Chapter 6.

An important quality of an ensemble of classifiers is that its component

classifiers be diverse – that is, they make different errors on test data [19].

The complexity of ensemble methods is dependent on the complexity of the

individual models being generated, and generally linear with regard to the

number of those models (although some ensemble methods can run in parallel).

1.5.1 Bagging

Bagging, or bootstrap aggregating, takes a classification algorithm and a data-

set and produces a specified number of classifiers. This is accomplished by

sampling the training data with replacement (generally a number of times

equal to the number of instances in the training data) for each classifier to be

produced and applying the algorithm to be bagged to each sampled set [10],
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as shown in Algorithm 1.

Algorithm 1 Pseudocode for the Bagging algorithm

To generate c classifiers:
for i = 1 to c do

Sample the training data, D, with replacement to produce Di

Apply classification algorithm A to Di to produce the classifier Mi

end for
To classify test instances:
for Each test instance T do

for i = 1 to c do
Predict the class of T using Mi

end for
Combine the predictions for an overall prediction for T

end for

Bagging is most beneficial when the classification algorithm is sensitive to

small changes in the training data. For algorithms where small perturbations

in the training data do not affect classifier construction to any great extent,

Bagging will produce classifiers that make very similar predictions to each

other and whose combined result will be rather similar to that produced by a

single classifier.

1.5.2 Boosting

Boosting produces an ensemble of classifiers consecutively, with each new clas-

sifier being influenced by those previously built [27]. Each instance in the

training set is assigned a weight – initially all instances have equal weight.

As each classifier is added to the ensemble, the weights of instances correctly

classified by that classifier are decreased, and the weights of those incorrectly

classified are increased, as shown in Algorithm 2.

The generated classifiers are also weighted for prediction – their weights are

determined by their errors on the weighted training data. This gives higher

weightings to those classifiers that perform well on highly-weighted (frequently

misclassified) instances.

1.5.3 Random Forests

A random forest is an ensemble of decision trees. In this section, decision

trees are described, followed by information gain (a measure used in decision

tree contruction), and then random forests themselves are detailed.
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Algorithm 2 Pseudocode for the boosting algorithm

To generate c classifiers:
Initialise all instance weights to be equal
for i = 1 to c do

Apply classification algorithm A to the weighted training data to produce
the classifier Mi

Increase weights of instances incorrectly classified by Mi

Decrease weights of instances correctly classified by Mi

Assign a weight to Mi based on its performance on the weighted training
data

end for
To classify test instances:
for Each test instance T do

Initialise all class weights to be 0
for i = 1 to c do

Predict the class of T using Mi

Add the weight of Mi to the weight of the class it predicts for T
end for
Predict the class with the highest weight for T

end for

Decision Trees

A decision tree is a classifier with a tree structure – the internal nodes represent

features in the data and the leaf nodes represent classifications [61]. To build

the tree, a root node is initialised to contain all instances of the training data.

Then the root node is ‘split’ into leaves according to the possible values of a

feature in the data, and the instances are apportioned to leaves depending on

their values for that feature. In the simplest case, this process is repeated for

each leaf until all leaves are class-pure. When building a decision tree, the

‘best’ feature to split each internal node on is deterministically selected. For

example, for the decision tree learner ID3 the best feature for node splitting

is determined using the information gain metric. Pseudocode for ID3 is given

in Algorithm 3.

Once the tree is constructed, each test instance is then classified by begin-

ning at the root of the tree and following a path to a leaf. The path taken by

the instance is based on the attributes of the instance and the results of the

tests at each internal node. The test instance is classified as being of the class

of the leaf it is assigned to. In more sophisticated tree construction algorithms

than the one given in Algorithm 3 leaf nodes may not be class-pure, in which

case the class that makes up the majority of the training instances at the leaf
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Algorithm 3 Pseudocode for the ID3 algorithm

BuildTree(N):
if N contains instances of only one class then

return
else

Select the feature F with the highest information gain to split on
Create f child nodes of N , N1...Nf , where F has f possible values (F1...Ff )
for i = 1 to f do

Set the contents of Ni to Di, where Di is all instances in N that match
Fi

Call BuildTree(Ni)
end for

end if

will be assigned to test instances. A decision tree for the Weather dataset

(from [81]) is given in Figure 1.2. C4.5 [63] is an upgrade of ID3 that includes

improvements such as pruning and the ability to handle continuous attributes

and missing values.

Figure 1.2: Decision tree for Weather data

Information Gain

The information of a node in a decision tree measures the number of bits

required to specify the class of a new instance arriving at that node, given

the classes of the current instances at the node, and is calculated as shown in

Equation 1.1 for a node containing instances from two classes (A and B).
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info(node(x,y)) = − x

x + y
log2(

x

x + y
)− y

x + y
log2(

y

x + y
) (1.1)

Where:

x = number of instances of class A

y = number of instances of class B

The information of a split is then determined by the weighted sum of the

information of the newly created nodes, as shown in Equation 1.2 for a node

T being split by a test X into n different leaf nodes.

infoX(T ) =
n∑

i=1

|Ti|
|T |
× info(Ti) (1.2)

The information gain is then the pre-split information less the post-split

information. If the information required to specify the class of a new instance

is less after the split than before it (which is the desirable outcome), then

the information gain will be a positive number – the decrease in information

required.

An example of this calculation for the Weather dataset from Section 1.2

follows, splitting the full dataset on the ‘outlook’ attribute:

Table 1.2: Class values splitting on the ‘outlook’ attribute

Outlook Class values
Sunny yes, yes, no, no, no
Overcast yes, yes, yes, yes
Rainy yes, yes, yes, no, no

The information of the full dataset (9 ‘yes’, 5 ‘no’) is given by:

info(9, 5) = − 9

14
log2

9

14
− 5

14
log2

5

14
= 0.940 bits (1.3)

The information of the split on ‘outlook’ is given by:
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info(outlook) =
5

14
info(sunny) +

4

14
info(overcast) +

5

14
info(rainy)

=
5

14
(−2

5
log2

2

5
− 3

5
log2

3

5
) +

4

14
(−4

4
log2

4

4
− 0

4
log2

0

4
) +

5

14
(−3

5
log2

3

5
− 2

5
log2

2

5
)

= 0.693 bits

(1.4)

(where 0log20 is defined to be 0)

And the information gain of the split is given by:

gain = information(dataset)− information(outlook)

= 0.940− 0.693

= 0.247 bits

(1.5)

The complexity of building a C4.5 decision tree is O(MNlogN) for tree

construction, with an additional O(N(logN)2) for pruning, where M and N

refer to the attributes and instances in the data [81]. This cost assumes that

the tree depth is O(logN), and that sorting of numeric attributes need only

occur once.

Random Forests

A random forest [11] is an ensemble of decision trees. Random forests use

Bagging to produce a randomly sampled set of training data for each of the

trees built. They also select splitting features semi-randomly – a random

subset of a given size is produced from the space of possible splitting features,

and the best feature deterministically selected from that subset. An example

of random forest construction is shown in Algorithm 4.

To classify a test instance, a random forest classifies the instance using

each of the trees in the forest, then combines the results. The method used

to combine the results can be as simple as predicting the class predicted by

the greatest number of trees, or a more sophisticated method can be employed



14 CHAPTER 1. INTRODUCTION

Algorithm 4 Pseudocode for the random forest algorithm

To generate c classifiers:
for i = 1 to c do

Randomly sample the training data D with replacement to produce Di

Create a root node, Ni containing Di

Call BuildTree(Ni)
end for

BuildTree(N):
if N contains instances of only one class then

return
else

Randomly select x% of the possible splitting features in N
Select the feature F with the highest information gain to split on
Create f child nodes of N , N1...Nf , where F has f possible values (F1...Ff )
for i = 1 to f do

Set the contents of Ni to Di, where Di is all instances in N that match
Fi

Call BuildTree(Ni)
end for

end if

– for example, taking into account the relative proportions of classes at the

leaves reached by the instance, if the trees produce mixed-class leaf nodes, to

assign confidence values to individual tree predictions.

1.6 Relational Data Mining

As random relational rules are the focus of this thesis, this section describes

the representation of relational data, as opposed to propositional data. Al-

gorithms that learn from relational data are described and the computational

complexity of relational data mining is discussed. Propositionalisation – the

process of transforming relational data into a propositional representation – is

also described.

1.6.1 Representing Relational Data

The example data in Section 1.2 (Table 1.1) is propositional, or ‘flat-file’. It

consists of a single table of data, in which each instance of data is assigned a

value for each attribute, allowing a representation of an instance as a series of
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Table 1.3: Example instances – East-West (trains)

Train Direction
train1 eastbound
train2 eastbound
... ...
train19 westbound
train20 westbound

attribute-value pairs. For example, the first instance from Table 1.1 could be

described as follows:

Outlook = sunny

Temperature = hot

Humidity = high

Windy = false

Play? = no

Relational data consists of multiple tables of data. An example of this

(from the East-West trains dataset [46]) is given in tabular form in Tables

1.3-1.5 and illustrated in Figure 1.3.

Figure 1.3: East-West Trains data

The trains in this dataset are labeled as eastbound or westbound, and each

train is composed of a number of cars – most with some load, but some with no

load – that differs from train to train. Representing this dataset as attribute-

value pairs is not straightforward, as each train is composed of multiple cars,

each with their own attributes.

First-order logic allows relational datasets to be represented in a manner

that preserves the relationships between the tables of data. Tables correspond
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Table 1.4: Example instances – East-West (cars)

Train Car Posn Shape Length Sides Roof Wheels
train1 car1 1 rectangle short not double none 2
train1 car2 2 rectangle long not double none 3
train1 car3 3 rectangle short not double peaked 2
train1 car4 4 rectangle long not double none 2
train2 car5 1 rectangle short not double flat 2
train2 car6 2 bucket short not double none 2
train2 car7 3 u shaped short not double none 2
... ... ... ... ... ... ... ...
train19 car58 1 rectangle long not double flat 3
train19 car59 2 rectangle long not double flat 2
train19 car60 3 rectangle long not double none 2
train19 car61 4 u shaped short not double none 2
train20 car62 1 rectangle long not double flat 2
train20 car63 2 u shaped short not double none 2

Table 1.5: Example instances – East-West (loads)

Car Shape Quantity
car1 circle 1
car2 hexagon 1
car3 triangle 1
car4 rectangle 3
car5 circle 2
car6 rectangle 1
car7 triangle 1
... ... ...
car58 rectangle 3
car59 rectangle 3
car61 triangle 1
car62 hexagon 1
car63 triangle 1
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to predicates, and the columns of those tables correspond to arguments within

the predicates. Each row of each table is represented by a tuple with a number

of arguments (arity) equal to the number of columns in the table. An example

of this representation for the first train, train1, is given below:

train(train1, eastbound).

car(train1, 1, rectangle, short, not_double, none, 2, load1).

car(train1, 2, rectangle, long, not_double, none, 3, load2).

car(train1, 3, rectangle, short, not_double, peaked, 2, load3).

car(train1, 4, rectangle, long, not_double, none, 2, load4).

load(load1, circle, 1).

load(load2, hexagon, 1).

load(load3, triangle, 1).

load(load4, rectangle, 3).

A example of a first-order rule that could be produced using this data (and

covers train1) is:

train(TrainID, eastbound):-

car(TrainID, Position, short, Sides, Roof, Wheels, LoadID),

Wheels < 3,

load(LoadID, circle, Quantity).

The rule is given in the syntax of the first-order-logic-based programming

language Prolog [9]. To describe it in more detail, the rule has been split into

its individual literals:

train(TrainID, eastbound):-

The portion of the rule preceding the ‘:-’ is the ‘head’ of the rule. Rules

can be regarded as “body implies head”, in that the rule can be read as “if

body then head”. The head of this rule describes trains that are eastbound.

By Prolog convention, variables within the tuples begin with uppercase letters

and constants begin with lowercase letters, so in this rule, ‘short’ and ‘circle’

are constants and ‘TrainID’, ‘Position’, ‘Sides’, ‘Roof’, ‘Wheels’, ‘LoadID’ and

‘Quantity’ are variables.

car(TrainID, Position, short, Sides, Roof, Wheels, LoadID),
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The portion of the rule following the ‘:-’ is a series of comma-separated

literals that make up the ‘body’ of the rule. When the above literal is being

evaluated, the TrainID variable will already have been bound to the value for

a particular train (at least for the purposes of the system described in this

thesis), so at this point the rule covers all trains containing at least one short

car.

Wheels < 3,

When the above literal is being evaluated, the Wheels variable will already

have been bound by the previous literal. Thus, this literal restricts the rule to

only covering trains that contain a short car with less than three wheels.

load(LoadID, circle, Quantity).

When this final literal is being evaluated, the LoadID variable will already

have been bound by the first literal of the rule body. Thus, this literal restricts

the rule to only covering trains that contain one or more short cars with less

than three wheels that have circular loads. The full rule can be read as “if a

train contains a short car and that car has less than three wheels and a circular

load, then the train is eastbound”. Rules are terminated with a period. For

clarity, a variable that is never used after its introduction in a rule can be

replaced with an underscore, resulting in the following for the example rule, as

‘Position’, ‘Sides’, ‘Roof’ and ‘Quantity’ are never used after their introduction:

train(TrainID, eastbound):-

car(TrainID, _, short, _, _, Wheels, LoadID),

Wheels < 3,

load(LoadID, circle, _).

1.6.2 Inductive Logic Programming

Inductive Logic Programming (ILP) systems learn patterns from data ex-

pressed in logical representations such as first-order logic – that is, relational

data. This section describes ILP systems used for comparison in subsequent

chapters.
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Foil

The Foil algorithm [62] (First Order Inductive Learner) is a greedy covering

algorithm. It begins with an empty theory and an empty rule, then iteratively

adds the ‘best’ literal(s) (determined by greedy search using an information

gain metric, although ‘gainless’ literals can also be added if they introduce

new variables) to the rule until the rule only covers instances of a single class.

Once this point has been reached, the rule is added to the theory, the instances

covered by the rule are removed from the training data and the process is

repeated on the new training set. This results in a ‘decision list’ of rules for

classifying new data – the rules are applied in order to each test instance

until one matches, at which point the test instance is assigned the class of the

matching rule.

Foil is capable of learning recursive concepts [64] and employs a sophis-

ticated scheme to prevent infinite recursion. Foil also employs ‘checkpoints’

such that if a rule cannot be completed satisfactorily (which can occur if there

is no literal that can be added or if adding another literal will make the rule

too complex with regard to the training data), a useful part of the rule can be

retained and the search restarted from that point. Foil also employs pruning

after rules have been generated to remove unnecessary literals and in some

cases improve the coverage of the rules. As a search-based relational rule

generator, Foil is used for comparison with random relational rules.

Tilde

Tilde (Top-down Induction of Logical DEcision trees) is an algorithm for con-

structing decision trees from relational data [6]. Tilde is a relational upgrade

of the C4.5 algorithm [63] for decision tree construction, using (by default)

the same information gain heuristic to evaluate possible features for splitting

nodes. The major difference between Tilde and C4.5 lies in the computation

of those features.

C4.5 deals with propositional, attribute-value data, and so uses tests that

compare an attribute to a value – for example, ‘Outlook = Sunny’ or ‘Tem-

perature > 16.3’. Tilde, dealing with relational data, must utilise tests that

involve a more complex representation. Tilde describes features using first-

order logic, with each feature being composed of one or more literals.

To illustrate the operation of Tilde, a small dataset and example tree,

derived from those given in [5], are shown here in Tables 1.6-1.8 and Figure
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Table 1.6: Example instances – Maintenance (machines)

Machine Action
machine1 fix
machine2 sendback
machine3 sendback
machine4 ok

Table 1.7: Example instances – Maintenance (worn parts)

Machine Worn Part
machine1 gear
machine1 chain
machine2 engine
machine2 chain
machine3 wheel

1.4.

The Maintenance dataset consists of four machines, some of which have

worn parts. Some of the worn parts can be replaced by a local engineer, and

some must be sent back to the manufacturer for replacement. If a machine

contains worn parts the engineer cannot replace, it belongs to class ‘sendback’,

while if all worn parts it contains can be replaced by the engineer, it belongs

to class ‘fix’. If a machine contains no worn parts it belongs to class ‘ok’.

In producing the example tree in Figure 1.4, the algorithm initially con-

siders possible literals to add, selecting the one that leads to the greatest in-

formation gain – worn(Machine, Part). This literal succeeds on all machines

with one or more worn parts, but does not succeed on machines without worn

parts. This leads to a left subtree containing three instances of classes ‘send-

back’ and ‘fix’ and a right subtree containing only the machine with no worn

parts. The latter subtree is class-pure, and so becomes a leaf node. The

algorithm then considers literals to split the remaining instances, selecting

replaceability(Part, not-replaceable), which creates two class-pure leaf nodes.

The instances for which that literal succeeds have parts that the engineer can-

Table 1.8: Example instances – Maintenance (part replaceability)

Part Replacable
gear replaceable
chain replaceable
engine not-replaceable
wheel not-replaceable



1.6. RELATIONAL DATA MINING 21

Figure 1.4: Decision tree for Maintenance dataset

not replace and thus must be sent back, and the instance for which it does not

succeed contains only worn parts that can be replaced by the engineer.

Leaf nodes can be represented as a path from the root to the leaf – a

conjunction of literals. For example, the ‘sendback’ leaf could be described by:

sendback(Machine):- worn(Machine, Part),

replaceability(Part, not-replaceable).

Paths that include nodes with literals that did not succeed are described

using the negation of the conjunction up to that point, as an ‘invented pred-

icate’ that does not share variables introduced at the unsuccessful node with

the rest of the conjunction. The ‘fix’ leaf is an example of this, using the

invented predicate p1:

fix(Machine):- worn(Machine, Part), not(p1(Machine)).

p1(Machine):- worn(Machine, Part2),

replaceability(Part2, not-replaceable).

The above conjunction describes machines with one or more worn parts, but

not machines with any parts that are both worn and non-replaceable. The same

result cannot be achieved by simply negating the literal of the unsuccessful

node. If this were to be done for ‘fix’, the result would be:

fix(Machine):- worn(Machine, Part),

not(replaceability(Part, not-replaceable)).
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This conjunction describes machines with one or more worn parts, one

or more of which is replaceable (literally, ‘not not-replaceable’), instead of

the desired result, machines with one or more worn parts, all of which are

replaceable.

For more complex problems, Tilde can use ‘lookahead’ to add literals that

introduce variables but have zero information gain, in conjunction with gainful

literals that make use of the introduced variables. Variables introduced in a

given node can be only used by the literals in that node, the child of that node

for which the test succeeds and the descendants of that child – other nodes are

outside the scope of the introduction.

Forf

Forf (First Order Random Forests) [3] is an ensemble combination of the

relational decision trees created by Tilde, and can also be regarded as a

relational upgrade to random forests, just as Tilde is a relational upgrade of

C4.5.

Forf creates an ensemble of decision trees using Bagging to initialise the

root nodes. As with propositional random forests, a test at an internal node is

chosen using a heuristic (such as information gain) from a set of tests randomly

selected from the possible tests at that node. The size of that set relative to

the number of possible tests (as a proportion) can be varied by the user.

As a relational random forest generation algorithm, Forf is used for com-

parison with the random forest algorithm based on random relational rules,

described in Chapter 6.

1.6.3 Complexity of Relational Learning

Just as with attribute-value machine learning algorithms, computational com-

plexity is an important quality for relational learning algorithms.

Two factors are considered here – the hypothesis space and the complexity

of evaluating a rule in that space. These factors are described using De Raedt’s

terminology and results from [65].

In the attribute-value (propositional) case, there is only one table of data,

and attributes cannot be compared to each other. The ‘maximum arity’ is

thus the number of attributes in the dataset, and there is at most one ‘predi-

cate literal’ in the rule. This results in a hypothesis space complexity that is

exponential only in the number of attributes.
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This can be illustrated by considering a simple propositional dataset that

describes the state of traffic lights at an intersection. Each light (attribute)

has three possible values (red, orange and green). If we consider only one light,

it has three possible values. For two lights there are 3 × 3 or 9 possible combi-

nations of values, and for three lights there are 33 = 27 possible combinations.

This progression in the hypothesis space is clearly exponential. In spite of this

exponential growth in the hypothesis space, most propositional algorithms are

polynomial in the number of instances and attributes. For example, evaluating

a ‘rule’ in this hypothesis space would be linear with respect to the ‘arity’ of

the dataset – there will be at most one comparison to each attribute, for each

instance.

In the relational case, on the other hand, where learnt theories are rep-

resented as first-order rules, consisting of a conjunction of literals, De Raedt

demonstrates that the hypothesis space searched, in addition to being expo-

nential with respect to the maximum arity of a relation, is also exponential

with respect to the number of pairs of literals that share common variables

and the maximum number of predicate literals in a rule.

Testing whether an instance is covered by a rule is, like the hypothesis

space, exponential with regard to the number of pairs of literals sharing com-

mon variables in a clause. This means that Foil and Tilde (and thus Forf,

being derived from Tilde) have exponential complexity with regard to this

value in the worst case. These algorithms deal with the large hypothesis space

using heuristic search techniques. They produce models by selecting one literal

at a time according to a heuristic, rather than searching the entire hypothesis

space for models, and thus limit the search at any given point to those models

that can be formed by adding a single literal to the current rule.

To illustrate the exponential nature of relational data mining, consider a

very simple relational dataset of chemical compounds, each containing ten

atoms, using the following predicates:

compound(CompoundID, Class)

atom(CompoundID, AtomID, Element, Charge)

A rule consisting of a single atom predicate would require each of the ten

possible atoms in each compound to be evaluated. A rule consisting of two

such predicates would require each possible combination of two atoms to be

evaluated, for a total of one hundred literal evaluations for each compound. A

rule constructed from three atom predicates would need one thousand literal
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evaluations per compound, and so on for more predicates, as shown in Table

1.9.

Table 1.9: Literal evaluations per compound for simple ‘Compound’ dataset

Atom Literal Total
predicates evaluations evaluations

1 10 10
2 10 × 10 100
3 10 × 10 × 10 1000
... ... ...
x 10 × 10 × 10 ... 10x

It can be seen that the number of evaluations required increases rapidly

with respect to the number of predicates, even with only ten atoms per com-

pound. For this reason, most ILP systems set a maximum on the number of

literals allowed in the rules they generate (without such a limit, an exhaustive

search would be searching an unboundedly large space). An increase in the

branching factor of the data (in this case the number of atoms per compound)

can also have a substantial effect on computational cost – for example, if the

compounds consisted of 30 atoms each, this would increase the number of

literal evaluations required in the 3-literal case by a factor of 27.

The number of instances in a dataset is not as significant as the previously

mentioned factors with regard to complexity – Tilde, for example, has a

complexity similar to C4.5 with respect to the number of instances [6].

1.6.4 Propositionalisation

As described in Section 1.6.3, the complexity of coverage testing and the hy-

pothesis space in relational data leads to relational algorithms that are expo-

nential in the worst case. Standard (attribute-value) machine learning algo-

rithms, on the other hand, can be more computationally efficient, but cannot

process the relationships and richness of information contained in relational

data.

Propositionalisation is the process of transforming relational data into a

propositional representation, with the aim of preserving the richness of infor-

mation in the relational data, while producing a representation of the data that

can be utilised by efficient standard machine learning algorithms [41], and is

thus of interest with regard to relational data mining.
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The most näıve form of propositionalisation would involve simply ‘flat-

tening’ the data, converting all the information related to a given relational

instance into a series of attributes. However, there are a number of diffi-

culties with this approach – for example, placing explicit labels on created

attributes that indicate relationships not actually present in the data. To use

the Mutagenesis dataset as an example, each Compound instance, under this

transformation, would contain attributes for the elements, charges and quanta

types for each atom in the compound (with the added complication that every

instance would need to contain as many attributes as the largest instance, and

smaller instances would have to deal with missing values). This would result

in a structure similar to:

Compound, Atom1El, Atom1Ch, Atom1Qu, Atom2El, Atom2Ch, Atom2Qu..

In this representation the ordering of the atoms within each compound will

have an effect on the models produced by attribute-value machine learning

algorithms, as correspondences are explicitly drawn between atoms in the same

position in the ordering – an ordering not present in the original dataset.

Rsd [80] (Relational Subgroup Discovery) takes a logic-based approach

to propositionalisation. It computes all possible combinations of first-order

predicates (within defined constraints) that could form useful features, then

instantiates selected variables to produce features. The features produced in

this way are then transformed into a set of Boolean values that denote, for

each instance in the data, whether that instance is covered by that feature.

Relaggs [43] uses relational database-oriented techniques, such as ag-

gregation, to produce propositional representations that are not limited to

Boolean values. For example, a set of relational attributes can be summarised

by values such as minimum, maximum, mean, mode or frequency counts.

1.7 Learning with Unlabeled Data

The application of random relational rules to learning from data without ex-

plicit class labels is discussed in subsequent chapters of the thesis, so a brief

overview of such learning is given here.

This section describes two methods for learning from data in which some

or all of the instances are without explicit class labels – clustering, in which

all of the data is unlabeled, and semi-supervised learning, in which a portion

of the data is labeled and the remainder is not.
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In supervised learning for classification, the learning algorithm is provided

with a set of instances with class labels [13]. A model is derived from the

labeled training data and used to classify test instances whose labels have

been hidden. On the other hand, in unsupervised learning, the data has no

class labels at all. Instead of classifying the data, unsupervised algorithms

search for useful structure and groupings within the data.

1.7.1 Clustering

Clustering is a form of unsupervised learning, in which instances are divided

into groups, generally according to some distance measure, such as the Eu-

clidean distance [34]. Clustering is unlike the train-test procedure of super-

vised learning, where a model is produced on labeled training data and used

to assign labels to test data, in that it takes a set of unlabeled instances and

attempts to produce a meaningful grouping of instances within that set in the

absence of class labels.

Instances within a cluster should be, according to the distance measure

used, more similar to each other than they are to instances in other clusters.

In fact, the ‘Cluster assumption’ states “If points are in the same cluster, they

are likely to be of the same class” [13] (although the reverse does not necessarily

hold), which suggests a method for assessing the quality of clustering if class

labels are available for the data.

The k-means algorithm is used to cluster data in Chapter 4 and is thus de-

scribed here, in Algorithm 5. K-means is a partitioning clustering algorithm,

meaning that it produces a single set of partitions (as opposed to methods

that produce a nested series of partitions). K-means begins with some number

(k) of randomly assigned partition centres (centroids) and iteratively reassigns

partition centres (and thus partitioning) until a convergence is reached. An ex-

ample of this process, reproduced from a diagram previously published in [25],

is shown in Figure 1.5. Initially two points are randomly selected as cluster

centres and each of the remaining points assigned to whichever of the centre

points they are closer to. Then the centroids of each cluster are calculated

and the data points are assigned to their nearest centroids repeatedly until the

clusters converge to the final stage shown.

It initially creates k cluster centres by selecting instances at random from

the data, then assigns each remaining instance to the cluster with the nearest

centre. Once this initialisation is complete, the k-means algorithm sets the
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centre of each cluster to its centroid and again assigns each instance to the

closest centre. This process is repeated until it has converged on a set of

centroids that will not change with further iterations.

Algorithm 5 Pseudocode for the k-means algorithm

Randomly select k instances as initial reference points R1..Rk

for each instance i in the data do
Assign instance i to the closest of the k reference points

end for
Set new reference points R′1..R

′
k to be the centroids of the instances assigned

to each reference point
converged = false
while converged = false do

for each instance i in the data do
Assign instance i to the closest of the k reference points

end for
Set new reference points R′1..R

′
k to be the centroids of the instances as-

signed to each reference point
if ∀i Ri = R′i then

converged = true
end if

end while

Figure 1.5: k-means clustering process

1.7.2 Semi-supervised Learning

Semi-supervised learning falls between supervised and unsupervised learning,

in that semi-supervised algorithms utilise both labeled and unlabeled data. A

common task in semi-supervised learning is, given a dataset in which some

instances have class labels and some do not, to predict class labels for those

instances without them.
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An example of a basic Expectation-Maximisation (EM) [18] algorithm for

semi-supervised learning is shown in Algorithm 6. This is a more general form

of an algorithm discussed in [13],

Algorithm 6 EM algorithm for semi-supervised learning

Build a classifier from labeled instances only
while Classifier parameters improve do

Use the current classifier to estimate a class for each unlabeled instance
Re-estimate the classifier, given the estimated class membership of each
instance.

end while

This form of learning is especially valuable in situations where there are

large amounts of unlabeled data available, but it is expensive (in terms of time

and/or money) to obtain labels for that data. Examples of such situations,

also given in [13], include:

• Speech recognition – obtaining recorded speech is cheap, but transcribing

(and thus labeling) it requires human effort.

• Webpage classification – vast numbers of webpages are freely available,

but their classification requires human effort.

• Protein functions - large numbers of protein sequences are available, but

classifying the function of a protein may take years of investigation.

1.8 Thesis Structure

In this chapter the background and motivation of this thesis were discussed,

along with algorithms and concepts that will be elaborated upon in later chap-

ters.

Chapter 2 introduces the Rrr algorithm, discussing rule and ruleset con-

struction and also giving experimental results.

Chapter 3 covers the use of Rrr for propositionalisation, introducing the

Rrr-p algorithm, and compares the experimental results produced by Rrr-p

to those achieved by other learning algorithms.

Chapter 4 discusses the use of Rrr-p for relational clustering via proposi-

tionalisation and compares the results to other relational clustering methods.

In Chapter 5 Rrr-p is applied to the field of relational semi-supervised

learning using propositionalisation. Two methods of making use of unlabeled

data are compared to results produced by supervised Rrr-p.
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Chapter 6 is concerned with the application of Rrr to the construction of

random forests in a manner that allows trees and individual branches to be

grown in parallel.

Finally, Chapter 7 summarises the thesis and its major contributions.
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Chapter 2

Random Relational Rules

Exhaustive search in relational learning is generally infeasible, therefore some

form of heuristic search is usually employed, such as in Foil [62]. Randomly

generated rules provide a method of searching the space of possible rules that

can be arbitrarily scaled by varying the number of rules generated. However,

such randomly generated rules are not individually powerful classifiers.

Stochastic discrimination [38] provides a framework for combining arbitrary

numbers of weak classifiers in a way where accuracy improves with additional

rules, even after maximal accuracy on the training data has been reached. The

weak classifiers must have a slightly higher probability of covering instances of

their target class than of other classes. As the rules are also independent and

identically distributed, the Central Limit theorem applies and as the number

of weak classifiers/rules grows, coverages for different classes resemble well-

separated normal distributions. Stochastic discrimination is closely related to

other ensemble methods like Bagging, Boosting, or Random Forests, all of

which have been tried in relational learning [21, 31, 3].

This chapter describes an algorithm for randomly generating relational

rules, and a framework for combining those rules to make predictions using

stochastic discrimination. Although the rules are not individually powerful

classifiers, when they are combined using stochastic discrimination, good pre-

dictive accuracy can be achieved.

Section 2.1 describes how the random rules are generated and Section 2.2

describes how these rules are combined into rulesets. Classification using the

generated rulesets is described in Section 2.3 and experimental results are

reported and compared to those produced by Foil in Section 2.4, with a

comparison to the runtime of Foil in Section 2.5. Section 2.6 summarises the

chapter.

31
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2.1 Rule Generation

This section discusses the generation of random relational rules by the Random

Relational Rules (Rrr) algorithm. Section 2.1.1 gives the algorithm used by

Rrr for rule production and Section 2.1.2 discusses the complexity of rule

evaluation, first with respect to a single literal and then for entire rules.

2.1.1 Rule Generation Algorithm

The Rrr algorithm operates on two-class problems, and produces one set

of first-order rules for each class. Unlike Bagging, it does not resample the

training set. Rules are generated fully randomly by adding literals to a partial

clause in a manner similar to the Foil algorithm (pseudocode for which is

shown in Algorithm 7).

Algorithm 7 Pseudocode for rule generation in the Foil algorithm

Theory: empty
Remaining: all positive instances
while Remaining is not empty do

Rule: empty
while Rule covers negative instances do

for each literal that could be added to the rule do
Compute the information gain of the literal

end for
Add the best literal(s) to Rule

end while
Remove positive instances covered by Rule from Remaining
Add Rule to Theory

end while

The algorithm for Rrr is given in Algorithm 8. Where a random choice is

made in the algorithm, each possible choice has equal probability. Predicate

literals must have exactly one variable already bound. Test literals cannot

introduce variables.

The stopping condition of Foil – purity of rule coverage – differs from the

rule length limitation of Rrr, and Rrr does not remove the instances covered

by each generated rule from the training set (as the rules generated by Rrr

are much less likely to have class-pure coverage than those produced by Foil),

but literal-by-literal rule generation is common to both. Foil also limits the

length of its generated rules indirectly, by rejecting literals that would cause

the bits required to encode the rule to exceed those required to indicate the
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Algorithm 8 Pseudocode for rule generation in the Rrr algorithm

while Number of literals in rule is less than maximum rule length do
Randomly select whether to generate a predicate or test literal
if Generating a predicate literal then

Randomly select which predicate literal to add
Add predicate literal, ensuring that exactly one variable is bound, and
introducing new variables for each other argument

else if Generating a test literal then
Randomly select which variable to test
Randomly select whether to test against a variable or constant
if Testing against a variable then

Randomly select a variable to test against
else if Testing against a constant then

Randomly select a constant to test against
end if
Randomly select an operator (from {=, 6=} or {=, 6=, <, ≤, >, ≥} as
appropriate)
Add test literal

end if
end while

instances covered by the rule. Rrr computes the coverage of literals once the

rule is complete, while Foil computes the coverage of possible literals before

selecting which one to add.

2.1.2 Complexity

Because the structure of the rule production method of Rrr has such a simi-

larity to that of Foil, the two are compared here.

The complexity of constructing and evaluating a rule in Rrr is dominated

by the cost of the evaluation, which is exponential with respect to the number

of literals in the rule, and influenced by the ‘branching factor’ – for a predicate

literal, the number of new bindings in the predicate compatible with the current

ones and for a test, the proportion of the current bindings that satisfy the test.

This is O(cn), where the upper bound for c is the maximum branching factor

for any single literal and n is the number of literals.

Evaluating a single literal

The cost to evaluate a single literal is the same for Foil as it is for Rrr – both

are dependent on the branching factor. Pazzani and Kibler calculate bounds

and estimates for Foil’s search [58], and their terminology will be used here.
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For the branching factor, which applies to both Rrr and Foil, for a literal

where no new variables are introduced, let the Density of that literal be the

proportion of cases where that literal is true. For a literal that introduces new

variables, let the Power of the predicate be the maximum number of solutions

for that predicate with exactly one variable bound. Given those definitions

and that Li for i = 1 to k gives the literals in a rule of length k, Growth(Li) is

1 if Li does not introduce new variables and Power(Li) if it does (see Equation

2.1).

Growth(Li) =

{
1 Li introduces no new variables

Power(Li) otherwise
(2.1)

This leads to an upper bound for the branching factor of:

BranchingFactor ≤
k∏

i=1

Growth(Li) (2.2)

For an estimate of the branching factor, the AveragePower of a predicate

can be defined as the average number of solutions for that predicate when

exactly one variable is bound, and the AverageGrowth of a literal as its Density

if no new variables are introduced or its AveragePower if new variables are

introduced.

AverageGrowth(Li) =

{
Density(Li) Li introduces no new variables

AveragePower(Li) otherwise

(2.3)

This allows the branching factor to be approximated with:

BranchingFactor ≈
k∏

i=1

AverageGrowth(Li) (2.4)

The branching factors given in Equations 2.2 and 2.4 show that both Rrr

and Foil have branching factors that grow exponentially with the number of

possible solutions to the predicates. Later literals in a rule thus often have a

higher branching factor than earlier ones and have a correspondingly greater

cost to evaluate.
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Table 2.1: Literals considered in rule construction

Literal added Predicates searched Tests searched Total searched
atom(A,B,C,D,E) 2 0 2
atom(A,F,C,G,H) 38 106 144
E > -0.121 124 216 340
H <= 0.011 124 216 340
H > -0.084 124 216 340
E <= -0.112 124 216 340
Total 536 970 1, 506

The number of literals evaluated

Foil faces a higher cost than Rrr in rule construction, where, when deter-

mining a literal to add, Foil evaluates all possible literals and Rrr randomly

selects one. The number of literals Foil investigates grows exponentially with

the arity of the predicates and the number of variables currently in the rule.

Thus, as the size of the rule increases, the number of literals Foil evaluates

increases – and as the branching factor usually also increases with the number

of literals, the cost to evaluate those literals also increases.

For example, the Mutagenesis dataset contains three predicates –

• compound(CompoundID)

• atom(CompoundID, AtomID, Element, Quanta, Charge)

• bond(CompoundID, AtomID, AtomID, BondType).

Table 2.1 gives the number of literals considered for a rule generated by

Foil during one of the experiments:

active(A):-

atom(A, B, C, D, E),

atom(A, F, C, G, H),

E > -0.121,

H <= 0.011,

H > -0.084,

E <= -0.112.

Only predicate literals change the number of variables in the rule and thus

affect the search space.

In constructing the same rule, Rrr would evaluate two predicate literals

and five test literals, for a total of seven (Rrr would use an additional test to
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encode the equality of the element field for the two atoms). Because the cost of

evaluating literals changes as the rule grows, it cannot be said that Rrr could

produce 1506 / 8 ≈ 188 rules with roughly the same cost as Foil produces one,

but it can be observed that Rrr can randomly generate a substantial number

of rules without exceeding Foil’s computational cost. The advantage of Rrr

shows more clearly on high-arity predicates such as conformation/168 in the

Musk1 dataset. After one conformation predicate is added to the rule, the

number of conformation predicates to be examined escalates. For each of the

168 arguments in a conformation literal, Foil must examine a conformation

predicate using an existing variable for that argument or introducing a new one.

This gives 2167 or roughly 1.87 × 1050 predicate literals for Foil to evaluate.

Rrr has to evaluate only the predicate it randomly selects and its execution

time is thus unaffected by this explosive increase in the number of possible

literals.

2.2 Ruleset Production

A single randomly generated rule is not particularly useful for predicting the

classes of unseen instances. Rrr-sd (Random Relational Rules – Stochastic

Dsicrimination) generates a number of random rules, then combines them to

produce predictions using stochastic discrimination [38].

Section 2.2.1 describes how stochastic discrimination operates and how it

affects rule generation, Section 2.2.2 examines the proportion of generated

rules that are useful for stochastic discrimination and Section 2.2.3 discusses

some implementation details that increase the efficiency of rule evaluation.

2.2.1 Stochastic Discrimination

Stochastic discrimination is a methodology for combining weak classifiers (in

this case, random rules) to produce a complex classifier that can generalise to

new data. Kleinberg’s algorithm for stochastic discrimination requires that the

weak classifiers be ‘enriched’, all covering a greater proportion of the target

class than the other class, to differentiate between classes, and also that the

set of classifiers be ‘uniform’, covering the training data as evenly as possible.

These requirements are discussed in more detail below.

As the weak classifiers all cover a greater proportion of the target class (due

to enrichment) than they do of the other class, instances of the target class
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will, on average, have a higher coverage than those of the other class. Due to

uniformity, instances that the randomly generated weak classifiers would tend

to cover less frequently will instead receive coverage closer to the average. The

result of this process as the number of weak classifiers increases is thus that

the coverages for instances of both the target and non-target classes tend to

approach normal distributions, with the mean for the target class greater than

that for the non-target class, and decreasing variances for both means.

The threshold for class prediction for test instances is therefore the mid-

point between the mean coverages for the two classes. More specifically, test

instances are classified according to Equations 2.5-2.6 (for a two-class problem,

classes P (the target class, for which the set is enriched) and N). The coverage

on the test instance is compared to the midpoint between the overall mean

coverages for each class, and if it is greater than that midpoint, it is classified

as being of the target class. The mean coverage on the target class is expected

to be higher than that on the other class, due to the enrichment requirement.

Predict P if prop(Instance) >
meanCoverage(P) + meanCoverage(N)

2
(2.5)

Where:

Instance = the test instance to be classified

prop(Instance) = the proportion of classifiers in the set that cover Instance

meanCoverage(Class) = the mean coverage of training instances of that class

by the ruleset

meanCoverage(P) =

size(P)∑
i=1

prop(Pi)

size(P)
(2.6)

Where:

size(P) = the number of instances of class P

Pi = the ith instance of class P

Enrichment

Enrichment is a rule-level quality: a rule is enriched for a particular class, if

it covers a greater proportion of the instances of that class than it does of the

instances of the other class.
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A rule is enriched if
#coveredP

#totalP
>

#coveredN

#totalN
(2.7)

For example, given a simple dataset containing 10 instances of class A and

20 instances of class B and a rule that covered 6 instances of class A and 11

instances of class B, the calculation would be as follows:

The rule is enriched for class A if
6

10
>

11

20
(2.8)

As 0.6 is greater than 0.55, the rule is enriched for class A. In addition, to

avoid overly specific rules, rules are required to cover more than one instance

of the class for which they are enriched.

Uniformity

Uniformity is a ruleset-level quality - a uniform ruleset covers the training

instances of a given class as evenly as possible. The current coverage of a ruleset

affects the selection of new rules to be added, in a similar fashion to Boosting.

Rrr-sd defines uniformity as the standard deviation of the coverages of each

instance of the target class in the training set, so that the best theoretically

possible uniformity is 0, at which point each instance of the target class would

be covered by exactly the same number of rules.

While determining if a particular rule is enriched is a simple mathematical

calculation, determining whether adding that rule will satisfy the uniformity

constraint is less straightforward. Several approaches to this problem were

investigated before a satisfactory solution was found for Rrr-sd.

• Fixed threshold – Setting a fixed threshold for the standard deviation,

and rejecting rules that would bring the standard deviation over this

threshold, either has very little effect on the uniformity (if the threshold

is too high) or rejects a high proportion of rules, requiring large numbers

of rules to be generated, and can result in non-termination, with no

possible rule that can keep the uniformity under the threshold (if the

threshold is too low).

• Annealing – An ‘annealing’ approach, where the threshold is initially

set high and then decreased as rules are added, initially has the draw-

back of a high threshold, and later displays the high rejection rate (and

concomitant requirement for many rules to be generated) and potential

non-termination of a low threshold.
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• Decreasing – Requiring each rule to keep the uniformity value the same

or decrease it in order to be added has a similar drawback to a low

threshold, in that the number of rules that will satisfy such a constraint

grows smaller as more rules are added, and eventually non-termination

results.

• Increasing Threshold – The reverse of the ‘annealing’ method, start-

ing with a low threshold and raising the threshold gradually as rules

fail, resetting it to the low value when a rule is added, avoids the non-

termination problem, but is strongly affected by the size of increments

and frequency of threshold raising. Similarly to the simple threshold

method, if the threshold goes up quickly, uniformity is hardly affected,

but if it goes up slowly, although the uniformity is improved, the number

of rules generated to add a single rule is prohibitive.

All of the above methods for ensuring uniformity share the property that

the number of rules that will be generated and discarded before one is added

to the ruleset is unknown. Therefore, Rrr-sd uses an alternative approach to

ensure uniformity that guarantees progress within a fixed number of rules. A

“maximum batch size” is selected, and as enriched rules are generated, they

are added to the batch. When the batch reaches its maximum size, a subset of

the rules in the batch will be added to the ruleset. This subset is determined by

evaluating the resulting uniformity for adding each possible non-zero subset

of rules, and selecting the subset resulting in the best value for uniformity.

The remaining rules in the batch are discarded. This ensures that at least

one rule in every batch will be added to the ruleset, while also maintaining an

acceptable level of uniformity.

2.2.2 The number of rules evaluated

The number of rules Rrr must examine to produce a ruleset of size N depends

on the batch size and the training data. For any given dataset, there are a

certain number of possible rules that can be generated. A certain proportion,

p, of the generated rules will be enriched. If batches of size b are being used,

then in the worst case one rule from each batch will be added to the ruleset. In

this case bN enriched rules must be generated to complete the ruleset, and thus

the upper bound on overall number of rules to be generated can be computed

as bN
p

. More than one rule per batch can be selected, so for most datasets less
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than bN
p

random rules are generated to form a set of size N of enriched and

reasonably uniform rules.

2.2.3 Implementation

This section discusses some implementation details which are essential for more

efficient computation.

Algorithm 9 is a pseudo-code description of the Rrr-sd algorithm, prior

to the optimisations presented below. As the basic stochastic discrimination

algorithm requires arbitrary selection of a target class (which could exclude

usefully discriminatory rules that are enriched for the class not selected) Rrr-

sd, while similarly operating only on two-class problems, generates two sets of

relational rules. Each of these rulesets will be enriched for one of the classes

in the dataset, and contain at least a user-specified number of rules – due to

the batch mechanic for uniformity, slightly more than the minimum number

of rules may be produced.

Algorithm 9 Pseudocode for the Rrr-sd algorithm

for Each class do
while Number of rules for current class is less than the minimum do

while Number of rules in batch is less than the minimum do
Generate a rule
if Rule is enriched for current class then

Add rule to rule batch
end if

end while
Calculate the most uniformity-preserving non-zero subset of rules in the
rule batch
Add those rules to the ruleset for the current class

end while
end for

The following optimisations were implemented:

• Existence tests: Predicates that introduce variables that are never used

in subsequent literals are ‘existence tests’ which either succeed or fail,

without the need to enumerate all possible solutions. Consequently, such

predicates will be treated like tests, and are cheap to evaluate.

Example:

rule(CompoundID):-
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atom(CompoundID, AtomID1, Element1, Quanta1, Charge1),

Charge1 > 0.1,

atom(CompoundID, AtomID2, Element2, Quanta2, Charge2).

In the example, the second atom literal introduces four new variables,

none of which are used for tests, so the existence of an atom in the

Compound is sufficient for this literal to succeed.

• Re-ordering and Separation: Literals in rules are re-ordered to minimise

the branching factor encountered in evaluation of the rule. Because of

the random rule generation process, re-ordering is both more useful and

cheaper to compute than in systems like Foil, as it has to be done only

once, after the final literal has been included, and it has the potential to

significantly speed up coverage computations.

As predicates can introduce variables, they have the potential to increase

branching, while tests have only two possible outcomes – success or fail-

ure. As the impact of the branching caused by a predicate literal, or the

decrease in branches caused by a test literal, is greater the earlier in the

rule it appears, the test literals should optimally appear as early in the

rule as possible. The earliest the tests can appear in the rule is immedi-

ately after the predicate literal that introduces the variable or variables

being tested, so tests are moved as close as possible to the predicates

introducing their variables. Predicates are moved as far to the right as

possible.

For example, this rule:

rule(CompoundID):-

atom(CompoundID, _, _, _, Charge1),

atom(CompoundID, _, Element2, _, _),

atom(CompoundID, _, _, Quanta3, _),

Element2 = ‘h’,

Quanta3 = ‘3’,

Charge1 > 0.1.

would become:

rule(CompoundID):-

atom(CompoundID, _, _, _, Charge1),
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Charge1 > 0.1,

atom(CompoundID, _, Element2, _, _),

Element2 = ‘h’,

atom(CompoundID, _, _, Quanta3, _),

Quanta3 = ‘3’.

For clarity, the Prolog syntax that describes unused variables as under-

scores is used here. The tests on Charge1 and Element2 have been moved

to be adjacent to the predicates that introduced those variables.

To reduce the branching factor even further, some rules can be split into

independent subrules, such that no subrule depends on variables intro-

duced in another subrule. The rule is true for an instance (a particular

binding of CompoundID, in the example below) if all of its subrules are

true for that instance.

Example:

Subrule 1: rule(CompoundID):-

atom(CompoundID, _, _, _, Charge1),

Charge1 > 0.1.

Subrule 2: rule(CompoundID):-

atom(CompoundID, _, Element2, _, _),

Element2 = ‘h’

Subrule 3: rule(CompoundID):-

atom(CompoundID, _, _, Quanta3, _),

Quanta3 = ‘3’.

• Enrichment: Each rule belongs to exactly one of three disjoint sets - a

rule is enriched for one class, a rule is enriched for the other class, or

a rule is enriched for neither class (usually because it covers either no

instances or all instances).

Rather than generating rules until the ruleset enriched for one class is

complete, then repeating the process for the other class, Rrr-sd gen-

erates rules and adds each enriched rule to its appropriate ruleset. By

interleaving the rule generation process in this way, no enriched rule will

be wasted.

• Negation: If enough rules have already been generated for one class, ad-

ditional enriched rules for that class are irrelevant. However, inverting
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the coverage results for a rule enriched for one class will yield the cov-

erage for a rule enriched for the other class in a binary class setting,

and therefore such rules do not have to be discarded. This inversion is

accomplished by treating any instances not covered by the rule as be-

ing covered, and any instances covered by the rule as being not covered,

with the result that if the rule was enriched for one of the two classes,

the negation must now be enriched for the other.

For most datasets it was found that the distribution of enriched random

rules was slightly skewed with a larger number of enriched rules being

generated for one class than the other. Thus, negation helped to reduce

redundant rule creation and therefore also to reduce computing times.

• Prefixes: Every prefix of a random rule is another random rule – some

may be enriched, some may not. As, in the course of evaluating the full

rule, all the prefixes are also evaluated, there is very little computational

cost in making use of this additional information. Rrr-sd selects the

‘most enriched’ prefix for each rule – the prefix for which the ratio be-

tween the proportions covered of instances of each class by the rule is the

greatest. This also has the advantage that, even if the full-length rule

is not enriched, one of its prefixes may be, increasing the proportion of

possible useful rules.

• ID Elements: When generating predicate literals, for appropriate data-

sets, the single variable that the predicates must already have bound can

be required to be their ‘ID element’, with the remaining variables in the

predicate being newly introduced. The ‘ID element’ is the argument in

the predicate that identifies which instance it belongs to. For example,

in the Mutagenesis predicate atom(CompoundID,AtomID, Element,

Quanta, Charge), the CompoundID argument is the ‘ID element’. This

reduces the amount of evaluation required, as when determining the mu-

tagenicity of a particular compound, only atoms of that compound will

be considered when determining the mutagenicity of the compound. For

datasets where the instances are not interdependent, it does not make

sense to generate rules that predict the class of one instance based on

properties of another instance. (If the ‘ID element’ were not required to

be bound, rules could be generated containing Atom and Bond predicates

that could be instantiated to come from different compounds).



44 CHAPTER 2. RANDOM RELATIONAL RULES

Algorithm 10 is a pseudo-code description of the optimised Rrr-sd algo-

rithm.

Algorithm 10 Pseudocode for the optimised Rrr-sd algorithm

while Number of rules for either class is less than the minimum do
while Number of rules in batch for either class is less than the minimum
do

Generate a rule
Select an enriched prefix of that rule (including the full-length rule)
if Rule is enriched for class A then

if Rule batch for class A is not yet full then
Add rule to rule batch for class A

else
Negate rule and add it to rule batch for class B

end if
else if Rule is enriched for class B then

if Rule batch for class B is not yet full then
Add rule to rule batch for class B

else
Negate rule and add it to rule batch for class A

end if
end if

end while
Calculate the most uniformity-preserving non-zero subset of rules in each
rule batch
Add those rules to their corresponding rulesets

end while

2.3 Ruleset Evaluation

Rrr-sd produces two sets of rules, one enriched for each class, as the rules

enriched for one class may be quite different from those enriched for the other.

Because the rulesets are constructed independently, there is no guarantee that

the coverage distribution of one ruleset will be mirrored in the other. This

means that the raw proportions of rules in each ruleset that cover a test in-

stance cannot be directly compared to determine a prediction. Therefore a

transformation must be applied to produce compatible predictors for both

rulesets. Two ratios which make the proportions comparable have shown rea-

sonable performance – each ruleset’s average coverage across all training in-

stances (AC) and the per-ruleset mean of each class’s average coverage on the

training instances (MAC).
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Table 2.2: Example dataset

Class Number of Mean coverage Mean coverage
Instances by RA by RB

A 90 0.3 0.4
B 10 0.1 0.6
Overall 100 0.28 0.42

ACruleset(Instance) =
p(Instance)

mean coverage of training instances
(2.9)

MACruleset(Instance) =
p(Instance)

0.5(mean coverageclass A + mean coverageclass B)
(2.10)

Where:

p(Instance) = proportion of rules in ruleset that cover Instance

Both for AC and MAC, the final classification decision is made in favour

of the class predicted by the ruleset with the maximal value for a given test

example.

To demonstrate AC and MAC, consider a hypothetical dataset with 100

instances, 90 being of class A and 10 being of class B, and two rulesets RA

(enriched for class A) and RB (enriched for class B), summarised in Table

2.2. RA has a mean coverage on class A instances of 0.3 and a mean coverage

on class B instances of 0.1, for an overall average coverage of 0.28. RB has

a mean coverage on class A of 0.4 and a mean coverage on class B of 0.6,

for an overall average coverage of 0.42. The average of the mean coverages is

((0.1 + 0.3) ÷ 2 =) 0.2 for RA and ((0.4 + 0.6) ÷ 2 =) 0.5 for RB. For the

purposes of evaluating a test instance, Test, this gives:

ACRA
=

coverageRA
(Test)

0.28
and ACRB

=
coverageRB

(Test)

0.42
(2.11)

MACRA
=

coverageRA
(Test)

0.2
and MACRB

=
coverageRB

(Test)

0.5
(2.12)

If ACRA
(Test) > ACRB

(Test) then the AC method classifies Test as being
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Table 2.3: Classification decisions

Condition AC MAC Raw
c ≥ 1 A A A
1 > c ≥ 2

3
A A B

2
3

> c ≥ 2
5

B A B
2
5

> c B B B

Table 2.4: Example classifications by Rrr-sd on hypothetical data

Classification
CoverageRA

CoverageRB
c AC MAC Raw

0.1 0.1 1.0 A A =
0.1 0.3 0.33 B B B
0.2 0.1 2.0 A A A
0.2 0.4 0.5 B A B
0.3 0.4 0.75 A A B
1.0 1.0 1.0 A A =

of class A, and otherwise as being of class B. Similarly, if MACRA
(Test) >

MACRB
(Test) then the MAC method classifies Test as being of class A, and

otherwise as being of class B.

These formulae allow the results in Table 2.3 to be calculated for the AC,

the MAC and the unadjusted coverage (Raw, which is retained to demonstrate

that the raw proportions are not useful when directly compared). If we let

c(Test) =
CoverageRA

(Test)

CoverageRB
(Test)

then rearranging Equations 2.11 and 2.12 gives the

decision boundaries in Table 2.3 which are illustrated with examples in Table

2.4.

For this data, when a test instance has equal coverage by both rulesets, it

is classified as an A. Because RA’s average coverage is lower than RB’s, numer-

ically equal coverage is regarded by the algorithm as RA having unusually high

coverage. This leads to a prediction of A, the class for which the rules in RA

are enriched. AC and MAC disagree on the classification for an instance when

c is between the quotient of the average coverages (0.28
0.42

= 2
3
) and the ratio of

the average of the mean coverages (0.2
0.5

= 2
5
) – thus if the classes were present

in equal proportions, the AC and MAC would be equal. The AC is affected

by the proportions of the classes in the dataset – as the difference in the class

proportions increases, so does the range in which AC and MAC produce dif-

fering classifications, as the decision point for AC moves closer to the majority

class. This narrows the range in which the majority class (A in this example)

is predicted. In the fifth row of Table 2.4, the hypothetical instance had the
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average coverage for a class A instance from both rulesets (0.3, 0.4), but the

raw coverage predicted class B – a possibility that confirms the unsuitability

of unmodified coverage for comparisons.

2.4 Experiments and results

An evaluation of Rrr on several datasets has been conducted, using ten strati-

fied ten-fold cross-validation runs, on the following standard ILP datasets: Mu-

tagenesis (with and without regression-unfriendly instances) [76], Musk1 [20],

Carcinogenesis [75], and Diterpenes [23]. Mutagenesis and Carcinogenesis were

limited to low-level structural information as represented by atoms and bonds;

additional propositional information such as global properties lumo or logP ,

or predefined functional groups, was deliberately excluded: they are known to

improve classification accuracy significantly, thereby potentially masking the

relational performance of the investigated algorithms. More detailed informa-

tion on these datasets is given in Chapter 3.

The current implementation of Rrr-sd is limited to two classes, so the

Diterpenes dataset was transformed into three two-class versions by using

all pairwise combinations of the three largest classes called 3, 52 and 54 –

Diterpenes54,3, Diterpenes52,3 and Diterpenes52,54.

The minimum ruleset size was set to 500 (for an overall total of at least

1,000 rules in each run). The maximum number of literals per rule for Rrr

was set to six. (This is comparable to other clause contruction systems – Rsd

[80] sets a maximum length of five for the Mutagenesis problem, while Aleph

[73] defaults to four.) Greater maximum rule lengths were examined for Rrr,

but caused increases in runtime without a significant increase in accuracy, so

for these and later experiments, the maximum rule length for Rrr is six.

Rrr’s results are compared to Foil 6.4 on these datasets using the default

options. Foil 6.4 fails to produce rules on Musk1, but Ray and Craven [66]

report results gained from a version of Foil modified to run on that dataset,

and their results (marked by *) are used for comparison (no standard deviations

were given, so the corresponding result in Figure 2.2 has no error bar).

The results of this evaluation are shown in Tables 2.5 and 2.6 and graphi-

cally in Figures 2.1 and 2.2. The confidence of predictions (for each instance)

used for computing AUC for Rrr-sd was calculated by taking the ratio be-

tween the comparison method value for each ruleset, as shown in Equation
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2.13.

Confidence (Ti, MAC) =
MAC0(Ti)

MAC1(Ti)
(2.13)

Where:

Ti = test instance

MAC0(i) = MAC for instance i from ruleset enriched for class 0

MAC1(i) = MAC for instance i from ruleset enriched for class 1

Although AC and MAC produce different accuracies on a given dataset,

they produce the same AUC, because the AC and MAC values are, for any

given ruleset, related by a particular ratio, as shown in Equation 2.14. The

meancov values are calculated from the training data and are the same for all

test instances, so that while c′ and c′′ are constant (although usually different)

for any given ruleset, the value dependent on the test instance coverage, r, is

common to both the AC and the MAC. Thus, while they may produce different

predictions, the ordering of the confidence of those predictions is the same.

MAC0(i)

MAC1(i)

AC0(i)

AC1(i)

=

2×cov0(i)
meancov0,0+meancov0,1

2×cov1(i)
meancov1,0+meancov1,1

=

cov0(i)
meancov0

cov1(i)
meancov1

=
2cov0(i)× (meancov1,0 + meancov1,1)

2cov1(i)× (meancov0,0 + meancov0,1)
=

cov0(i)×meancov1

cov1(i)×meancov0

=
cov0(i)

cov1(i)
× (meancov1,0 + meancov1,1)

(meancov0,0 + meancov0,1)
=

cov0(i)

cov1(i)
× meancov1

meancov0

= r × c′′ = r × c′

(2.14)

Where:

MACx(i) = the MAC value from the ruleset enriched for class x for instance i

ACx(i) = the AC value from the ruleset enriched for class x for instance i

covx(i) = the coverage by the ruleset enriched for class x for instance i

meancovx = the mean coverage by the ruleset enriched for class x across all

training instances

meancovx,y = the mean coverage by the ruleset enriched for class x across

training instances of class y

r = cov0(i)
cov1(i)
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Table 2.5: Accuracy for Rrr-sd and Foil

Foil Rrr-sd Rrr-sd
Dataset AC MAC
Carcinogenesis 46.8±7.4 58.0±7.8 58.5±8.1 ↗
Diterpenes52,3 93.6±3.7 88.4±4.4 90.2±4.1
Diterpenes52,54 87.0±4.7 84.0±4.0 85.6±3.2
Diterpenes54,3 94.9±2.8 93.6±4.1 93.6±4.1
Musk1 * 83.9±13.1 83.6±13.2
MutagenesisAll 69.2±10.3 75.8±8.6 76.6±8.5
MutagenesisRF 73.8±10.1 77.5±9.3 80.2±9.7

Table 2.6: AUC for Foil and Rrr-sd

Foil Rrr-sd
Dataset AC/MAC
Carcinogenesis 0.496±0.075 0.654±0.088 ↗
Diterpenes52,3 0.947±0.034 0.965±0.023
Diterpenes52,54 0.891±0.046 0.943±0.023 ↗
Diterpenes54,3 0.962±0.025 0.979±0.019
Musk1 0.719* 0.898±0.122 ↗
MutagenesisAll 0.725±0.097 0.779±0.101
MutagenesisRF 0.775±0.094 0.842±0.108

Here and in subsequent chapters, the measures of variance indicated by± in

tables and error bars in figures are standard deviations across all folds. Rrr-sd

can be seen to produce more accurate results than Foil on the MutagenesisRF ,

MutagenesisAll and Carcinogenesis datasets, while performing slightly worse on

the Diterpenes datasets. This difference is significant at the 95% level (by cor-

rected unpaired t-test, as different folds were used by Foil and Rrr-sd) for the

Carcinogenesis dataset. The corrected t-test (as described in [55]) is used for

significance testing as the standard t-test has been shown to produce inflated

Type I error. However, when AUC is examined, Rrr-sd performs better than

Foil on Carcinogenesis and Diterpenes52,54 (again by corrected t-test, with

95% significance). Although [66] does not give a standard deviation for their

Musk1 AUC result, for any standard deviation up to 0.22 (substantially larger

than the standard deviation produced by Rrr-sd) Rrr-sd performs better

with 95% significance. Significance is indicated in Tables 2.5 and 2.6 by ↗
where Rrr-sd’s result is significantly higher than Foil. One factor contribut-
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Figure 2.1: Accuracy for Rrr-sd and Foil

Figure 2.2: AUC for Rrr-sd and Foil
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Figure 2.3: Test and Training Accuracy for Rrr-sd on Musk1

Figure 2.4: Test and Training Accuracy for Rrr-sd on MutagenesisRF
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Figure 2.5: Test and Training Accuracy for Rrr-sd on MutagenesisAll

Figure 2.6: Test and Training Accuracy for Rrr-sd on Diterpenes52,54
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Figure 2.7: Test and Training Accuracy for Rrr-sd on Diterpenes52,3

Figure 2.8: Test and Training Accuracy for Rrr-sd on Diterpenes54,3

Note that the acTrain-macTrain and acTest-macTest pairs virtually overlap,
as the classes are present in almost equal proportions causing AC and MAC
to be very similar
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Figure 2.9: Test and Training Accuracy for Rrr-sd on Carcinogenesis

ing to this may be that a ‘negative’ prediction for Foil occurs when none of

the rules in its ruleset are used, meaning that all negative predictions are made

with equal confidence.

Experiments were also conducted that investigated varying the ruleset size.

Results for all seven datasets are shown in Figures 2.3 through 2.9. When the

two classes contain equal numbers of training instances, AC and MAC are

equal, so for datasets where this very nearly holds (Musk1, Diterpenes54,3) the

results are extremely similar. On datasets where the disparity in class sizes

is larger (MutagenesisRF and MutagenesisAll, for example, where the ratio

between the classes is approximately 2:1) MAC can be seen to outperform AC –

as could be expected, given that the calculation of MAC takes ruleset coverage

on classes into account, while AC does not. The results from the larger ruleset

sizes demonstrate that, on all the datasets except Carcinogenesis, accuracy

eventually levels out, but does not deteriorate or overfit when generating more

than enough rules.

2.5 Timing

The time taken for Rrr-sd (using the same parameters as for the experiments

in Section 2.4) and Foil to perform ten ten-fold cross-validation runs was

also measured, and the mean times taken for ten-fold cross-validation runs are

given in Table 2.7.
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Table 2.7: Average time taken for ten-fold cross-validation for Rrr-sd and
Foil

time taken (minutes)
Dataset Rrr-sd Foil
Carcinogenesis 318.3 2374.7
Diterpenes52,3 115.9 322.2
Diterpenes52,54 105.9 586.3
Diterpenes54,3 103.6 27.1
Musk1 30.1 -
MutagenesisAll 90.7 1239.4
MutagenesisRF 78.8 715.0

On most datasets Rrr-sd is shown to be substantially faster. The excep-

tion is Diterpenes54,3, on which Foil’s greedy search is quick to find several

high-coverage rules.

2.6 Summary

This chapter has introduced Rrr, an algorithm for generating random rela-

tional rules, and Rrr-sd, an algorithm for classification using Rrr based on

the framework of stochastic discrimination. Two different methods – AC and

MAC – for aggregating rule predictions have been described. Both the AC

and MAC method produce good predictive performance results, with MAC

consistently being either equal to or better than AC on all the datasets tested.

The difference is explained by MAC’s better ability for coping with imbalanced

classes.

Rrr-sd demonstrates that it is possible for ensembles of randomly gen-

erated weak rules to be competitive with those produced by Foil’s heuristic

search, while also being generated substantially more quickly in most cases.
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Chapter 3

Propositionalisation

In this chapter, Rrr-p (Randomised Relational Rules – Propositionalisation),

a system that propositionalises data using the rules generated by Rrr and ap-

plies propositional learning algorithms to the results, is described. The results

of applying propositional learning algorithms to the propositionalised datasets

are reported, and compared to other relational learning methods. Section 3.1

discusses propositionalisation in general and Section 3.2 describes how the out-

put of the Rrr algorithm is used to propositionalise data. Section 3.3 gives

the results obtained by applying standard machine learning algorithms to the

propositionalised data and compares the results with those obtained by other

methods, and Section 3.4 contains a discussion of those results.

3.1 Propositionalisation

Propositional learning algorithms represent instances as single objects with

values for a given set of attributes, which can make it difficult to represent

relationships between objects. Relational learning algorithms employ more

sophisticated concept descriptions to overcome this limitation and allow re-

lationships to be represented explicitly so that they can be used in learning.

However, this increased expressivity also results in greater computational com-

plexity.

Propositionalisation is the application of a transformation that converts

relational data into propositional data. This can be advantageous as, assum-

ing the propositional representation preserves sufficient information from the

original relational data, efficient propositional classification algorithms can be

applied. The goal of propositionalisation of relational data is to achieve the

57



58 CHAPTER 3. PROPOSITIONALISATION

efficiency of standard machine learning algorithms, while preserving the rela-

tional information encoded in the data.

To give some context for the propositionalisation algorithm introduced in

this chapter, three previous approaches to propositionalisation are briefly dis-

cussed in Sections 3.1.1-3.1.3.

3.1.1 Rsd

The Relational Subgroup Discovery (Rsd) algorithm [80] takes a three-step

approach to propositionalisation. Rsd first computes all possible conjunctions

of first-order literals that could form admissible features. In this step no vari-

ables are instantiated – the set of conjunctions of literals that is produced is

constant-free, describing the structure of possible features. It also obeys a

connectivity requirement – features that can be decomposed into two or more

separate features are not admissible.

In the second step, selected variables in the features constructed in the first

step are bound. The user can specify which variables should be instantiated

in this way. For each initial feature, a number of features are generated, each

with a different combination of the possible bindings of the variables to be

instantiated in that feature. Of these generated features, those true for at

least a certain (user-specified) minimum number of instances are retained, and

the rest discarded. Additionally, no feature may have the same Boolean value

across all instances (i.e. be always true or always false), and no two features

may have identical Boolean values across all instances (one is arbitrarily chosen

to represent the equivalent features).

In the third step, each resulting feature is converted into a Boolean at-

tribute, based on the truth value of the feature as applied to each instance in

the data.

3.1.2 Sinus

Sinus [41] constructs features left-to-right, beginning with a single literal de-

scribing an individual. For each new literal, structural (introducing new vari-

ables) and property (tests some property of an existing variable) predicates are

considered. The maximum number of literals to produce and the maximum

number of variables in a feature can be specified by the user.

Variable reuse is an option with a significant impact on the generated fea-

tures. If no reuse is allowed (only one property predicate is allowed for each
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introduced variable) the resulting feature set is smaller, but contains only

simple features. If reuse is allowed without constraint, redundant and/or con-

tradictory features may be generated, and the feature set is much larger. A

compromise allows only structural predicates to reuse variables. This allows

for the construction of more complex features, but with less redundant features

than allowing full reuse would produce.

Once the features are produced, the feature set can be filtered by applying

tests for feature quality, and removing irrelevant features. The feature set can

then be converted into a Boolean representation, just as with Rsd. However,

Sinus is also able to translate models produced by some propositional learners

back into Prolog form.

3.1.3 Relaggs

Relaggs [43] (Relational aggregations) makes use of the relational database

technique of aggregation to summarise information from the non-target rela-

tions with respect to each instance in the target relation. The identifiers of the

instances are propagated to the non-target relations via foreign key relation-

ships using database joins, and the information belonging to each instance in

those relations is then combined into a single row using aggregates.

Numeric attributes can be described with information such as minimum,

maximum, average and sum, and even more sophisticated derived information

such as standard deviations, ranges and quantiles. Nominal attributes can

be described by their cardinality. One advantage of this approach is that the

propositionalisations thus generated are not limited to Boolean attributes.

3.2 Propositionalisation using Rrr

The Rrr algorithm can be used as a tool for propositionalisation. Each re-

lational rule it produces can be transformed into Boolean features for each

instance, where the feature is ‘true’ if the rule covers the instance or ‘false’ if

it does not (just as for Rsd, for example). A very simple example of this is

shown in Table 3.1, for a dataset consisting of the integers from one to ten,

in which it is assumed that each rule corresponds to a column, and begins

with the literal number(X), followed by the literal heading the column. The

instance ‘3’, for example, would have the propositional representation “t, t, f”.
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Table 3.1: A simple example of propositionalisation

Instance X = 3 X < 9 X >= 7
1 f t f
2 f t f
3 t t f
4 f t f
5 f t f
6 f t f
7 f t t
8 f t t
9 f f t
10 f f t

Pseudocode for the ‘Random Relational Rules – Propositionalised’ algo-

rithm (hereafter Rrr-p) is given in Algorithm 11.

Algorithm 11 Pseudocode for the Rrr-p algorithm

while Number of rules in ruleset for either class is less than the minimum
do

while Number of rules in batch for either class is less than the minimum
do

Generate a Rule
if Rule is acceptable with regard to coverage constraints (enrichment)
then

Add Rule to appropriate rule batch
end if

end while
Calculate the most uniformity-preserving non-empty subset of rules in
each rule batch
Add those rules to the ruleset

end while
Use ruleset to generate Boolean-valued propositional dataset
Apply any propositional classification algorithm

3.3 Experiments

For each of the experiments using Rrr-sd in Chapter 2, a propositionalisa-

tion was generated from the rules produced. For each fold in each of the ten

ten-fold cross-validation runs, the rules generated on the training data were

used to propositionalise that data, and then also used to propositionalise the
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test set. The resulting train-test sets were then evaluated using two standard

machine learning algorithms from Weka [81] - Smo [60], a support vector

machine (the SVMs used in this and later chapters are all linear) and Logistic

[47], a logistic regression algorithm. As these algorithms are sensitive to their

Complexity and Ridge parameters, respectively, five values were used for each,

and if the accuracy was highest at either the highest or lowest value, the range

was extended. The mean accuracy for each parameter value was calculated

across the ten ten-fold cross-validation runs, and the highest of these results

is compared to previous results from the literature. This could be viewed as

optimistic – however, reported results in the literature are also generally the

result of parameter tuning and therefore similarly optimistic. In addition to

this, where the reported results do vary according to parameter settings, only

the highest result is taken for comparison to the results for Rrr. Standard

deviations are included in figures where the applicable values were available in

the literature.

3.3.1 Mutagenesis

The Mutagenesis dataset [76] is a set of 230 nitroaromatic compounds. These

compounds occur in automobile exhaust and also in the production of many

industrial compounds. Nitroaromatic compounds that are extremely muta-

genic have been found to be carcinogenic and damage DNA. The ability to

determine mutagenicity from molecular structure is thus of interest to various

industries, including the pharmaceutical industry – in producing less hazardous

compounds, or for situations where standard mutagenicity tests are inapplica-

ble.

The dataset consists of three relations:

• Compound: compound(CompoundID, Class)

• Atom: atom(CompoundID, AtomID, Element, QuantaType, Charge)

• Bond: bond(CompoundID, AtomID, AtomID, QuantaType)

Where:

CompoundID is the unique identifier for the compound

Class is either active or inactive

AtomID is the unique identifier for the atom

Element is the chemical element of the atom
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Table 3.2: Distribution of Mutagenesis instances across the regression-friendly
and -unfriendly subsets

Compounds Active Inactive Total Majority
Regression-friendly 125 63 188 0.665
Regression-unfriendly 13 29 42 0.690
Total 138 92 230 0.6

QuantaType is the type of the atom or bond, as assigned by the molecular

modelling package Quanta

Charge is the partial charge of the atom

The Mutagenesis dataset has been split into ‘regression-friendly’ and ‘re-

gression-unfriendly’ subsets [17]. The split is based on a regression equation,

derived from four propositional attributes determined by expert inspection,

that correctly classifies a high proportion of the ‘regression-friendly’ instances.

The distribution of active and inactive instances between the two subsets is

shown in Table 3.2.

Increasing levels of background information for the Mutagenesis dataset

have been described [74] – some of these include the propositional attributes

already mentioned. For experiments with Rrr, the ‘B0’ level of background

knowledge (as described in [74]) is used – only the descriptions of atoms and

bonds, and numeric inequalities are included. The increased levels of back-

ground information were not used as they are known to improve classification

accuracy significantly, thereby potentially masking the relational performance

of the algorithm.

MutagenesisRF

Figures 3.1 and 3.2 show the accuracy obtained by Rrr-p on the 188-instance

regression-friendly subset of the Mutagenesis data (hereafter MutagenesisRF ).

Both standard machine learning algorithms show clear peaks – Complexity

0.1 for Smo and Ridge 10 for Logistic – with the result for Smo being slightly

higher than that for Logistic.

The comparison between the result for Rrr-p and other algorithms is

shown in Figure 3.3. The results for Foil and Rrr-sd from Chapter 2 have

been included. Published results have also been included for Relational Ker-

nels [82], the rule learner RipperMI [14], the decision tree inducer Tilde [6],
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Figure 3.1: Accuracy for Rrr-p on MutagenesisRF , using Smo

Figure 3.2: Accuracy for Rrr-p on MutagenesisRF , using Logistic
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the ILP systems Progol [54] and Aleph [73], the Aleph-based algorithm

Random Seeds [49], nFoil and tFoil [44] (adding naive Bayes methods to

Foil), kFoil [45] (adding kernel methods to Foil) and 1BC2 [26], a first-

order upgrade to naive Bayes. Results for RipperMI and Tilde were obtained

from [15], for Aleph and kFoil from [45], for nFoil and tFoil from [44],

and for Progol from [74]. Of the algorithms compared, only Random Seeds

performs better than Rrr-p(Smo). Rrr-p(Log) performs slightly worse than

Rrr-p(Smo), with similar accuracy to Relational Kernels. Both Rrr-p meth-

ods show substantial increases in accuracy over Rrr-sd.

Figure 3.3: Accuracy for various algorithms on MutagenesisRF

MutagenesisAll

Figure 3.4 shows the accuracy obtained by Rrr-p on the complete 230-instance

Mutagenesis dataset (hereafter MutagenesisAll), compared to other algorithms.

The algorithms Rrr-p is compared to here are several variations on Forf [3]

(First Order Random Forests), which used out-of-bag estimation rather than

ten-fold cross-validation, and Tilde, once again also including the Rrr-sd

and Foil results from Chapter 2. The Forf variants differ in the use they

make of aggregates (Forf-NA uses no aggregates).

As Forf used out-of-bag estimation rather than ten-fold cross-validation,
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Figure 3.4: Accuracy for various algorithms on MutagenesisAll

less weight should be placed on this comparison, but Rrr-p(Smo) produces

the highest accuracy by a small margin. Rrr-p(Log) performs almost as well

as the Forf methods that make use of aggregates. Again, both Rrr-p results

improve markedly on Rrr-sd.

The standard machine learning algorithms used for Rrr-p again showed

clear peaks with regard to the parameters of the algorithms – Complexity 0.1

for Smo and Ridge 10 for Logistic – with the result for Smo once again being

slightly higher than that for Logistic.

3.3.2 Musk1

The Musk1 dataset [20] is a set of 92 chemical compounds, some of which are

classified (by expert human judges) as musk molecules. The dataset includes

only compounds for which all published results agreed on their classification.

Each compound can exist in a number of different conformations, depending

on the rotation of its internal bonds. If at least one of the conformations for

a molecule is determined to be a musk molecule, the molecule is classified as

musk, otherwise it is classified as nonmusk.

The dataset consists of two relations:

• Compound: compound(CompoundID, Class)
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Table 3.3: Distribution of Musk1 instances

Positive Negative Total Majority
47 45 92 0.511

• Conformation: conformation(CompoundID, ConformationID, F1, F2, ...

, F166)

Where:

CompoundID is the unique identifier for the compound

Class is either Musk or Nonmusk

ConformationID is the unique identifier for the Conformation

F1 through F162 describe distances from the origin to the molecule’s surface

along 162 different vectors

F163 through F166 describe the position of the single oxygen atom in the Con-

formation

The distribution of the dataset is shown in Table 3.3.

Results are given in Figure 3.5 for RRP-P and Rrr-sd. Published results

are also reported for Em-dd [84], Relational Kernels [82], Iterated Axis-Parallel

Rectangles [20], mi-svm [1] (a support vector machine extension for multiple-

instance data), KeS [28] (a support vector machine using a kernel for struc-

tured data), RipperMI [15] (a multiple-instance extension to the rule learner

Ripper) and Tilde. Results for Em-dd, KeS and Iapr were obtained from

[28], and results for Tilde and RipperMI were obtained from [15].

It has been previously noted in [1] that the Iapr algorithm is optimised

for the Musk classification task, which accounts for the gap between it and the

other algorithms shown. Rrr-p(Smo) performs similarly to the other non-

Iapr algorithms, with Rrr-p(Log) slightly worse – both Rrr-p methods still

improve on Rrr-sd, however.

The highest accuracy was achieved for Smo with Complexity 0.1 and greater.

At Complexity 0.1, the training data is classified perfectly (possibly due to the

combination of a small number of instances and a large number of attributes),

and so higher Complexity values produce identical results, as shown in Figure

3.6. This occurs because the Smo algorithm terminates when full separation

of training instances is achieved. The best accuracy was achieved at Ridge

parameter 0.1 for Logistic, as shown in Figure 3.7.
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Figure 3.5: Accuracy for various algorithms on Musk1

Figure 3.6: Accuracy for Rrr-p on Musk1, using Smo
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Figure 3.7: Accuracy for Rrr-p on Musk1, using Logistic

3.3.3 Carcinogenesis

The Carcinogenesis dataset [36] is a set of 330 diverse organic compounds.

The goal is to predict which of the compounds are carcinogenic. Obtaining

information on the carcinogenicity of compounds by empirical experimentation

is slow and also requires experiments on animals, so a reliable machine learning

model for carcinogenicity detection would be of great use.

The distribution of the dataset is shown in Table 3.4. Again, for experi-

ments with Rrr, only the Atom and Bond information in the dataset is used

– the extra structural information is not used.

The dataset consists of three relations:

• Compound: compound(CompoundID, Class)

• Atom: atom(CompoundID, AtomID, Element, QuantaType, Charge)

• Bond: bond(CompoundID, AtomID, AtomID, QuantaType)

Where:

CompoundID is the unique identifier for the compound

Class is either active or inactive

AtomID is the unique identifier for the atom
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Table 3.4: Distribution of Carcinogenesis instances

Positive Negative Total Majority
182 148 330 0.552

Element is the chemical element of the atom

QuantaType is the type of the atom or bond, as assigned by the molecular

modelling package Quanta

Charge is the partial charge of the atom

Results are given in Figure 3.8 for Rrr-p, Rrr-sd and Foil. Published

results are also given for Progol [36] and ensemble methods applied to Aleph

[21] (in particular Different Seeds), although it should be noted that these re-

sults are obtained using five-fold cross-validation, while ten-fold cross-validation

was used for Rrr-p and Foil.

Figure 3.8: Accuracy for various algorithms on Carcinogenesis

Both propositional algorithms achieved results very similar to that of Pro-

gol on this dataset. As with the previous datasets, both forms of Rrr-p

improve markedly on Rrr-sd.

The standard machine learning algorithms used for Rrr-p showed clear

peaks, with the peak accuracy for Smo achieved with Complexity 0.01. The
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peak for Logistic was with a Ridge parameter of 1000, and Smo was the better-

performing of the two attribute-value algorithms on this dataset.

3.3.4 Diterpenes

Diterpenes [23] are a class of organic compounds with about 5000 members

known. They are of interest due to their use as lead compounds in searching for

new pharmaceutical effectors. The skeleton of every diterpene contains twenty

carbon atoms. Most diterpenes belong to one of twenty common skeleton

types. The problem posed by the Diterpenes dataset is to identify the skeletons

of diterpenes given their 13C-NMR-Spectra (Nuclear Magnetic Resonance).

The 13C-NMR-Spectra include frequencies and multiplicities for each atom in

the skeleton, and are obtained by analysing the spectrums emitted by nuclei

excited by radio pulses.

If each carbon atom in each of the compounds is assigned an atom num-

ber, based on its place in the skeleton, the problem becomes a propositional

one, with very good results achieved by propositional learners. However, the

assignment of atom numbers is a difficult process itself, and thus the relational

representation of the dataset, without assigned atom numbers, is of interest.

The Diterpenes dataset contains 1503 instances, from 23 classes. Their

distribution is given in Table 3.5 – names are not given for the seven single-

instance classes in [23].

As Rrr-sd is limited to two-class problems, the datasets used by Rrr-

p were constructed from the three largest classes in the Diterpenes dataset

– Labdan, Clerodan and Kauran. Three two-class datasets were created –

one for each combination of the three classes. They are identified (using the

class codes rather than the class names) as Diterpenes52,54, Diterpenes52,3 and

Diterpenes54,3, and their distribution is given in Table 3.6. In Chapters 4

and 5 algorithms are described that are not limited to two classes, and these

algorithms are tested on the full Diterpenes dataset (DiterpenesAll), so the

distribution for that dataset is also given in Table 3.6.

The dataset consists of two relations:

• Compound: compound(CompoundID, Class)

• Spectrum: spectrum(CompoundID, Multiplicity, Frequency)

Where:

CompoundID is the unique identifier for the compound
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Table 3.5: Distribution of Diterpenes instances

Class Name Class Code Quantity
Labdan c52 448
Clerodan c54 356
Kauran c3 353
Pimaran c22 155
Beyeran c4 72
Atisiran c5 33
Gibban c18 13
Cassan c47 12
Spongian c46 10
Trachyloban c2 9
6,7-seco-Kauran c28 9
Erythoxilan c33 9
8,9-seco-Labdan c80 6
Portulan c71 5
5,10-seco-Clerodan c79 4
Ericacan c15 2

c8 1
c10 1
c31 1
c32 1
c46 1
c60 1
c64 1

Table 3.6: Distribution of Diterpenes instances and three two-class subsets

Dataset Total Size Majority
DiterpenesAll 1503 0.298
Diterpenes52,54 804 0.557
Diterpenes52,3 801 0.559
Diterpenes54,3 709 0.502
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Class is the Diterpene skeleton code (c52, c54, c3, etc.)

Multiplicity describes the number of protons bound to the carbon atom emit-

ting the spectrum - s, d, t and q for 0, 1, 2 and 3 respectively

Frequency is the resonance frequency of the carbon atom emitting the spectrum

As the two-class Diterpenes datasets have no other published results, re-

sults are only given in Figure 3.9 for Rrr-sd, Rrr-p and Foil. The ordering

of the four algorithms is consistent across all three datasets, with Rrr-p(Smo)

producing higher accuracy than Rrr-p(Log), and both Rrr-p methods out-

performing Foil, which in turn is more accurate than Rrr-sd, as previously

seen in Chapter 2.

Figure 3.9: Accuracy for various algorithms on Diterpenes52,54, Diterpenes52,3

and Diterpenes54,3

All three of the two-class Diterpenes subsets showed peaks in accuracy at

Complexity 0.1 for Smo. However, when varying the Ridge parameter of the

Logistic algorithm, the accuracy obtained was highest at the highest of the five

tested Ridge values for Diterpenes52,54. When the range of Ridge parameters

was extended upwards, the highest accuracies for this dataset occurred at

Ridge 100, as illustrated in Figure 3.10. The highest accuracy for Diterpenes54,3

and Diterpenes52,3 occurred at Ridge 10.
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Figure 3.10: Accuracy for Rrr-p on Diterpenes52,54, using Logistic

3.4 Summary

From the results in Section 3.3, it can be seen that Rrr-p (with either propo-

sitional algorithm) achieves higher accuracy than Rrr-sd across all of the

datasets that the algorithms were tested against. In all of these cases, the

highest accuracy for Rrr-p obtained with Smo as the propositional algorithm

was superior to that obtained with Logistic. The results achieved by Rrr-p

are sensitive to the parameters of the propositional algorithms used, to vary-

ing degrees – on the Diterpenes datasets, the Ridge parameter of Logistic was

varied widely without great impact on accuracy, but on MutagenesisRF Smo

dropped sharply when the Complexity was varied from 0.1. The accuracy

of Rrr-p is competitive with the reported results of several other relational

learning algorithms.
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Chapter 4

Relational Clustering

4.1 Introduction

Clustering is a process by which instances are divided into groups, where ap-

propriate groupings are determined by some distance measure. Relational

clustering applies this process to relational data. Such distance measures are

more complex to determine for relational data than for propositional data, as

relational data cannot easily be fitted to a Euclidean framework. Rdbc [37],

for example, uses the distance measure of Ribl [24, 32], which recursively com-

pares the relational elements of the data until features can be propositionally

compared. A metric for terms and clauses is described in [33], and relational

distance measures can also be derived from relational kernels [28, 82].

Clustering of relational data has so far received substantially less attention

than classification of such data. One approach, based on a relational cluster-

ing tree as a variant of the relational tree learner Tilde, is described in [7].

This chapter describes Rrr-c, a two-tiered approach to relational clustering

that obviates the need for a relational distance measure, allowing standard

propositional clustering algorithms to be applied to multi-relational data. In

the first step the relational data is propositionalised [40] using randomly gen-

erated first-order rules (similar to the relational association rules generated by

Warmr [69]), which are then converted into Boolean features, based on their

coverage. The generation process restricts the rules to be within certain cover-

age minima and maxima to avoid overly specific or general rules, respectively.

The rules are also generated in a manner that encourages even coverage across

the data. In the second step, the resulting propositional dataset is clustered

using a standard propositional clusterer such as k-means [50].

75
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Section 4.2 details the algorithm, Section 4.3 reports on experiments, and

Section 4.4 provides a summary of the chapter.

4.2 Randomised Relational Clustering

The Rrr-c (Randomised Relational Rules – Clustering) algorithm comprises

two tiers: a first level which generates random rules aiming to cover all exam-

ples as uniformly as possible, and a second level which turns these rules into

Boolean features for a propositional representation. This acts as input for any

propositional clustering algorithm.

The experiments using Rrr-c reported below employed standard k-means

using standard Euclidean distance. Random rules are generated using Rrr,

but with one modification, as clustering operates on data without class labels.

As Enrichment makes use of class information, the Enrichment requirement

for the individual rules is replaced with a requirement that the coverage of the

rule on the training data be between user-defined minima and maxima. This

prevents against both very specific and also against very general rules; worst

cases would be universally true rules or rules covering just a single example.

With the removal of the Enrichment requirement, rulesets are no longer biased

towards a particular class, so only one ruleset needs to be generated by the

algorithm. The Uniformity requirement is retained, with small batches of rules

being generated and the most uniformity-preserving non-zero subset of each

batch being added to the ruleset.

The basic algorithm for Rrr-c is given in Algorithm 12. The complexity

of Rrr-c is the sum of the complexity of both stages. Usually, when using

propositionalisation in ILP, the propositionalisation stage dominates the to-

tal complexity, and this is true for Rrr-c as well. Even though generating a

random rule is extremely fast, its coverage still has to be determined both for

checking the coverage constraints and uniformity of coverage, as well as to gen-

erate the propositional data-set. In the worst case this coverage computation

can be exponential, even for a single rule. The complexity of rule evaluation is

discussed in Chapter 2. The complexity of propositional clustering algorithms

on the contrary is often linear or quadratic at worst (k-means, for example,

is linear with regard to both the number of instances and the number of at-

tributes in the data [16]). The time required to create a propositionalisation

of a dataset can be up to two orders of magnitude greater than that required

for a clustering run using a specified cluster number and random seed, but the
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propositionalisation thus created can be used for more than one clustering run.

Algorithm 12 Pseudocode for the Rrr-c algorithm

while Number of rules in ruleset is less than the minimum do
while Number of rules in batch is less than the minimum do

Generate a Rule
if Rule is within coverage constraints (minimum-maximum coverage)
then

Add Rule to rule batch
end if

end while
Calculate the most uniformity-preserving non-zero subset of rules in the
current rule batch
Add those rules to the ruleset

end while
use ruleset to generate Boolean-valued propositional dataset
apply any propositional clustering algorithm

Indeed, in some cases the total time required for a full clustering run across

multiple random seeds and cluster numbers (as described in Section 4.3.1) for

a particular propositionalisation was less than the time required to generate

the propositionalisation itself.

4.3 Experiments

This section describes the experiments performed using Rrr-c and compares

the results to other relational clustering systems. Section 4.3.1 details the

experimental setup, Sections 4.3.2 and 4.3.3 discuss the results using two dif-

ferent measures of clustering quality, and Section 4.3.4 gives an example of a

particular clustering run.

4.3.1 Experimental Setup

An evaluation of Rrr-c on several datasets has been conducted, always gen-

erating random rules for the full dataset, and then clustering the resulting

propositional data with the k-means algorithm [50], using Euclidean distance.

Rrr-c was run with five different coverage ranges – 5%-50%, 10%-50%, 25%-

50%, 25%-75% and ‘Wide’ (which covered at least two instances and at most

one less instance than the dataset size) – generating 1,000 rules (and thus

1,000 propositional attributes) on each run. The following datasets were
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used: MutagenesisRF , MutagenesisAll, Musk1, Carcinogenesis, Diterpenes54,3,

Diterpenes52,3, Diterpenes52,54 and DiterpenesAll. As noted in Chapter 3, for

Mutagenesis and Carcinogenesis only low-level structural information is used,

as represented by atoms and bonds – neither global properties (e.g. lumo or

logP ) nor predefined functional groups are included.

The propositionalisation process described in Algorithm 12 is class-blind.

Generated rules are added if the proportion of training instances they cover

falls within a defined range, independent of the class labels of those training

instances (unlike Enrichment, which is calculated using class labels). This

allows Rrr-c to be applied to datasets with more than two classes, and thus it

was possible to use DiterpenesAll as well as the three two-class subsets thereof.

To study the influence of the number of clusters that number was varied

from 2 up to 50. Ten propositionalisations were generated for each of Musk1,

MutagenesisRF , MutagenesisAll and Carcinogenesis, and each propositionalisa-

tion was clustered with ten different random seeds for the k-means algorithm.

For time reasons (the execution time of k-means in particular – although a

single run of k-means is generally much faster than a propositionalisation run,

the number of k-means runs required for the varying cluster numbers and ran-

dom seeds was substantial), only three propositionalisations were generated for

each of the larger datasets (DiterpenesAll and its subsets), and each was clus-

tered with three different random seeds. Multiple runs and seeds were used to

ensure stable results, as the combination of the randomness of Rrr-c’s propo-

sitionalisation and the sensitivity of the k-means algorithm to its random seed

could lead to highly variable results.

Rrr-c is compared to two other relational clustering approaches. Rsd

[80], like Rrr-c, can generate Boolean-valued propositional datasets which can

then be clustered by standard k-means. Contrary to Rrr-c’s random heuristic

approach, Rsd generates rules via systematic search. The minimum coverage

for Rsd’s features was set to four different values – as Rsd does not have

a setting for maximum coverage, minimum coverages were selected to match

those used by Rrr-c - two instances (‘Wide’) and 5%, 10% and 25% of the

number of instances in the dataset. Rsd usually produces a smaller number of

rules than Rrr-c (which is set to generate 1,000, as noted above), which can be

attributed to Rsd’s non-duplication and connectivity requirements. However,

Rsd produces more than 1,000 rules for all datasets except MutagenesisRF

and MutagenesisAll when the minimum coverage is set to two instances. It

also produces more than 1,000 rules for all coverage settings on Musk1, due to
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Table 4.1: Number of rules generated by Rsd

Minimum coverage 25% 10% 5% 2 instances
Dataset
Musk1 11,187 14,154 17,845 23,853
MutagenesisRF 72 108 151 359
MutagenesisAll 87 124 171 445
Carcinogenesis 364 436 469 1,549
Diterpenes54,3 391 483 558 3,452
Diterpenes52,3 467 562 659 3,556
Diterpenes52,54 379 481 558 3,637
DiterpenesAll 675 813 915 5,158

the high-arity Conformation predicate of that dataset. The number of rules

generated by Rsd for each dataset is shown in Table 4.1. The maximum rule

length for Rsd was set to 5 literals for all datasets except Musk1 (which was

set to 4), as greater rule lengths resulted in impractically long runtimes.

The second system Rrr-c is compared to is the Relational K-Means (Rkm)

algorithm of RelWeka [83], which implements the Ribl [32] distance measure,

a proper distance for relational data. The Ribl distance measure makes use of

relative “edit distances” between instances. Whereas Rsd and Rrr-c are very

similar, Rkm is a rather different approach based on more direct relational

clustering, which does not rely on propositionalisation. While Rrr-c and Rsd

both generate several different representations of the datasets for clustering,

using different coverage ranges, Rkm uses the datasets directly.

4.3.2 Penalised Error Rate

There exists no single universally agreed upon measure for clustering quality.

As true class labels are available for all datasets, which are not used during

clustering, one possible measure of cluster quality is the agreement of clusters

with classes. Clearly one would expect better accuracies with more clusters,

as it should be easier to find smaller class-pure clusters than larger ones. One

caveat here is that when taking the majority class of each cluster as its “label”,

clusters with only one example will automatically be correct – the degenerate

case of this being a clustering where each cluster contains only one instance.

Such a clustering would be treated as perfect. For this reason a Penalised

Error Rate was used that treats instances in single-instance clusters as errors.

The trends visible for penalised error rates follow reasonable expectations
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– in general, higher number of clusters lead to smaller penalised error rates.

The exception to this is the Musk1 dataset, where the comparatively small

number of instances leads to higher numbers of single-instance clusters as the

number of clusters generated increases. Indeed, the penalised error rate begins

to increase at around 30 clusters for Musk1, as shown in Figure 4.1. On the

Musk1 datatset, Rrr-c and Rsd performed very similarly, with Rrr-c(Wide)

performing slightly worse than the other algorithm-coverage pairs.

Figure 4.1: Penalised error rates on Musk1

For MutagenesisRF and MutagenesisAll (see Figures 4.2 and 4.3), the pe-

nalised error rates for Rrr-c and Rsd are also very similar, across all coverage

ranges. On both datasets, Rrr-c performs slightly better than Rsd for smaller

numbers of clusters, but as the number of clusters is increased the difference

between the penalised error rates decreases.

On Carcinogenesis, Rrr-c and Rsd again perform similarly. For smaller

numbers of clusters, Rrr-c(25%-75%) performs slightly worse than the others.

On all four of the above datasets, Rkm performed worst of the three sys-

tems. This is at least partially due to the tendency of Rkm to produce both

larger clusters (less likely to be class-pure) and more single-instance clusters

(automatic errors) than either of the other two algorithms, which increase the

penalised error rate. An example of this for a 10-cluster run on the Musk1

dataset is shown in Table 4.2.
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Figure 4.2: Penalised error rates on MutagenesisRF

Figure 4.3: Penalised error rates on MutagenesisAll
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Table 4.2: Size of clusters generated by Rkm on Musk1

Cluster Size Quantity
80 1
4 1
1 8

On the Diterpenes datasets, the trends displayed are somewhat different.

For these datasets, Rkm and Rrr-c generally perform better than Rsd, al-

though Rrr-c(Wide) consistently produced a higher penalised error rate than

the other Rrr-c experiments. The four coverage ranges for Rsd produce

penalised error rates that are very similar to each other, with only the mi-

nor exception that Rsd(25%) performs slightly worse than the other coverage

ranges on Diterpenes54,3.

Rkm produces a much smaller number of single-instance clusters on these

datasets, which may contribute to its improvement in penalised error rate rel-

ative to the other algorithms, when compared to the non-Diterpenes datasets.

The difference between the penalised error rates for Rrr-c and Rsd may

be due to Rsd’s restriction on rule generation – Rsd will not accept rules that

can be decomposed into two or more distinct rules.

Figure 4.4: Penalised error rates on Diterpenes52,54

While the penalised error rates for Rrr-c on the Diterpenes subsets are
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very low (as shown in Figure 4.4 – the penalised error rates for the other two

subsets follow a similar pattern), the penalised error rate for DiterpenesAll is

substantially higher, as shown in Figure 4.5. This occurs because DiterpenesAll

is a 23-class dataset, with a skewed class distribution such that three classes

make up over 75% of the dataset – most of the generated clusters are dominated

by one of the three major classes.

Figure 4.5: Penalised error rates on DiterpenesAll

The worse performance of the Wide coverage for Rrr-c, compared to the

other coverage ranges, may be related to the fact that when this coverage range

is used, a high proportion of the generated rules have coverage in the range

(two instances – 5% of instances), as shown in Table 4.3.

As Carcinogenesis has somewhat similar proportions of low-coverage at-

tributes to Diterpenes under Rrr-c, but does not display this behaviour, it

may be that the number of instances in the dataset is also a factor, given that

the Diterpenes datasets are 2-4 times larger than the Carcinogenesis dataset.

The Wide coverage range is the only one bounded by an absolute number of

instances, rather than a proportion, and two instances is a much smaller pro-

portion of the Diterpenes datasets than of the smaller datasets, resulting in

rules with correspondingly low coverage. It may even be the case that this

behaviour is the result of some unknown property of the Diterpenes data.

The penalised error rate is substantially higher for some datasets when
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Table 4.3: Proportion of rules generated by Rrr-c that cover (2 instances –
5% of instances)

Dataset Proportion
Diterpenes52,3 0.7204
Carcinogenesis 0.7180
Diterpenes52,54 0.7104
Diterpenes54,3 0.7039
DiterpenesAll 0.6961
MutagenesisRF 0.6372
MutagenesisAll 0.6353
Musk1 0.2946

rules are generated using the Wide coverage range – rulesets generated with a

higher minimum coverage for rules appear to perform better for clustering.

The Normalised Mutual Information (NMI) measure [51] for cluster eval-

uation was also investigated, but the relative performance of the algorithms

was very similar to that observed using the Penalised Error Rate.

4.3.3 Silhouette Width

Another measure used to compare clusterings is the average silhouette width

[70]. The silhouette value si for an instance i is calculated according to the

following formula:

si =
bi - ai

max(ai,bi)
(4.1)

Where:

ai = md(i,ci) (ci = the cluster containing i)

bi = min(md(i,cj 6=i)) for all clusters j not containing instance i

md(i,c) = the mean distance from instance i to all instances in cluster c

The silhouette value is thus a measure of clustering quality that is inde-

pendent of the class labels of the data, instead using the distance measure to

determine whether an instance has been optimally clustered. It compares the

average distance from a given instance i to each other instance in its cluster to

the average distance from i to each instance in the closest cluster (the closest

cluster being that with the smallest average distance to i across all instances it

contains). Higher silhouette values therefore arise from tighter clusters (smaller
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intra-cluster distances) and more separated clusters (larger inter-cluster dis-

tances). Silhouette values lie between -1 and +1, with lower values indicating

an increasing likelihood that the instance could have been better placed in the

cluster represented by b. A silhouette value of zero indicates that the instance

could be equally well clustered in the cluster represented by b as in its current

cluster.

In the case where a cluster contains only one instance, the silhouette value

of that instance is defined to be zero, again to avoid overly positive evaluation

of single-instance clusters. Under propositionalisation, it is possible for two

or more instances to have identical attribute values. This occurs when these

instances produce the same Boolean values for each of the rules generated

by Rrr-c or Rsd. When a cluster is composed of instances with identical

attribute values, the silhouette is calculated as in Equation 4.1, but with a

value of 0 for ai (because there is no distance between the instances), which

gives a result of 1 for each instance in the cluster. This is shown in Equation

4.2 (which assumes that bi is positive – this holds except in the pathological

case that all instances in the dataset are identical). The effects of this property

are further discussed later in this section.

si =
bi - ai

max(ai,bi)
=

bi - 0

max(0,bi)
=

bi

bi

= 1 (4.2)

Where:

ai = 0, as all instances in the cluster have identical attributes

bi = min(md(i,cj 6=i)) for all clusters j not containing instance i

md(i,c) = the mean distance from instance i to all instances in cluster c

To evaluate the quality of a clustering, the average silhouette width is

used, which is the average of the silhouette values for all instances in a dataset

(shown in Equation 4.3).

Average silhouette width =

n∑
i=1

si

n
(4.3)

Where:

si = the silhouette value for the ith instance in the dataset

n = the number of instances in the dataset

A subjective interpretation of the average silhouette width is given in [70],
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Table 4.4: Interpretation of silhouette width

Average Sil. Interpretation
Width
0.71-1.00 Strong structure
0.51-0.70 Reasonable structure
0.26-0.50 Weak structure
up to 0.25 No substantial structure

and described in Table 4.4.

The average silhouette width follows similar trends for the MutagenesisRF

and MutagenesisAll datasets (shown in Figures 4.6 and 4.7) for both Rrr-c

and Rsd – a slow increase as the number of clusters increases, although with

an initial peak for a very small number of clusters, followed by a drop, for

MutagenesisRF .

Figure 4.6: Average silhouette widths for MutagenesisRF

The silhouette values for the Mutagenesis datasets show clear differences

– Rsd produces higher silhouette values than Rrr-c. The silhouette value

for Rsd(Wide) is lower than that for the other coverage ranges, and simi-

larly, Rrr-c(Wide) produces worse silhouette values than the other Rrr-c

runs. Frequently the Rsd silhouette values are ordered by minimum coverage

– Rsd(25%) performing better than Rsd(10%), and so on – although for some
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Figure 4.7: Average silhouette widths for MutagenesisAll

numbers of clusters the values are very similar. Rkm performs substantially

worse than both. The high number of single-instance clusters generated by

Rkm explains its low silhouette width – not only do instances in single-instance

clusters have silhouette values of zero themselves, they can also significantly

lower the silhouette widths of instances in larger clusters that lie in close prox-

imity. In addition to this, properties of the non-Euclidean Ribl distance mea-

sure may also affect silhouettes. The Wide coverage range tends to generate

more single-instance clusters than the other coverage ranges, explaining the

slightly worse silhouettes obtained by both Rrr-c(Wide) and Rsd(Wide). By

Rousseeuw’s interpretation (in Table 4.4) Rsd produces clusterings that range

from ‘weak structure’ to ‘reasonable structure’, while Rrr-c produces ‘weak

structure’. The comparatively low silhouette widths for the Wide coverage

runs fall into the ‘weak structure’ range for Rsd and ‘no substantial structure’

for Rrr-c.

On Musk1, as shown in Figure 4.8, Rkm produces poor silhouette values,

while the silhouette values for Rrr-c and Rsd are very similar, with Rrr-

c(Wide) and Rsd(Wide) producing slightly lower silhouette values than the

other coverage ranges. As the number of clusters increases, all of the silhouette

values tend towards zero, as the number of single-instance clusters generated

also increases – and, as mentioned above, on the comparatively small Musk1
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dataset, all of the algorithms produce a greater number of single-instance clus-

ters. The structure found is initially in the ‘weak’ range for most coverage

ranges, but drops to ‘no substantial structure’ as the number of clusters is

increased.

Figure 4.8: Average silhouette widths for Musk1

On the Carcinogenesis dataset, the non-Wide Rrr-c and Rsd results stay

within a narrow band of values as the number of clusters increases – in the

high end of ‘no substantial structure’ and the low end of ‘weak structure’.

For higher numbers of clusters, Rrr-c(25%-75%) shows a slight improvement

over the others. Both Rrr-c(Wide) and Rsd(Wide) have distinctly worse

silhouette widths than their non-Wide counterparts, with Rsd(Wide) slightly

outperforming Rrr-c(Wide). Rkm once again has a very low silhouette value.

On the Diterpenes datasets, the silhouette values produced show a distinct

relationship to the coverage settings for both Rrr-c and Rsd – the silhouette

values for Diterpenes52,54 are shown in Figure 4.9. For each algorithm, as the

minimum coverage for rules increases, so do the silhouette values produced.

The silhouette values for Rkm are improved from the results on the previous

datasets. The silhouette values for Rsd are substantially higher than for Rrr-

c (except for Rsd(Wide)), falling in the category of ‘weak structure’, and at

their peak ‘reasonable structure’, as opposed to ‘no substantial structure’ and

the low end of ‘weak structure’ for Rrr-c. For both algorithms, the Wide
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Table 4.5: Number of unique instances under propositionalisation

Dataset Number of Unique Instances
Instances Rrr-c Rsd Rrr-c Rsd

(25%-75%) (25%) (Wide) (Wide)
Carcinogenesis 330 313.2 301 312.6 314
Diterpenes52,3 801 796.0 599 796.3 798
Diterpenes52,54 804 796.0 593 797.0 798
Diterpenes54,3 709 703.0 537 702.6 704
DiterpenesAll 1503 1492.3 1066 1491.0 1503
Musk1 92 92 92 92 92
MutagenesisAll 230 175.0 115 172.2 141
MutagenesisRF 188 149.5 98 145.7 118

coverage range performs substantially worse than the other coverage ranges.

On DiterpenesAll (shown in Figure 4.10), Rrr-c has slightly lower silhou-

ette values (‘no substantial structure’) than on the Diterpenes subsets, but

the ordering of those values the coverage ranges is the same. Rsd behaves

slightly differently, with Rsd(25%) now producing worse silhouette values than

Rsd(5%). Rkm has a particularly high silhouette width on DiterpenesAll for

low numbers of clusters, in the ‘weak structure’ range.

One factor contributing to the high silhouette values produced by Rsd on

the Mutagenesis and Diterpenes datasets may be the larger numbers of in-

stances that have duplicates under Rsd’s propositionalisation than under that

of Rrr-c (some examples of this are shown in Table 4.5. Each instance in a

cluster consisting only of duplicated instances will have a silhouette value of

1 (as the average within-cluster distance is 0), as previously shown in Equa-

tion 4.2). Even in clusters that do not consist solely of duplicated instances,

duplicated instances contribute to lower intra-cluster distances, which leads to

higher silhouette values.

On the Musk and Carcinogenesis datasets, where Rsd and Rrr-c have very

similar silhouette values, they also produce very similar numbers of duplicate

instances.

Although in general both the penalised error rate and the average silhouette

width improve as the number of clusters increases for most of the datasets and

coverage ranges, they are measuring different things. The penalised error rate

depends only on the agreement of class labels with clusters, and the average

silhouette width only takes into account the relative groupings of clusters,

ignoring class labels.
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Figure 4.9: Average silhouette widths for Diterpenes52,54

Figure 4.10: Average silhouette widths for DiterpenesAll
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In particular, the silhouette value only examines the structure of the propo-

sitionalised representation of the dataset, and does not consider the relation-

ship of the propositionalised instances to their class labels. For an extreme ex-

ample, consider a single-attribute propositionalisation of a dataset, where each

instance is represented by a randomly-assigned single Boolean value. Such a

propositionalisation would have a perfect silhouette value when clustered, as

each instance would have zero distance from each other instance in its cluster.

However (unless the single attribute corresponded directly to the class of each

instance) this propositionalisation would certainly not have a perfect Penalised

Error Rate. Additionally, the silhouette value was originally intended for pur-

poses such as determining the ‘best’ number of clusters to use in clustering a

particular dataset, rather than cross-representation comparison.

The Penalised Error Rate can be said to reflect to some extent the quality

of propositionalisation. Instances that are mutually similar should be grouped

together by clustering, and with a ‘good’ propositionalisation instances of the

same class should be similar (assuming that these similarities exist in the

original data).

This divergence between Penalised Error Rate and silhouette value can be

observed in the Diterpenes results. Rsd has a substantially higher silhouette

value than Rrr-c on these datasets, but also a substantially higher Penalised

Error Rate. This indicates that while Rsd’s clustering has created clusters

that are more clearly separated than those produced by Rrr-c, those clusters

are not as class-pure. Furthermore, although the information obtained from

the silhouette value is of interest, in the two-step setting where a propositional

representation is generated and then clustered, a measure of clustering that

takes into account the relation of the propositionalisation to the original class

labels should be preferred to one that does not, as this is a definite indicator

that groupings in the propositionalisation reflect groupings in the original data.

4.3.4 Example of Clustering

To get a further insight into the quality of clustering, Figure 4.11 depicts the

class distribution for a particular 20 cluster partition of the 188 regression-

friendly compounds from the MutagenesisRF dataset using only 10 random

rules. Still, 8 of the 20 clusters are class-pure, though all for the active class.

Two of the random features generated are:



92 CHAPTER 4. RELATIONAL CLUSTERING

rule(MolId) :-

bond(MolID,_,_,BondType),

BondType == 2,

atom(MolID,_,_,QuantaType,_),

QuantaType == 27.

rule(MolId) :-

atom(MolId,AtomId1,_,QuantaType1,Charge),

Charge >= 0.178,

atom(MolId,AtomId2,_,QuantaType2,_),

AtomId2 != AtomId1,

QuantaType1 == QuantaType2.

Figure 4.11: Class distribution for 20 clusters on MutagenesisRF

Respectively, they represent compounds with at least one double bond plus

an atom of Quanta type 27, as well as compounds with two distinct atoms of

the same Quanta type, where one must have a charge of at least 0.178. Se-

lecting, for example, cluster number 4, which comprises four examples of the

same class, their Boolean feature values are:
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1 2 3 4 5 6 7 8 9 10

f, t, f, f, t, t, t, t, t, t example1

f, t, f, f, t, t, t, t, t, t example2

f, t, f, f, t, t, f, t, t, t example3

f, t, f, f, t, t, t, t, t, t example4

Figure 4.12: The four, all active compounds of cluster 4

Notice that these four examples are almost identical under this proposi-

tionalisation, with only one exception for attribute 7 for example3. Figure

4.12 shows the structure formulas for these four compounds, and indeed three

of the four are almost identical, only one nitro-group is positioned differently

for each of them, and the fourth compound (example3, third from the left) is

also very similar in structure to the other three.

4.4 Summary

This chapter has described Rrr-c – a two-tiered approach to relational clus-

tering based on randomised propositionalisation and an arbitrary propositional

clustering algorithm – and compared the results to two other approaches to

relational clustering. The experimental results reported above look promising

– as a point of reference, most of the penalised error rates for Rrr-c are quite

competitive to error rates that have been reported in the literature for rela-

tional classification algorithms on these datasets. The exceptions are Musk1,

due to the previously noted effect of the smaller dataset on the penalised er-

ror rate, and DiterpenesAll, which suffers from the combination of having 23

classes and having three of those classes make up almost 77% of the dataset.

The quality of the clustering, as measured by both error rate and silhouette

width, depends on the minimum coverage required of the generated rules for

both Rrr-c and Rsd. Rsd produced higher silhouette values than Rrr-c for

the Mutagenesis and Diterpenes datasets, but the silhouette value does not

take into account the class labels in the original data. In most cases, given
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equivalent rule coverage, the penalised error rates for Rrr-c were equal to

or lower than those of Rsd, indicating that the propositionalisation of Rrr-c

was more effective than that of Rsd at capturing relational information for

clustering.



Chapter 5

Semi-supervised Learning

5.1 Introduction

In supervised classification, training is performed on a set of examples with

assigned class labels, and the resulting model is then evaluated on the accuracy

of the class labels it assigns to unlabeled data. Semi-supervised classification

differs from supervised classification in that additional unlabeled data is avail-

able for the algorithm to use in model construction.[13]. Krogel and Scheffer

[42], for example, experiment with using unlabeled data to augment experi-

ments on KDD Cup data, and Ssva [48] uses unlabeled data to enhance a

support vector machine.

In this chapter, a two-tiered approach to semi-supervised relational classi-

fication that allows for the application of standard propositional learning al-

gorithms to multi-relational data is described. In the first stage the relational

data is propositionalised using randomly generated first-order rules, which are

then converted into Boolean features, based on their coverage, as previously

described in Chapter 3. The generation process tries to ensure that generated

rules are likely to be useful for classification. This is done by requiring that

rules cover a certain number of examples within user-specified minima and

maxima, as described in Chapter 4. Alternatively, in a class-sensitive setting

where class labels are actually present, rules can be selected based on their

class-specific coverage in a manner similar to the “enrichment” property of

stochastic discrimination (as described in Chapter 2)[38]. In either setting, all

rules are transformed into Boolean attributes – generating a propositional rep-

resentation for the second stage, where the resulting propositional dataset can

be classified using any standard propositional classification algorithm, such as

95
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Smo [60] or others.

This procedure holds promise for semi-supervised learning, as one of the

main explanations for the success of semi-supervised learning is the so-called

cluster assumption: example clusters (or areas of high example density) tend

to have similar class labels, therefore classifiers should not put decision bound-

aries midway through a cluster, but should cut through low-density areas in-

stead [13]. The unlabeled data enables better estimation of cluster boundaries

and can therefore also improve classification accuracy. In Chapter 4 random

relational rules have been shown to work well for the clustering of relational

data. Thus, their usefulness for semi-supervised learning is investigated in this

chapter.

Section 5.2 describes the algorithms in more detail, Section 5.3 explains

and discusses an experimental evaluation of the algorithms and finally, Section

5.4 presents a summary.

5.2 Randomised Relational Propositionalisa-

tion for Semi-supervised Learning

Unsupervised learning (such as clustering, previously discussed in Chapter

4) operates on a set of data without class labels, and looks for interesting

structures in the data. On the other hand, supervised learning operates on a

set of data with class labels, with the aim of finding structures in the data that

map to the class labels. Semi-supervised learning falls somewhere between the

two – class labels are present for some (but not all) of the data, and often the

task is to determine labels for the unlabeled data.

Figure 5.1 compares supervised and semi-supervised learning graphically.

The doubly-outlined sections in each diagram indicate the information avail-

able to the learning algorithm for building its model, so as shown in Figure

5.1(b), the semi-supervised learning algorithm has access to the training data

and its class labels, just as the supervised algorithm does in Figure 5.1(a), but

also has access to the test data (although not its class labels). The class labels

for the ‘unlabeled’ data would be used for testing the model produced, just

as the test data would be used for testing in the supervised case. The goal

of semi-supervised learning is to improve beyond the model that a supervised

algorithm would generate on training data by making use of the information

contained in additional unlabeled data.
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(a) Supervised Learning (b) Semi-supervised Learning

Figure 5.1: Comparison of Supervised and Semi-Supervised Learning

The basic Rrr-p (Randomised Relational Rules – Propositionalisation) al-

gorithm is described in Chapter 3. For this analysis of semi-supervised learn-

ing, Rrr-p (for ease of differentiation denoted by Rrr-p(cs) in this chap-

ter) and a variation on that algorithm called Rrr-p(sss) were used, differing

based on their determination of rule acceptability. It should be noted that

Rrr-p(sss) is only a minor modification to Rrr-p(cs).

• Semi-supervised Class-sensitive - generating rules on the full dataset (la-

beled and unlabeled), requiring enrichment on the labeled data only but

rejecting rules that cover all or none of the unlabeled data – Rrr-p(sss)

• Standard Class-sensitive - generating rules only on the labeled training

data with enrichment as the criterion – Rrr-p(cs)

In addition, two variations on the class-blind propositionalisation algorithm

described in Chapter 4 were used.

• Semi-supervised Class-blind - generating rules on the full dataset (labeled

and unlabeled) with coverage-range as the criterion – Rrr-p(ssb)

• Standard Class-blind - generating rules only on the labeled training data,

again with coverage-range as the criterion – Rrr-p(cb)

To ensure that the generated rules allow for classification, constraints are

imposed on the generation process. For class-blind rule generation, only rules



98 CHAPTER 5. SEMI-SUPERVISED LEARNING

are accepted that cover more than a user-defined minimum number of in-

stances, and also cover less than a user-defined maximum, as previously used

for clustering in Chapter 4. This prevents both overly specific and overly

general rules. For class-sensitive rule generation, rules are required to be ‘en-

riched’, as in Chapter 2. In addition to these requirements, uniformity of cov-

erage (again as in Chapter 2) is used for both class-blind and class-sensitive

rule generation.

The algorithm for Rrr-p is given in Algorithm 13, and that for class-blind

Rrr-p in Algorithm 14. The four variants (given in Algorithms 15-18 and

illustrated in Figures 5.2-5.5) differ with respect to coverage constraints and

data accessible for rule generation.

Algorithm 13 Pseudocode for the class-sensitive Rrr-p algorithm

while Number of rules for either class is less than the minimum do
while Number of rules in batch for either class is less than the minimum
do

Generate a rule
if Rule is acceptable with regard to coverage constraints (enrichment)
then

Add Rule to appropriate rule batch
end if

end while
Calculate the most uniformity-preserving non-empty subset of rules in
each rule batch
Add those rules to their corresponding rulesets

end while

Algorithm 14 Pseudocode for the class-blind Rrr-p algorithm

while Number of rules in ruleset is less than the minimum do
while Number of rules in batch is less than the minimum do

Generate a Rule
if Rule is acceptable with regard to coverage constraints (minimum-
maximum coverage) then

Add Rule to rule batch
end if

end while
Calculate the most uniformity-preserving non-empty subset of rules in the
current rule batch
Add those rules to the ruleset

end while
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Algorithm 15 Rrr-p(sss) process

L: labeled training data
U: unlabeled data
Generate a propositional representation (L+U)p on the full dataset (L+U),

using Algorithm 13, testing coverage on L
and rejecting rules that cover all or no instances in U

Apply a propositional algorithm on Lp to generate a model
Evaluate the model on Up

Algorithm 16 Rrr-p(cs) process

L: labeled training data
U: test data
Generate a propositional representation Lp using the labeled

training data L, using Algorithm 13
Apply a propositional algorithm on Lp to generate a model
Apply the rules generated on L to U to produce Up

Evaluate the model on Up

Algorithm 17 Rrr-p(ssb) process

L: labeled training data
U: unlabeled data
Generate propositional representation (L + U)p on the full dataset L + U ,

using Algorithm 14
Apply a propositional algorithm on Lp to generate a model
Evaluate the model on Up

Algorithm 18 Rrr-p(cb) process

L: labeled training data
U: test data
Generate a propositional representation Lp using the labeled

training data L, using Algorithm 14
Apply a propositional algorithm on Lp to generate a model
Apply the rules generated on L to U to produce Up

Evaluate the model on Up
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Figure 5.2: Rrr-p(sss): Semi-supervised Class-sensitive

Figure 5.3: Rrr-p(cs): Standard Class-sensitive

The final propositional dataset comprising solely Boolean attributes is gen-

erated by evaluating each rule on each example in the original dataset. If an

example is covered by the rule, the corresponding Boolean attribute is set to
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Figure 5.4: Rrr-p(ssb): Semi-supervised Class-blind

Figure 5.5: Rrr-p(cb): Standard Class-Blind

true, otherwise it is set to false.

The complexity of an Rrr-p variant is the sum of the complexity of both

stages. Usually, when using propositionalisation in ILP, the propositionalisa-

tion stage dominates the total complexity, and this is true for Rrr-p as well.

Even though generating a random rule is extremely fast, its coverage still has

to be determined both for checking the coverage constraints and uniformity

of coverage, as well as to generate the propositional dataset. In the worst
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case this coverage computation can be exponential, even for a single rule. The

complexity of rule evaluation is discussed in Chapter 2. The complexity of

propositional classification algorithms on the contrary is generally polynomial

at worst.

5.3 Experiments

An evaluation of the four variants of Rrr-p – Rrr-p(ssb), Rrr-p(cb), Rrr-

p(sss) and Rrr-p(cs) on several datasets was conducted. The following

datasets were used: MutagenesisRF , MutagenesisAll, Musk1, Carcinogenesis,

and Diterpenes. For the Diterpenes dataset, as the ‘enrichment’ procedure is

currently limited to two-class problems, the three two-class versions (Diter-

penes52,3, Diterpenes52,54 and Diterpenes54,3) were used with all four algo-

rithms, and in addition, the full 23-class dataset was used with Rrr-p(ssb)

and Rrr-p(cb).

The resulting propositional data was classified as described in Algorithms

17-16 – using Smo [60], with the ‘complexity constant’ parameter determined

by internal ten-fold cross-validation on the training data. The initial exper-

iments involved random stratified 50:50 splits, i.e. 50% of the data was la-

beled, and 50% was unlabeled. Twenty repetitions (effectively ten two-fold

cross-validation runs) were computed for each setup to produce stable aver-

age results. Linear support vector machines were used because they proved

to be efficient and effective for this type of problem which comprise at most

2000 examples, but also 1000 attributes, as all setups generated 1000 random

rules. Algorithms that are non-linear in the number of attributes (e.g. logistic

regression) were tested but proved less effective.

For Rrr-p(ssb) and Rrr-p(cb), several different ranges for rule coverage

were investigated, as in Chapter 4: 5%-50%, 10%-50%, 25%-50% and 25%-

75%, as well as “Wide”, which denotes a coverage range limited only by being

required to cover at least two instances, and to not cover all instances. All

proportions are relative to the size of the portion of the dataset being used for

rule generation.

In the tables of results in the following sections, bold text denotes the

greater result in each pair, and ↗ and ↘ denote differences that are signif-

icant with 95% confidence using the standard t-test (the corrected t-test is

inappropriate for these proportions of training data, so the standard t-test is

used, with the caveat that it is known to overestimate significance).
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Table 5.1: Accuracy for class-sensitive algorithms, 50:50 labeled:unlabeled
data)

Dataset Rrr-p(cs) Rrr-p(sss)
Carcinogenesis 59.09±4.29 58.97±2.74
Diterpenes52,3 96.42±0.71 96.57±0.93
Diterpenes52,54 92.09±2.03 93.20±1.48 ↗
Diterpenes54,3 97.52±1.00 98.21±0.81 ↗
Musk1 80.11±6.20 80.00±6.52
MutagenesisAll 74.35±4.23 74.74±4.03
MutagenesisRF 82.29±3.75 83.46±3.79

5.3.1 Class-sensitive algorithms

A comparison of the accuracies achieved by the class-sensitive algorithms –

Rrr-p(cs) and Rrr-p(sss) – across the seven datasets, using 50:50 train-

test splits, is given in Table 5.1 and shown in Figure 5.6. On five of the

seven datasets, Rrr-p(sss) performed slightly better than Rrr-p(cs), while

on Carcinogenesis and Musk1 it performed worse. A sign test across the seven

datasets indicates this difference is not significant (p-value of 0.227).

Figure 5.6: Accuracy for class-sensitive algorithms, 50:50 training-test

The extra information available to Rrr-p(sss) appears to improve the ac-

curacy of the classifier to a minor degree in some cases. A further experiment

was conducted, again comparing Rrr-p(cs) and Rrr-p(sss). However, this

experiment used 40 stratified 25:75 splits, with 25% of the data being labeled,
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Table 5.2: Accuracy for class-sensitive algorithms, 25:75 labeled:unlabeled data

Dataset Rrr-p(cs) Rrr-p(sss)
Carcinogenesis 57.39±3.48 56.83±3.21
Diterpenes52,3 96.18±1.03 96.17±1.00
Diterpenes52,54 91.93±1.55 91.72±1.87
Diterpenes54,3 97.23±1.15 97.29±0.94
Musk1 70.98±7.02 70.40±7.34
MutagenesisAll 70.24±4.49 70.04±3.89
MutagenesisRF 76.88±3.81 77.54±3.49

as the benefit gained from the additional unlabeled data should become more

apparent as the proportion of labeled data decreases. This method is equiva-

lent to a form of ‘inverted’ four-fold cross-validation – where standard cross-

validation uses one fold of the data for testing and the rest for training in each

repetition, here one fold is used for training and the rest for testing. This gives

four train-test splits per cross-validation, and 40 for ten such cross-validation

runs. The results of this experiment are shown in Table 5.2 and Figure 5.7.

The absolute accuracy is lower, due to the smaller amount of training data,

but Rrr-p(sss) now only shows a slight advantage over Rrr-p(cs) on two of

the seven datasets. As with the 50:50 splits, the sign test across the datasets

indicates the difference is not significant (p-value 0.227).

Figure 5.7: Accuracy for class-sensitive algorithms, 25:75 training-test

To investigate the result of using an even smaller amount of labeled data, an
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Figure 5.8: Accuracy for class-sensitive algorithms, 10:90 training-test

Table 5.3: Accuracy for class-sensitive algorithms, 10:90 labeled:unlabeled data

Dataset Rrr-p(cs) Rrr-p(sss)
Carcinogenesis 54.69±3.11 54.70±3.11
Diterpenes52,3 93.89±1.79 93.72±1.88
Diterpenes52,54 89.22±2.19 89.65±2.42 ↗
Diterpenes54,3 95.72±1.38 95.86±1.43
Musk1 60.69±7.09 61.15±6.77
MutagenesisAll 65.60±4.86 65.65±4.77
MutagenesisRF 70.29±4.69 70.52±4.88
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experiment was conducted using 100 stratified 10:90 splits – ‘inverted’ ten-fold

cross-validation. The results are shown in Table 5.3 and Figure 5.8. Here it can

be seen that Rrr-p(sss) once again outperforms Rrr-p(cs), achieving higher

accuracy on six of the seven datasets. The sign test across the datasets gives

a p-value of 0.063, indicating a fairly strong likelihood that the probability of

the semi-supervised method outperforming the supervised method is greater

than 0.5.

Overall, however, the differences in accuracy between the two methods are

generally very small – nine of the 21 differences are less than 0.2%, and only two

are greater than 1%. Only three of the differences are significant by standard

t-test (although all are in favour of Rrr-p(sss)). A sign test across all 21

dataset/training-set-size combinations favours Rrr-p(sss), with a p-value of

0.194, indicating that it is likely that Rrr-p(sss), on average, has slightly

better accuracy than Rrr-p(cs).

5.3.2 Class-blind algorithms

The accuracies attained by Rrr-p(cb) and Rrr-p(ssb) are displayed in Ta-

bles 5.4-5.11.

Table 5.4: Carcinogenesis

Coverage Rrr-p Rrr-p
(CB) (SSB)

5%-50% 57.76±4.12 58.55±3.54
10%-50% 59.79±4.03 59.03±4.03
25%-50% 55.76±4.10 54.61±3.13
25%-75% 55.42±3.38 55.12±2.59
Wide 61.09±3.00 58.36±3.41↘

Table 5.5: Diterpenes52,3

Coverage Rrr-p Rrr-p
(CB) (SSB)

5%-50% 98.11±0.67 98.31±0.49
10%-50% 98.45±0.53 98.36±0.40
25%-50% 98.14±0.55 97.98±0.73
25%-75% 98.63±0.45 98.49±0.58
Wide 96.43±0.91 94.52±1.50↘

Table 5.6: Diterpenes52,54

Coverage Rrr-p Rrr-p
(CB) (SSB)

5%-50% 95.90±1.11 96.07±1.01
10%-50% 96.08±0.91 96.22±1.09
25%-50% 96.38±1.35 96.93±1.04
25%-75% 96.92±0.73 96.62±0.79
Wide 93.01±1.88 90.66±1.87↘

Table 5.7: Diterpenes54,3

Coverage Rrr-p Rrr-p
(CB) (SSB)

5%-50% 98.94±0.63 98.82±0.74
10%-50% 98.97±0.65 98.74±0.88
25%-50% 98.91±0.78 98.79±0.59
25%-75% 99.01±0.75 99.34±0.73
Wide 98.15±0.67 96.02±1.75↘

Firstly, on the Diterpenes datasets (Tables 5.5-5.8), it can be seen that the

Wide coverage range performs poorly compared to the other coverage ranges

– an example of this trend, for Diterpenes52,54, is displayed in Figure 5.9. On
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Table 5.8: DiterpenesAll

Coverage Rrr-p Rrr-p
(CB) (SSB)

5%-50% 91.08±1.19 91.00±1.03
10%-50% 91.29±0.98 90.87±1.31
25%-50% 91.12±1.01 90.92±1.10
25%-75% 92.03±0.99 91.58±0.85
Wide 82.05±2.27 75.53±3.96↘

Table 5.9: Musk1

Coverage Rrr-p Rrr-p
(CB) (SSB)

5%-50% 77.39±6.36 77.28±6.56
10%-50% 76.09±7.23 78.48±5.18
25%-50% 72.28±6.54 71.74±6.27
25%-75% 75.00±5.84 76.41±8.14
Wide 78.26±5.42 75.43±7.13

Table 5.10: MutagenesisAll

Coverage Rrr-p Rrr-p
(CB) (SSB)

5%-50% 72.70±4.12 72.43±3.01
10%-50% 73.74±3.88 73.30±4.31
25%-50% 75.04±3.33 77.39±3.92↗
25%-75% 73.87±4.02 73.78±3.95
Wide 75.48±3.23 75.48±3.33

Table 5.11: MutagenesisRF

Coverage Rrr-p Rrr-p
(CB) (SSB)

5%-50% 79.47±4.38 81.06±4.28
10%-50% 79.89±3.63 79.10±5.08
25%-50% 80.32±3.36 81.44±4.57
25%-75% 81.60±4.67 80.64±3.30
Wide 80.74±2.80 83.88±4.42↗

Table 5.12: Proportion of rules generated that cover (2 instances – 5% of
instances)

Dataset Rrr-p(ssb) Rrr-p(cb)
Diterpenes52,3 0.7204 0.6303
Carcinogenesis 0.7180 0.5452
Diterpenes52,54 0.7104 0.6569
Diterpenes54,3 0.7039 0.6107
DiterpenesAll 0.6961 0.6211
MutagenesisRF 0.6372 0.4504
MutagenesisAll 0.6353 0.4653
Musk1 0.2946 0.1280
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these datasets, Rrr-p(ssb) is worse than Rrr-p(cb) for the Wide coverage

range, but the two algorithms produce much more similar results for all other

coverage ranges. In addition, both algorithms obtain substantially lower accu-

racies on the Wide coverage range than they do on the other coverage ranges.

Figure 5.9: Accuracy for Rrr-p(cb) and Rrr-p(ssb) on Diterpenes52,54

The poor performance of the Wide coverage range on Diterpenes was also

seen in Chapter 4, and the high proportion of rules produced in the (2 instance-

5%) coverage range was suggested as a possible explanation for this, as this

range (being the only one using an absolute number of instances as a bound)

allows rules on the Diterpenes data that cover a lower proportion of instances

than those generated on smaller datasets.

Table 5.12 gives the mean proportions of rules in this coverage range for

both algorithms, across all of the datasets. In all cases, the proportion of these

low-coverage rules is smaller for Rrr-p(cb) than it is for Rrr-p(ssb). This

is due to the differences in data available during rule generation. Rules pro-

duced by Rrr-p(cb) have coverage bounded on the training data according

to the coverage range parameters, but their coverage on the test data is not

bounded, while rules produced by Rrr-p(cs) have coverage bounded on the

full dataset according to the coverage range parameters. For example, a ran-

domly generated rule that covers two instances of a given dataset will always

be accepted by Rrr-p(ssb) using Wide coverage, but will only be accepted

by Rrr-p(cb) if both those instances are in the training data. If one instance
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is in the training data and one in the test data, or if both are in the test data,

then the two-instance coverage required by the Wide coverage range will not

be met, and Rrr-p(cb) will not accept the rule.

On the Diterpenes datasets, where the Wide coverage range performs no-

ticeably worse than all other coverage ranges, Rrr-p(cb) produces higher

accuracies than Rrr-p(ssb) and also has a lower proportion of rules in the (2

instance-5%) coverage range.

Secondly, aside from the results for Diterpenes using the Wide coverage

range (discussed above), neither Rrr-p(ssb) nor Rrr-p(cb) is invariably su-

perior using 50:50 train-test splits – however, a sign test across all 40 pairs

of results gives a p-value of 0.011 in favour of the supervised method, indi-

cating that it is likely that the supervised method performs better with this

proportion of training data. When the number of labeled examples is suffi-

cient to induce strong classifiers, additional unlabeled data has previously been

found to be either irrelevant or even detrimental [13]. Therefore, as with the

class-sensitive algorithms, experiments were performed further reducing the

amount of labeled training data available. For two coverage ranges – 10%-50%

and 25%-75% – propositionalisations were produced using 40 stratified 25:75

train-test splits and 100 stratified 10:90 train-test splits (the equivalent of ten

inverted four-fold and ten-fold cross-validation runs respectively, as in Section

5.3.1) on each of the eight datasets. The resulting propositional datasets were

classified using Smo as before. The results of these experiments are shown in

Tables 5.13-5.16.

Table 5.13: Accuracy on 25:75 train-test splits, 10%-50% coverage

Dataset Rrr-p Rrr-p
(CB) (SSB)

Carcinogenesis 57.05±3.10 57.42±3.31
Diterpenes52,3 97.49±0.75 97.54±0.61
Diterpenes52,54 94.34±1.09 94.41±1.53
Diterpenes54,3 98.17±0.96 97.89±1.08
DiterpenesAll 86.65±1.04 86.17±1.24
Musk1 69.02±6.30 70.87±7.65
MutagenesisAll 69.97±3.81 69.26±4.08
MutagenesisRF 75.96±4.02 76.15±4.43

Although the variance in these results is sufficiently high that most of the

differences between Rrr-p(cb) and Rrr-p(ssb) are not statistically signifi-

cant individually, it can be seen that as the amount of training data reduces,
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Table 5.14: Accuracy on 25:75 train-test splits, 25%-75% coverage

Dataset Rrr-p Rrr-p
(CB) (SSB)

Carcinogenesis 54.53±2.62 54.94±2.48
Diterpenes52,3 97.66±0.75 97.69±0.76
Diterpenes52,54 95.15±1.16 95.15±1.12
Diterpenes54,3 98.37±0.75 98.45±0.79
DiterpenesAll 87.64±1.25 87.00±1.48 ↘
Musk1 67.07±7.08 66.78±7.55
MutagenesisAll 70.99±3.46 71.14±3.10
MutagenesisRF 76.38±4.57 76.29±4.17

Table 5.15: Accuracy on 10:90 train-test splits, 10%-50% coverage

Datatset Rrr-p Rrr-p
(CB) (SSB)

Carcinogenesis 55.45±3.45 55.85±3.08
Diterpenes52,3 95.19±1.66 95.51±1.61
Diterpenes52,54 90.47±2.55 91.29±1.84 ↗
Diterpenes54,3 96.39±1.16 96.45±1.30
DiterpenesAll 77.13±2.06 77.73±1.89 ↗
Musk1 57.01±7.52 57.28±7.62
MutagenesisAll 64.30±4.64 65.37±5.34
MutagenesisRF 68.48±4.06 70.43±5.30 ↗

Table 5.16: Accuracy on 10:90 train-test splits, 25%-75% coverage

Dataset Rrr-p Rrr-p
(CB) (SSB)

Carcinogenesis 53.65±2.82 53.99±2.53
Diterpenes52,3 94.96±1.74 94.67±1.79
Diterpenes52,54 91.33±2.32 91.67±2.47
Diterpenes54,3 96.88±1.22 97.18±1.08
DiterpenesAll 78.47±1.84 78.73±2.03
Musk1 57.44±7.26 56.35±6.71
MutagenesisAll 65.13±4.72 65.37±5.34
MutagenesisRF 69.56±4.66 70.79±5.60
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Table 5.17: Comparison across all class-blind experiments

Train:test Rrr-p(cb) Rrr-p(ssb) Draws Sign Test
ratio wins wins p-value
50:50 27 12 1 0.012 (CB)
25:75 6 9 1 0.304 (SSB)
10:90 2 14 0 0.002 (SSB)

Table 5.18: Accuracy on Diterpenes52,54 with low proportions of labeled train-
ing data

Train:test Rrr-p Rrr-p
ratio (CB) (SSB)
4:96 84.68 ± 3.63 86.66± 3.29 ↗
2:98 77.30 ± 6.92 81.16± 5.97 ↗

the proportion of cases where Rrr-p(ssb) produces the higher accuracy in-

creases. A sign test on the 25:75 train-test case indicates no significant differ-

ence (p-value of 0.304), and on the 10:90 train-test case indicates a significant

difference in favour of Rrr-p(ssb), with a p-value of 0.002. This is shown in

Table 5.17 where the number of ‘wins’ for each of Rrr-p(cb) and Rrr-p(ssb)

is compared for each of the three amounts of training data.

Figure 5.10: Accuracy for Rrr-p(cb) and Rrr-p(ssb) on Diterpenes52,54

Indeed, a further experiment was conducted on Diterpenes52,54 using the

10%-50% coverage range, with 250 4:96 training-test splits and with 500 2:98
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training-test splits (ten inverted twenty-five-fold and fifty-fold cross-validation

runs), that continued to display this trend. The results are shown in Table

5.18, and indicate that as the amounts of labeled training data decrease, Rrr-

p(ssb) shows an increasing advantage.

To further illustrate this trend, Figure 5.10 shows the accuracy for Rrr-

p(cb) and Rrr-p(ssb) on Diterpenes52,54, with each of the five tested propor-

tions of labeled training data.

5.4 Summary

This chapter has described a two-tiered approach to semi-supervised relational

learning, based on randomised propositionalisation and an arbitrary proposi-

tional classification algorithm, and compared the results to standard train-test

learning. The experimental results indicate that additional unlabeled data can

be beneficial to classification. Rrr-p(sss) and Rrr-p(cs) are quite similar in

terms of accuracy, though Rrr-p(sss) does display a slight advantage overall.

The usefulness of the extra information gained from semi-supervised learn-

ing in the class-blind case depends strongly on the percentages of labeled train-

ing data available. For smaller percentages of labeled training data the semi-

supervised approach Rrr-p(ssb) shows a small but consistent advantage over

the corresponding standard learning algorithm Rrr-p(cb).



Chapter 6

Random Forests

As previously described in Chapter 1, a decision tree is a predictive model

with a tree structure, in which the internal nodes represent features and the

leaf nodes represent classifications [61]. In the building of the tree, a feature

in the feature space is selected for each internal node – for ID3, for example,

the criterion used to select this feature is information gain.

Ensemble methods combine the individual outputs from a set of classifiers

to predict values for new examples [19]. They are useful because their predic-

tions are often more accurate than those of the individual classifiers that they

are formed from, as long as those individual classifiers are diverse – that is,

they make different errors on test examples. A random decision forest [30] is

an ensemble of decision trees, in which diversity is achieved by building each

tree on a random subset of the attributes of the training data, but the feature

selection for internal nodes is still deterministic.

A random forest [11] is an ensemble of decision trees that is generated by

bagging [10] the training data, and in which the feature selection for the inter-

nal nodes is also randomised. The random feature selection is accomplished by

restricting the range of possible input variables to split on. A random subset of

the possible variables is selected, and the best test, with regard to homogene-

ity of the resulting leaves, deterministically selected from that subset. More

information on decision trees and random forests in general can be found in

Chapter 1 – this chapter focuses on relational random forests.

In this chapter, an approach to random forests using randomly generated

relational rules as splitting conditions for tree nodes is described. Section 6.1

discusses the construction of the random forests. Section 6.2 discusses the

complexity of the forest construction. Section 6.3 gives the results of empir-

ical experiments using this algorithm, and Section 6.4 discusses the results

113
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obtained by varying methods of leaf node splitting. Section 6.5 discusses the

diversity of the forests produced and Section 6.6 compares the results obtained

by random forests to those produced by static propositionalisation. In Section

6.7 a semi-random method for selecting splitting rules is tested, and Section

6.8 summarises the chapter.

6.1 Forest Construction

Random Relational Rules are applied to random forests by using randomly

generated rules as a splitting condition. The rules are generated as described

in Chapter 2, although the enrichment and uniformity requirements no longer

apply – instead, the rule is simply required to discriminate on the training

data (covering neither all nor none of the training instances). As the rule

generation process is independent of the current tree state it is straightforward

to parallelise tree and indeed forest generation. The procedure for this Random

Relational Forest algorithm (Random Relational Rules - Random Forests, or

Rrr-rf) is given in Algorithm 19.

Usually cover computation is the most time-consuming operation a rela-

tional learner needs to perform. This costly operation is executed exactly once

for each random rule on the full dataset, and then every node on the waiting

list can efficiently check whether the current rule actually properly splits its

subset of the full data. This way all nodes of all trees of the ensemble can be

grown in parallel. Clearly this operation would lead to identical trees, if all

trees were to be started simultaneously on the full dataset. To introduce the

diversity necessary for good ensemble performance the algorithm staggers the

start of individual trees. Furthermore root nodes can be initialised by either

the full training set or by drawing bootstrap samples of the full training set.

Yet more options inducing more diversity will be discussed and evaluated in

the next section. Once nodes are initialised, and are not class-pure, they are

put onto a list and will wait for a rule that will split their data into two non-

empty sets. Nodes that are not split within a user-defined maximum number

of rules being generated (MFC, or maximum fail count) will be turned into a

leaf which will predict an appropriate class distribution.

Figures 6.1 to 6.3 show three stages of forest construction, with the trees

designated by letters, and internal nodes marked with an identifier correspond-

ing to the rule that split them. Nodes are described by the tree designation

followed by a numeric identifier. The training data consists of 20 instances, 10
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Algorithm 19 Pseudocode for the Rrr-rf algorithm

Initialise contents of first root node
Add first root node to list of open leaves
while Number of open leaves > 0 do

Generate a Rule
if the generated rule discriminates on the training data then

for all Open Leaves do
if Splitting the leaf using the rule produces two non-empty leaves
then

Create two children for the leaf according to the rule coverage
for all Children do

if Contents of child are not all of one class then
Add child to the list of open leaves

end if
end for
Remove current node from list of open leaves

else
Increment the Fail count for the leaf
if Fail count for leaf = Maximum Fail Count then

Remove current node from the list of open leaves
end if

end if
end for
if Number of initialised root nodes < Maximum number of trees then

if one or more trees were modified then
Initialise the next root node
Add the newly initialised root node to the list of open leaves

end if
end if

end if
end while
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each of two classes. The class distribution at each node is given to the node’s

left. Figure 6.1 shows the state of the forest after the first rule, Rule R1, has

been added. Initially, the root node of Tree A, A1, was the only node on the

Open Leaf List. Now, A1 has been split, and two leaves (A2 and A3) created.

A2, A3 and the root node of Tree B (B1) have been added to the Open Leaf

list and A1 has been removed from the list.

A1

A3A2

B1

A2 A3 B1

A B

Open leaf list: 

R1

10:10 10:10

7:4 3:6

Figure 6.1: Example of Rrr-rf Forest Construction, Stage 1

Figure 6.2 shows the state of the forest after another rule, R2 has been

processed. Both A2 and A3 have been split, B1 has been split, and most of

the new leaves thus created (A5 through A7 and B2 through B3), along with

the root node of Tree C, C1, have been added to the Open Leaf list. A4 now

contains instances of only one class (denoted by the double circle) and so was

not added to the Open Leaf list, and will never be split.

Figure 6.3 shows the state of the forest after the third rule, R3 has been

processed. Nodes A5 and A6 have been split, adding A8 through A11 to the

Open Leaf list. Node A7 has not been split by R3, and therefore had its Fail

count incremented. The maximum fail count is set to 1 (to keep this example

R1

R2 R2

R2
A1

A2

A4 A5 A7A6

A3

B1

B2 B3

C1

5A A6 A7 B2 B3 C1

A B C

Open leaf list: 

10:10

3:0 4:4

10:10

5:4 5:6

10:10

1:22:4

3:67:4

Figure 6.2: Example of Rrr-rf Forest Construction, Stage 2
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Figure 6.3: Example of Rrr-rf Forest Construction, Stage 3

concise), and thus A7 (marked by the crossed circle) will now be removed from

the Open Leaf list and thus will never be split. Nodes B2 and B3 have been

split, producing B4 through B7, of which B4, B6 and B7 will be added to the

Open Leaf list, while B5 will not, due to it being class-pure. C1 has been split,

producing C2 and C3, and the root of tree D, D1, has also been added to the

Open Leaf list.

Predictions for test instances are computed as simple averages over the

class-distributions returned by all trees in the forest, as is common for Random

Forests or Bagging in general. This procedure is described in more detail in

Algorithm 20.

Rrr-rf differs from Forf [3], another algorithm that produces relational

random forests, in two main ways. First of all Forf does not use full rules in

every node, but in contrast paths from the root to each leaf comprise rules. As

logical variables can only be shared across positive paths, this complicates both

generation and interpretation of such trees. Secondly, like Breiman’s original

random forest, Forf randomly restricts the set of possible tests (features) and

then picks the best test from that restricted set. Rrr-rf on the other hand
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Algorithm 20 Classification procedure for a test instance in Rrr-rf

for all Trees in the forest do
Traverse the tree with the instance
Return the proportion of instances that are of class A at the leaf node

end for
if The mean of the proportions returned > 0.5 then

classify the instance as being of class A
else

classify the instance as being of class B
end if

uses a fully self-contained randomly generated relational rule as a test. As

a consequence, Rrr-rf can easily generate its trees in a staggered parallel

fashion, with each new rule being available for all open leaves, while Forf

processes both nodes and trees fully sequentially.

Rrr-rf can also be seen as an example of dynamic propositionalisation

[45], in that the features are generated dynamically on-demand, and do not

have to be precomputed in advance as would be common in static proposition-

alisation [40].

6.2 Complexity of Forest Construction

When Rrr-rf generates and evaluates a rule, it then applies the test derived

from that rule at every open leaf in each active tree. The cost of rule evalua-

tion is the same as for previous uses of Random Relational Rules, as described

in Chapter 2. As each test is applied to all open leaves, the number of rules

required to be evaluated is substantially lower than would be required if a new

rule were being evaluated for each open leaf, as in standard random forests.

The number of discriminatory rules (for the remainder of this chapter, discrim-

inatory rules are simply referred to as rules) required for forest construction is

heavily influenced by the number of trees in the forest and the Maximum Fail

Count. A rough estimate for this value is the sum of the average number of

rules required to construct a single tree and the number of trees in the forest,

as when the last tree in the forest is completed, the previous trees are also

likely to be complete.

Rules required for forest generation ≈ (n + s) (6.1)
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Table 6.1: Forest size vs. number of rules generated

#Trees Average #rules Average #rules - #trees
10 61.79 51.79
25 78.88 53.88

100 152.01 52.01
200 251.02 51.02
500 553.29 53.29

Where:

n = the number of trees in the forest

s = the average number of rules required to construct a single tree

The estimate given by Equation 6.1 can be confirmed by experimental

results. Table 6.1 shows the results for an experiment on MutagenesisRF which

conducted ten ten-fold cross-validation runs, recording the average number of

rules generated in each fold. As the number of rules required to construct a

single tree should be unaffected by the number of trees generated, the difference

between the number of rules required for a forest and the number of trees in

the forest should be roughly constant, regardless of forest size.

Because of the staggered fashion in which the trees are generated, each tree

has access to at least one more rule than its immediate successor and so its

construction has probably already finished at the time the construction of that

successor finishes. Thus, when the final tree is complete, it is likely that all

previous trees are complete or nearly so.

The number of rules required to construct a single tree can vary substan-

tially. It is a function of the particular dataset, the Maximum Fail Count and

the particular random rules generated. A worst case upper bound is given by:

Maximum rules required for a single tree = (t− 1)×mfc (6.2)

Where:

t = the size of the training set

mfc = the Maximum Fail Count

It is extremely unlikely that this upper bound would be reached under

normal circumstances, as it describes the pathological case where each node

in the tree is split only after the maximum possible number of rules have been
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Figure 6.4: Worst-case tree construction

generated, and at every node the split has resulted in one single-instance leaf

and a second leaf containing all the remaining instances (see Figure 6.4). In

practice the number of rules required has always been substantially lower than

the worst case upper bound.

As the number of trees in a forest increases, the proportion of useful rules

that split at least one open leaf also increases. Higher MFC values, on the

other hand, lower the proportion of such useful rules simply because more

unproductive rules can be generated before giving up at a node. Figure 6.5

shows these trends in the proportion of globally discriminatory rules used,

as Maximum Fail Count and the number of trees vary. As the number of

trees increases, the proportion of discriminatory rules used also increases, as

predicted, while as the MFC increases, the usage proportion decreases. A

higher MFC allows more locally non-splitting rules to be seen by a leaf before

it is closed, which results in the lower proportionate rule usage.

6.3 Experimental Results

Rrr-rf was tested on several datasets, varying the number of trees built and

the Maximum Fail Count. Three root initialisation methods were used:

• Standard - each root is initialised with the full training set of examples
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Figure 6.5: MutagenesisRF , rule usage

• Bagging - each root is initialised with a set of examples randomly selected

with replacement from the training set

• Unique - each root is initialised as in Standard, but then may only be

split by a rule that produces a split different from all previous roots. But

once the root reaches its Maximum Fail Count, it will simply accept the

next splitting rule, even if it is not unique.

The Unique root initialisation method is a compromise between diversity

and efficiency. As described in Algorithm 19, a new root is added to the Open

Leaf list for each time a rule is processed that causes the forest to change

– however, unlike the Standard method, if that rule did not produce a split

different from those seen in previous roots, a new root will not be split, and it

is thus possible to have multiple root nodes on the Open Leaf list. Thus, when

using the Unique method, each time a rule is seen that does not produce a

split different from all previous roots, none of the roots on the Open Leaf list

will be split, and instead their Fail Counts are incremented. If this were not

the case, and a root only began to increment its Fail Count once the previous

root had been split, then as unique roots became less likely to be generated

(with increasing numbers of trees), each root would be increasingly likely to

reach the MFC and use a previously seen split anyway. For most values of
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Table 6.2: Best results for Rrr-rf

Dataset Root Trees Maximum Accuracy (%)
Fail Count

Carcinogenesis bagging 500 25 61.24
Diterpenes52,3 unique 500 200 96.83
Diterpenes52,54 unique 500 200 94.51
Diterpenes54,3 unique 500 200 97.83
Musk1 standard 500 10 83.40
MutagenesisAll bagging 500 25 77.39
MutagenesisRF unique 500 25 84.39

the MFC, this would generate many more rules than the Unique root method,

while being only slightly more diverse.

This buildup of waiting roots on the Open Leaf list can result in a ‘cascade’

when the first one reaches its MFC. The first root will split, and the remaining

ones will have their MFC incremented, resulting in the second root reaching its

MFC (if the next rule it sees results in a non-unique split) and thus splitting

regardless of the uniqueness of the rule, and so on. In this context, the MFC

can be thought of as the maximum number of non-uniquely-splitting rules the

forest can see before it begins to use rules to split roots as they are generated.

The datasets used were Musk1, MutagenesisRF , MutagenesisAll, Carcino-

genesis, Diterpenes54,3, Diterpenes52,3 and Diterpenes52,54.

For each combination of variable settings, Rrr-rf was run ten times using

ten-fold cross-validation, and the mean of the resulting accuracies taken.

Table 6.2 contains the best accuracy obtained for each dataset, and the

settings that produced that result.

The results obtained for MutagenesisRF , using Standard root initialisation

(accuracy, AUC, tree size and generated rules) are displayed in Figures 6.6

through 6.13. There are two figures for each of these measurements, to show

more clearly the effects of both the MFC and the number of trees in the forest.

These results show that increasing the number of trees generally improves

accuracy. The effect of the Maximum Fail Count parameter is less straightfor-

ward – though low values do not do well for MutagenesisRF , the highest values

are not always the best, whereas for Diterpenes, the highest value of the MFC

gives the best accuracy. The number of discriminatory rules generated in-

creases with both the forest size and the MFC, and the tree size increases

with the MFC. The trends shown by MutagenesisRF hold for most of the other
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Figure 6.6: MutagenesisRF , Accuracy

Figure 6.7: MutagenesisRF , Accuracy
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Figure 6.8: MutagenesisRF , AUC

Figure 6.9: MutagenesisRF , AUC
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Figure 6.10: MutagenesisRF , Rules generated

Figure 6.11: MutagenesisRF , Rules generated
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Figure 6.12: MutagenesisRF , Tree size

Figure 6.13: MutagenesisRF , Tree size
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datasets as well, with some exceptions.

On Musk1, for example, the lowest values for the MFC generally do well

for accuracy and AUC by comparison to the others, while increasing MFC has

only a minor effect on tree size (beyond MFC 10) and the number of rules

generated, as shown in Figures 6.14 through 6.17. This is probably due to

the small size of the Musk1 dataset and the ease of differentiating between

examples, so that higher MFC values have very little effect as leaves are often

split after seeing a smaller number of rules.

Figure 6.14: Musk1, Accuracy

Although the number of rules generated for a forest follows the same trend

across datasets, comparison between datasets shows that for low MFCs, the

Diterpenes datasets require more rules to generate a forest than the other

datasets, but that at higher MFC values (100 and up) both Mutagenesis

datasets and Carcinogenesis generate more rules than Diterpenes. At MFC

25 (all other parameters being equal) the number of rules required for forest

generation is similar across all the datasets except Musk1, which consistently

requires less rules than the other datasets at all MFC values. This appears to

be linked to the difficulty of producing leaf-splitting rules, in that Mutagenesis

and Carcinogenesis, on average, need to generate more rules to split a leaf than

the other datasets and Musk1 needs to generate less.
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Figure 6.15: Musk1, AUC

Figure 6.16: Musk1, Rules generated
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Figure 6.17: Musk1, Tree size

At lower MFC values, the effect of the difficulty of leaf-splitting on the

number of rules generated is restricted, leaving the size of the datasets to be

the major factor affecting the number of rules required for forest construction,

as the randomness of split selection leads to roughly binary trees, with tree

sizes related to dataset size, and thus rule numbers related to tree sizes. As

the MFC is increased, nodes that would have reached their MFC and become

leaves for smaller MFC values will either reach the new MFC or be split to

produce two new nodes. In either case, more rules will need to be generated

than for lower MFCs. Mutagenesis and Carcinogenesis, which tend to require

more rules to split nodes, thus require more rules for forest production at high

MFCs.

When the ‘Unique’ root initialisation method is used, Equation 6.1 no

longer provides as accurate an estimation of the number of rules required to

generate a forest. As more trees are generated, the probability of a unique

split decreases, and the average number of rules that are generated before the

next root in the forest can split increases, resulting in an overall increase in

the number of rules generated.

Bagging for root initialisation results in smaller trees, as there are fewer

unique instances at the root of each tree.
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The overall best results seen in Table 6.2 show that the best result is

always obtained with the highest number of trees, and also that the Bagging

and Unique methods of root initialisation are beneficial to accuracy. This can

be further seen in Figures 6.18 through 6.24, which show the results for the

three root initialisation methods for each dataset and MFC value, for a forest

size of 500 trees. The error bars denote standard deviations.

For Diterpenes, Bagging is very rarely the best method, and when it is

the best, it is only by a small margin. For smaller MFC values, Standard

and Unique roots are fairly similar, but at the highest MFC, Unique overtakes

Standard on all three datasets. For MutagenesisAll, on the other hand, Bagging

almost always produces the best result. Bagging on Musk1 performs less well

than the other methods at low MFC values, but is fairly similar to the other

two methods for the higher MFCs (and the variance on the Musk results is

quite high). For MutagenesisRF the highest results are obtained by Unique

and Bagging at MFC 25, and Bagging performs worst of the three methods at

MFC 5, but apart from these the three methods seem to be very similar.

Figure 6.18: Carcinogenesis, accuracy with 500 trees

The often poorer performance of Bagging as a root initialisation method at

the lowest MFC here seems to be a result of the learning curve, where changes

in the amount of training data available can have a significant effect on accu-

racy [77] – the Bagged roots, which on the average have approximately 63.2%
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Figure 6.19: Diterpenes52,3, accuracy with 500 trees

Figure 6.20: Diterpenes52,54, accuracy with 500 trees
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Figure 6.21: Diterpenes54,3, accuracy with 500 trees

Figure 6.22: Musk1, accuracy with 500 trees
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Figure 6.23: MutagenesisAll, accuracy with 500 trees

Figure 6.24: MutagenesisRF , accuracy with 500 trees
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Table 6.3: Accuracy of individual trees in Rrr-rf forests

MFC Bagging-75 Bagging-std Bagging-300 Unique
5 0.6964 0.7139 0.7234 0.7344

10 0.7110 0.7370 0.7448 0.7631
25 0.7119 0.7507 0.7663 0.7854

100 0.7144 0.7515 0.7786 0.7891
200 0.7140 0.7486 0.7691 0.7863

probability of containing a particular instance from the training set, have ac-

cess to less of the training data than the non-Bagged roots, and this impacts

the ensemble accuracy. To test this, the individual accuracies of the trees in the

forests produced by ten ten-fold cross-validation runs on MutagenesisRF were

tracked for four different root initialisation methods – Unique, standard Bag-

ging, Bagging-75 and Bagging-300. For Bagging-75, each root was initialised

by sampling the training set 75 times with replacement, while for Bagging-300

each root was initialised by sampling the training set 300 times with replace-

ment. A root produced using standard Bagging has roughly 63.2% probabil-

ity of containing a given instance, while that probability is roughly 36% for

Bagging-75 and 83% for Bagging-300 (on this particular dataset). This gives

a gauge of the effect of varying the amount of available training data for the

roots. The mean tree accuracies obtained are shown in Table 6.3. For every

value of the MFC, the same ordering is maintained – Unique greater than Bag-

ging, and the three Bagging methods ordered from most data sampled to least.

This indicates varying the amount of training data available to the individual

trees impacts their accuracy.

Although Bagging shows lower individual accuracies at all tested MFCs,

the accuracy of the forests using Bagging is generally only lower than other root

initialisation methods at the lowest MFC value. The increased diversity of the

ensembles as the MFC increases (shown in Table 6.4) appears to compensate

for the lower individual tree accuracies. The diversity here is estimated by

taking the class predictions made by each tree across the test set, counting the

number of different sets of predictions, and dividing this number by the number

of trees. While Bagging-75 and Bagging-std increase in diversity steeply up to

MFC 25 and then level off, Bagging-300 seems to be close to its peak by MFC

10. As the number of instances sampled from the training set increases, the

diversity of the forests decreases.
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Table 6.4: Diversity of trees in Rrr-rf forests

MFC Bagging-75 Bagging-std Bagging-300
5 0.5322 0.4989 0.4439

10 0.7043 0.5955 0.5040
25 0.8249 0.6513 0.4715

100 0.8769 0.6749 0.4356
200 0.8596 0.6698 0.4503

Figure 6.25: MutagenesisAll, using out-of-bag evaluation

As expected, increasing the number of trees increases the number of rules

generated, as does increasing the Maximum Fail Count, as shown in Figures

6.10-6.11 and Figure 6.16. An increase in the Maximum Fail Count also in-

creases the size of the trees generated, up to a point dependent on the dataset

(displayed for MutagenesisRF in Figure 6.13)– on Musk1, for example, the tree

size increases very little beyond MFC 25, as shown in Figure 6.17.

For comparison with the published results for Forf, Rrr-rf was also

run on MutagenesisAll using out-of-bag evaluation rather than cross-validation.

Ten out-of-bag evaluations were performed for each combination of Maximum

Fail Count and number of trees. The results are shown in Figures 6.25 and

6.26.
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Figure 6.26: MutagenesisAll, using out-of-bag evaluation

Table 6.5: Comparison of Rrr-rf and Forf

Algorithm Accuracy Compared to Rrr-rf Significance
Rrr-rf 77.7± 1.1 - -
Forf-NA 74.7± 1.4 worse 95%
Forf-SA 78.9± 1.8 equal < 90%
Forf-RA 78.1± 1.2 equal < 90%
Forf-LA 79.0± 1.4 equal < 90%

The results from out-of-bag evaluation exhibit similar properties to cross-

validation with respect to the influence of tree number and Maximum Fail

Count. Comparing the highest result from Rrr-rf (500 trees, MFC 10) and

the highest result from Forf-NA (the version that did not use aggregates),

Rrr-rf was significantly better (with 95% confidence). Forf can also in-

clude so-called aggregate functions which go beyond standard relational learn-

ing. Compared to the various Forf variants using aggregates (Forf-LA:

lookahead aggregates, Forf-SA: simple aggregates, and Forf-RA: refined ag-

gregates) Rrr-rf does not perform significantly differently, as shown in Table

6.5 (significance was calculated by corrected t-test, with the bagging fraction

(0.632) used to approximate the train-test ratio).
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6.4 Variations

Instead of a full rule any prefix of a rule can be used as long as the prefix

also results in a non-trivial split. Two methods of prefix selection were tested:

choosing a prefix at random (Rrr-rf-rand) and choosing the prefix which

maximises information gain (Rrr-rf-info). The two prefix-selection proce-

dures (along with the original method, abridged slightly, for comparison) are

given in Algorithms 21 through 23.

Algorithm 21 Pseudocode for the Rrr-rf algorithm, selecting prefix pre-
forest (Rrr-rf-norm)

Initialise the forest
while Number of open leaves > 0 do

Generate a Rule
Select a prefix randomly from those that split the training data
for all Open Leaves do

if the rule splits the leaf then
split the leaf and create children

else
increment Fail count

end if
end for

end while

Algorithm 22 Pseudocode for the Rrr-rf algorithm, selecting prefix ran-
domly (Rrr-rf-rand)

Initialise the forest
while Number of open leaves > 0 do

Generate a Rule
for all Open Leaves do

for all possible prefixes do
Check if the prefix splits the leaf

end for
if one of the prefixes splits the leaf then

randomly select one of the splitting prefixes
split the leaf with the selected prefix and create children

else
increment Fail count

end if
end for

end while
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Algorithm 23 Pseudocode for the Rrr-rf algorithm, selecting prefix by
information gain (Rrr-rf-info)

Initialise the forest
while Number of open leaves > 0 do

Generate a Rule
for all Open Leaves do

for all possible prefixes do
Calculate information gain for the prefix

end for
if the prefix with highest information gain splits the leaf then

split the leaf with that prefix and create children
else

increment Fail count
end if

end for
end while

The experiments previously performed using Rrr-rf-norm were repeated

using Rrr-rf-rand and Rrr-rf-info, and Table 6.6 shows the overall best

accuracy for each dataset, along with the relevant parameters. The Rrr-

rf-info prefix selection procedure and the simple Rrr-rf-norm approach

each produce the highest result on three of the datasets, while Rrr-rf-rand

produces the best result on only one of the datasets. However, the margin

by which these results were the highest was sufficiently small in most cases

that those differences may not be overly significant. In general, the effect of

the prefix selection method on tree sizes and the number of rules generated is

minor, with Rrr-rf-rand and Rrr-rf-info producing slightly larger trees

and generating more rules for low MFC values, and slightly less rules at high

MFC values. Both Rrr-rf-rand and Rrr-rf-info determine the usefulness

of prefixes at each leaf, and hence may split more leaves for a given rule than

Rrr-rf-norm would, applying the full rule to each leaf. At higher MFCs,

Rrr-rf-norm will still split the nodes, though it generates more rules to find

successful splits.

The results for out-of-bag evaluation on MutagenesisAll using Rrr-rf-

rand and Rrr-rf-info are slightly higher than those for Rrr-rf-norm,

but their significance relative to the Forf results is unchanged.

To compare the runtimes of both algorithms, Forf was also evaluated in a

standard cross-validation fashion over all the same datasets as Rrr-rf. Table

6.7 summarises these runtime results. They are the time needed in seconds

for one complete ten-fold cross-validation run generating 100 trees for various
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Table 6.6: Best results for Rrr-rf

Dataset Root Prefix Trees Maximum Accuracy (%)
Fail Count

Carcinogenesis bagging norm 500 25 61.24
Diterpenes52,3 unique info 500 200 97.15
Diterpenes52,54 unique norm 500 200 94.51
Diterpenes54,3 unique info 500 100 98.11
Musk1 standard info 500 5 84.33
MutagenesisAll bagging rand 500 25 78.00
MutagenesisRF unique norm 500 25 84.39

Table 6.7: Training time comparison: time in seconds for one ten-fold cross-
validation

Dataset Rrr-rf Forf
MFC query sample probability
5 200 sqrt 0.1 0.25 0.5 0.75

Carcinogenesis 656 3940 Did Not Finish
Diterpenes52,3 312 552 31,505 51,212 78,527 124,578 176,535
Diterpenes52,54 300 600 33,710 44,781 65,081 105,589 141,793
Diterpenes54,3 258 438 27,774 54,038 93,379 163,513 228,131
Musk1 41 44 Out of memory
MutagenesisAll 174 894 10,555 14,795 23,158 51,909 84,139
MutagenesisRF 138 696 4,615 6,419 8,626 12,426 15,760

settings of the respective main parameter governing the building process – the

maximum fail count for Rrr-rf and the query sample probability for Forf.

Entries for Musk1 are missing as Forf runs out of memory on this dataset and

Carcinogenesis is missing because Forf did not finish within reasonable time

on this dataset. All the Forf timings have to be viewed cautiously, as they

have been produced by non-expert Forf users. They are the result of some

exploration of the parameter space and problem representation alternatives,

but yet other settings might give faster runtimes. Still, in general Rrr-rf

manages to generate tree ensembles about two orders of magnitude faster than

Forf.
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Table 6.8: Diversity for Rrr-rf

Root Prefix Diversity
bagged norm 0.9964
bagged random 0.9962
bagged info 0.9945
unique random 0.3345
unique info 0.3026
unique norm 0.2953
standard random 0.2760
standard info 0.2394
standard norm 0.2328

6.5 Ensemble Diversity

Each tree in Rrr-rf’s random forests processes a set of rules that overlaps sig-

nificantly with those processed by its neighbours, As this could cause the trees

to be very similar to their neighbours, and diversity is important to ensemble

methods, a set of forests created by Rrr-rf using ten ten-fold cross-validation

runs on MutagenesisRF was examined, using each of the nine combinations of

root and prefix settings. For each fold, the number of trees that were ‘unique’

with respect to the test data were determined – i.e. if two (or more) trees pro-

duce identical predictions for all test instances, these trees were only counted

as one ‘unique’ tree. Dividing this count by the total number of trees results

in a proportion between 0.0 and 1.0, where 1.0 represents perfect diversity

between all pairs of trees. The mean results across all folds are shown in Table

6.8, ordered from highest (most diverse) to lowest (least diverse).

Unsurprisingly, root nodes initialised by Bagging result in the most diverse

forests, as each tree is built on a different subset of the training data. Requiring

the root split to be unique increases diversity over not doing so. Comparing

the prefix selection methods – excluding bagged roots, which are practically

equal in diversity – shows that Rrr-rf-rand leads to more diverse forests

than Rrr-rf-info, which in turn produces more diverse results than Rrr-

rf-norm. This confirms our expectations, as using the same prefix for all

leaves should be less diverse than selecting a prefix via some other means, and

randomly selecting a prefix should be more diverse than deterministically se-

lecting one per leaf. However, although Bagging clearly produces more diverse

ensembles, this is not the only factor affecting the accuracy of the ensembles,
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Table 6.9: Static propositionalisation comparison

Dataset Accuracy (%)
Static Rrr-rf

Carcinogenesis 60.91 61.24
Diterpenes52,3 96.97 97.15
Diterpenes52,54 94.22 94.51
Diterpenes54,3 97.69 98.11
Musk1 89.13 84.33
MutagenesisAll 76.66 78.00
MutagenesisRF 84.95 84.39

as can be seen in the results in Section 6.4 above.

6.6 Static Propositionalisation

Rrr-rf has several advantages over a static two-stage method that generates

a propositional representation of the data first, and then constructs a Random

Forest based on the propositionalised data. The latter approach must generate

a sufficiently large number of rules in the first stage without knowing which

ones will actually be useful. The propositional representation is potentially

very large, needing a lot of memory, but might still not be a good enough

approximation of the relational problem. Thus the number of rules to gen-

erate will be a critical parameter for the user to set. Rrr-rf has a simple

stopping condition: completion of the forest, so that it will always generate

exactly the right number of rules. No memory is needed for any intermediate

representation, and forest generation is fully parallel. Still, in practice, static

propositionalisation works fairly well for the datasets studied here, Table 6.9

summarises results for generating 1000 random rules to be used as Boolean fea-

tures in propositional Random Forests comprising 100 trees selecting from 30

attributes. Propositional Random Forests are used here for comparison rather

than Smo (as used in Chapter 3) as their operation is much more similar to

that of Rrr-rf. The results from Table 6.2 are reproduced here for ease of

comparison.
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6.7 Tracking Information Gain

The original Random Forest algorithm chooses the best attribute of a random

subset of attributes to split leaves. To emulate this approach, Rrr-rf-info

was modified to track the best rule for each leaf (as determined by information

gain) until the maximum number of rules (MRC) have been seen at that leaf

and then split the leaf using that rule. This modified algorithm is shown in

Algorithm 24.

Algorithm 24 Pseudocode for the Rrr-rf algorithm, selecting rule by infor-
mation gain (Rrr-rf-track)

Initialise the forest
while Number of open leaves > 0 do

Generate a Rule
for all Open Leaves do

for all possible prefixes do
Calculate information gain for the prefix

end for
if the prefix with highest information gain (phighest) splits the leaf then

if phighest has greater information gain than the stored prefix (pstored)
then

Set pstored to phighest

end if
end if
increment Rule Count
if Rule Count = Maximum Fail Count then

if pstored exists then
Split the leaf using pstored and create children

else
Close the leaf

end if
end if

end for
end while

As Rrr-rf-track requires each leaf to have seen a set number of rules

before a splitting decision is made, it should generate substantially more rules

than Rrr-rf-info (which uses the first splitting rule it sees) for equal values

of MFC and MRC. Experimental results for Rrr-rf-track using 500 trees

and MRC 25 are compared to those for Rrr-rf-info using 500 trees and MFC

25 in Figures 6.27 through 6.30.

These results show that Rrr-rf-track gives improved accuracy over Rrr-

rf-info, given equal MRC and MFC parameters. Rrr-rf-track also generally
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Figure 6.27: Accuracy - Rrr-rf-info and Rrr-rf-track

Figure 6.28: AUC - Rrr-rf-info and Rrr-rf-track
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Figure 6.29: Number of rules generated - Rrr-rf-info and Rrr-rf-track

Figure 6.30: Tree size - Rrr-rf-info and Rrr-rf-track
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Figure 6.31: Accuracy for Rrr-rf-track, compared to previous Rrr-rf
results

improves AUC over Rrr-rf-info. As predicted, the number of rules required

to build the trees increases substantially when Rrr-rf-track is used. However,

the trees generated by Rrr-rf-track using those settings are smaller (contain

less nodes) than those generated by Rrr-rf-info, as pure leaves are found

earlier in the tree generation process by the ‘better’ choices being made with

regard to splitting rules.

Rrr-rf-track was run ten times using ten-fold cross-validation, using 500

trees, with the MRC set to 50, using Bagging and Unique methods to initialise

the roots, and the mean of the resulting accuracies taken. On six of the seven

datasets (Carcinogenesis being the exception), one of the two Rrr-rf-track

systems gives accuracy higher than the previous versions of Rrr-rf, as shown

in Figure 6.31 and Table 6.10.

6.7.1 Forf Comparison

Rrr-rf-track was also run ten times on MutagenesisAll using out-of-bag eval-

uation (500 trees, 50 MRC). The mean of the resulting accuracies was taken

and the results are compared to Forf and the best previous Rrr-rf result in

Table 6.11. Rrr-rf-track shows an improvement in accuracy over Rrr-rf,

but its results are still not significantly different from those obtained by Forf
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Table 6.10: Best results for Rrr-rf, including tracking

Dataset Root Leaf Accuracy (%)
Carcinogenesis bagging norm 61.24
Diterpenes(52,3) unique track 97.49
Diterpenes(52,54) unique track 96.59
Diterpenes(54,3) unique track 98.46
Musk1 unique track 86.51
Mutagenesis(All) bagging track 79.17
Mutagenesis(RF) bagging track 85.99

Table 6.11: Comparison of Rrr-rf, Rrr-rf-track and Forf (out-of-bag
evaluation)

Algorithm Accuracy Compared to Rrr-rf-track Significance
Rrr-rf 77.7± 1.3 worse 95%
Rrr-rf-track 79.1± 1.1 - -
Forf-NA 74.7± 1.4 worse 95%
Forf-SA 78.9± 1.8 equal < 90%
Forf-RA 78.1± 1.2 equal < 90%
Forf-LA 79.0± 1.4 equal < 90%

using aggregates (again using the approximated corrected t-test, as in Section

6.3).

For further comparison with Forf, Rrr-rf-track was also tested on the

Financial dataset [4], using ten five-fold cross-validation runs and both Bagged

and Unique root nodes. The Financial dataset is composed of 234 bank loans –

203 good and 31 bad. This class distribution is somewhat skewed, such that the

accuracy obtained by always predicting the majority class is 86.75%. The non-

tracking variants of Rrr-rf were also tested, but resulted in accuracy roughly

Table 6.12: Accuracy for Rrr-rf-track on the Financial dataset

Number of
Trees

Root
Method

MRC
5 10 25 100 200

100 Unique 86.41 86.80 86.15 86.54 87.70
200 Unique 86.71 85.77 86.71 86.20 86.63
500 Unique 87.01 86.71 87.14 87.31 87.09
100 Bagging 86.67 87.31 87.70 86.93 87.14
200 Bagging 87.09 87.22 87.52 87.31 87.57
500 Bagging 86.54 87.27 87.52 87.52 87.82
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Table 6.13: AUC for Rrr-rf-track on the Financial dataset

Number of
Trees

Root
Method

MFC
5 10 25 100 200

100 Unique 0.7448 0.7441 0.7568 0.7905 0.8202
200 Unique 0.7587 0.7622 0.7822 0.7913 0.8056
500 Unique 0.7562 0.7801 0.7984 0.8114 0.8241
100 Bagging 0.7417 0.7584 0.7756 0.7894 0.7980
200 Bagging 0.7413 0.7595 0.7932 0.8149 0.8279
500 Bagging 0.7454 0.7723 0.7822 0.7992 0.8115

Figure 6.32: Accuracy for Rrr-rf-track on the Financial dataset
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Figure 6.33: AUC for Rrr-rf-track on the Financial dataset

equal to that obtained by predicting the majority class and comparatively low

AUC values. Rrr-rf-track, on the other hand, showed a small improvement

in accuracy over predicting the majority class when using Bagged root nodes.

The AUCs obtained improve consistently as the MRC is increased. The results

are given in Tables 6.12-6.13 and shown in Figures 6.32-6.33, and for high

MRCs compare favourably with the results given for Forf in [2], which peak

at around 0.875 for accuracy and reach a plateau marginally under 0.8 for

AUC.

6.8 Summary

The Rrr-rf algorithm was produced by applying randomly generated rules to

the random forests framework. Staggered root initialisation allows Rrr-rf to

produce trees in parallel, and the experimental results obtained are competitive

with those achieved by other Relational Random Forest algorithms. The mod-

ifications to the root initialisation and prefix selection procedures to increase

diversity in the trees also tend to improve the accuracy of the ensemble.

Selecting the best split from a given number of randomly generated rules

also produces an increase in accuracy over the standard Rrr-rf, and smaller

trees, but at the cost of generating a larger number of rules.



Chapter 7

Conclusions

This chapter summarises the thesis and suggests avenues for future work. Sec-

tion 7.1 summarises the contents of the previous chapters, Section 7.2 discusses

the main contributions of the thesis and Section 7.3 describes potential areas

for future investigation.

7.1 Summary

In Chapter 2 the Rrr algorithm for generating random relational rules was

introduced. Ensembles of these rules were used for classification, and the

experimental results of Rrr-sd were shown to be competitive with the Foil

algorithm.

In Chapter 3 Rrr-p was introduced, which made use of the rules gener-

ated by Rrr for propositionalisation. Applying standard machine learning

algorithms to the propositionalised datasets improved on the results achieved

by Rrr-sd and produced results competitive with those previously published.

In Chapter 4 Rrr-c was described – an algorithm that applied proposi-

tionalisation (via the Rrr-p system) to the domain of relational clustering.

Experimental results showed Rrr-c to be competitive with the other algo-

rithms tested.

Chapter 5 discussed the results of applying Rrr-p to the domain of semi-

supervised relational learning. Two semi-supervised methods, making use of

unlabeled data, were experimentally compared to corresponding supervised

learning methods, and it was found that as the proportion of labeled data was

decreased, one of the semi-supervised methods showed results that generally

improved on those produced by its supervised counterpart.

149
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In Chapter 6 Rrr-rf, an algorithm for generating relational random forests,

was introduced. Rrr-rf makes efficient use of rules by generating trees and

leaves in parallel. Several methods for root initialisation and rule utilisation

were experimentally tested. The best results were achieved by variants that

utilised semi-random selection of splitting rules.

7.2 Contributions

The following contributions assist the field of relational data mining in the

extraction of information from relational data while taking steps to alleviate

the inherent complexity in mining that data.

• This thesis presents the Rrr algorithm for generating random relational

rules. This algorithm is scalable, as it generates a user-controlled num-

ber of rules and runs in linear time with regard to the number of rules

generated. Rrr also contains a number of optimisations to improve the

efficiency of its rule evaluation, including the utilisation of rule prefixes

and division of rules into subrules.

• This thesis has shown that random rules fulfilling enrichment and uni-

formity constraints provide an effective method for propositionalising

relational data for classification. Once data has been propositionalised,

sophisticated propositional learning methods can be applied to the data.

Empirical results provide evidence that this process is competitive with

other relational learning algorithms. A single propositionalisation can

have multiple flat-file learning algorithms applied to it, reducing the

amount of relational processing required.

• This thesis has shown that the propositionalised data can be used with

learning techniques beyond simple classification.

– This thesis has investigated the application of random relational

rules to clustering. Empirical results show that clustering using

Rrr-c is competitive with the two other approaches that are com-

pared.

– This thesis has investigated the application of random relational

rules to semi-supervised learning. Empirical results demonstrate

that one of the semi-supervised learning methods investigated shows
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improvements over the corresponding supervised method when the

proportion of unlabeled data is increased. It should be noted that

a high proportion of unlabeled data is the most common setting for

semi-supervised learning.

• This thesis has shown that random relational rules can be used to gen-

erate random forests. The Rrr-rf algorithm tests each generated rule

at every open leaf, allowing trees to be generated in parallel. Forest

generation is shown to be time-efficient compared to another relational

random forest algorithm (Forf), and experimental results demonstrate

that the results achieved are competitive with both Forf and previous

applications of Rrr described in the thesis.

7.3 Future Work

Chapter 2 described the production of random relational rules and the use of

these rules in classification. While subsequent chapters discussed further uses

of the rules, refinements to the rule generation process itself could be made.

Alternative constraints to the enrichment and uniformity requirements could

be explored. Rules could be weighted based on their coverage on the training

data, allowing the generated rulesets to be pre-processed before being used for

classification – for example, using only a specified number of the ‘best’ rules,

according to their weighting.

When test literals are generated, the variable to test is selected with equal

probability from the possible variables. This probability could be weighted to

take into account the number of possible values each variable could take on, so

that the random selection would be, in effect, selecting with equal probability

from the possible variable-comparator pairs.

Unlike other relational learning algorithms that strive to induce a best

possible set of rules, not all of the random rules generated by Rrr need to be

fully evaluated. If the evaluation time for a particular rule were to exceed a pre-

specified time limit, the evaluation could be aborted and that rule discarded.

Preliminary experiments measuring single rule evaluation times showed that

most rules are evaluated very quickly, but occasional single rules would take

particularly large amounts of time. Future work could explore this efficiency

versus potential loss of information trade-off in more detail.

Further efficiency gains in rule evaluation might be made by applying query
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optimisation to the generated rules before evaluation. Such techniques have

been previously applied from both the ILP [72] and database [67] perspectives.

To optimise the rules for evaluation, the literals that make up a rule would

be reordered in an attempt to minimise the total number of literal evaluations

that would need to be performed. The optimisation process utilises estimates

of the branching caused by each literal, although smallest-first is not always

the optimal solution.

However, this could affect the use of rule prefixes – for example, this might

cause rules to be ordered such that particular (efficient) predicates always

appear first. It is possible that each prefix of the rule could be separately

optimised and evaluated, although this would obviously be more costly in terms

of evaluation time. Whether the gain in performance due to optimisation would

outweigh the drop due to evaluating multiple prefixes is unclear, but could be

investigated.

In Chapter 3 two propositional algorithms were applied to the proposition-

alised datasets. However, any propositional classification algorithm could be

applied to the propositional data.

If algorithms that report attribute weightings were used, the resulting

weights could be analysed to determine the best rules that were produced, and

those rules could then be translated into a more human-comprehensible form

– comprehensibility of ensemble models has been previously been reported to

be desirable [68, 2]. The automated translation of first-order logic into natural

language is discussed in [52].

The relational clustering algorithm introduced in Chapter 4 could be com-

pared to more standard clustering approaches. Kernels for relational data [4]

could be used together with clustering algorithms like KernelKMeans [2].

The rule generation process could be replaced by either a relational association

rule finder like Warmr [69], or class-blind variants of relational rule learners

such as Foil [62] or Progol [54]. The suitability of this approach for dif-

ferent types of data could also be investigated – the datasets used in these

experiments were composed of distinct examples with no linkage between sin-

gle examples. There are applications where links between examples can carry

essential information [35], and the effectiveness of Rrr-c could be evaluated

for such data.

Chapter 5 discussed a propositionalisation approach to semi-supervised

learning. After propositionalisation, any standard semi-supervised learning al-

gorithm could be applied to the resulting propositional problem – the method
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described in this paper is orthogonal to such methods as Llgc [85, 59].

If standard semi-supervised learning algorithms, which usually rely on some

notion of distance or similarity, were to be applied directly to the relational

representation instead of the propositionalisation approach put forward in this

paper, then relational notions of distance and similarity [83, 32] would need to

be exploited.

The Rrr-rf algorithm for random forest generation, described in Chapter

6, applies each rule it generates to all open leaves in the forest, which, while

efficient, limits the diversity of the forest, and may have an effect on accu-

racy. The consequences of this could be investigated by comparing two other

algorithms for forest generation. The first would generate trees sequentially,

restricting generated rules to only be applied to open leaves in a particular

tree, while the second would generate leaves sequentially, restricting generated

rules to only be applied to a single leaf.

Additionally, aggregation – a propositionalisation technique derived from

the field of databases – has been shown to work well in combination with a

relational random forest algorithm [3]. It is possible that the Rrr-rf algorithm

could benefit from the introduction of aggregates into rule generation – in fact,

the result of integrating aggregates into the Rrr generation algorithm itself

could be investigated. This would enable Rrr to utilise metadata (summary

statistics such as minimum, maximum, mean and quantiles) derived from each

instance in rules, and also to produce non-Boolean propositional attributes, as

Relaggs [43] does.

More broadly, this thesis has demonstrated the viability, both in terms of

efficiency and accuracy, of randomised search in relational space, and future

work could investigate alternative methods for randomised relational search.
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A.1 Parameter Effects on Propositionalisation

Figure A.1: Accuracy for Rrr-p on Carcinogenesis, using Smo

Figure A.2: Accuracy for Rrr-p on Carcinogenesis, using Logistic
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Figure A.3: Accuracy for Rrr-p on Diterpenes52,3, using Smo

Figure A.4: Accuracy for Rrr-p on Diterpenes52,3, using Logistic
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Figure A.5: Accuracy for Rrr-p on Diterpenes52,54, using Smo

Figure A.6: Accuracy for Rrr-p on Diterpenes52,54, using Logistic
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Figure A.7: Accuracy for Rrr-p on Diterpenes54,3, using Smo

Figure A.8: Accuracy for Rrr-p on Diterpenes54,3, using Logistic
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Figure A.9: Accuracy for Rrr-p on Musk1, using Smo

Figure A.10: Accuracy for Rrr-p on Musk1, using Logistic



162 APPENDIX A. OTHER RESULTS

Figure A.11: Accuracy for Rrr-p on MutagenesisAll, using Smo

Figure A.12: Accuracy for Rrr-p on MutagenesisAll, using Logistic
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Figure A.13: Accuracy for Rrr-p on MutagenesisRF , using Smo

Figure A.14: Accuracy for Rrr-p on MutagenesisRF , using Logistic
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A.2 Clustering Figures

Figure A.15: Penalised error rates on Carcinogenesis

Figure A.16: Average silhouette widths for Carcinogenesis
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Figure A.17: Penalised error rates on Diterpenes52,3

Figure A.18: Average silhouette widths for Diterpenes52,3
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Figure A.19: Penalised error rates on Diterpenes52,54

Figure A.20: Average silhouette widths for Diterpenes52,54



168 APPENDIX A. OTHER RESULTS

Figure A.21: Penalised error rates on Diterpenes54,3

Figure A.22: Average silhouette widths for Diterpenes54,3
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Figure A.23: Penalised error rates on DiterpenesAll

Figure A.24: Average silhouette widths for DiterpenesAll
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Figure A.25: Penalised error rates on Musk1

Figure A.26: Average silhouette widths for Musk1
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Figure A.27: Penalised error rates on MutagenesisAll

Figure A.28: Average silhouette widths for MutagenesisAll
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Figure A.29: Penalised error rates on MutagenesisRF

Figure A.30: Average silhouette widths for MutagenesisRF



A.3. DETAILED RRR-RF RESULTS 173

A.3 Detailed Rrr-rf Results

Table A.1: Carcinogenesis, Standard root, Normal leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.556 ± 0.109 0.554 ± 0.085 37.2±8.0 81.3±32.0
10 10 0.563 ± 0.089 0.555 ± 0.070 70.7±13.4 167.1±38.5
10 25 0.571 ± 0.099 0.568 ± 0.084 129.3±22.0 286.3±31.8
10 100 0.567 ± 0.087 0.557 ± 0.080 334.3±63.4 384.1±17.2
10 200 0.555 ± 0.083 0.549 ± 0.081 564.3±102.1 406.4±13.6
25 5 0.568 ± 0.099 0.553 ± 0.085 53.8±8.5 82.1±27.9
25 10 0.566 ± 0.106 0.562 ± 0.092 80.7±12.7 160.9±37.5
25 25 0.587 ± 0.093 0.579 ± 0.076 149.2±22.2 282.0±31.0
25 100 0.582 ± 0.086 0.568 ± 0.080 353.3±59.9 379.7±18.1
25 200 0.571 ± 0.099 0.565 ± 0.089 568.9±98.5 405.2±15.0

100 5 0.591 ± 0.090 0.576 ± 0.069 129.4±9.5 79.1±13.3
100 10 0.602 ± 0.095 0.590 ± 0.077 159.9±14.8 157.6±24.5
100 25 0.589 ± 0.094 0.579 ± 0.085 220.9±22.5 280.8±21.5
100 100 0.588 ± 0.084 0.561 ± 0.071 426.2±57.2 382.9±12.2
100 200 0.592 ± 0.094 0.571 ± 0.082 646.5±106.9 405.1±12.1
200 5 0.595 ± 0.083 0.581 ± 0.069 230.6±7.6 80.8±11.0
200 10 0.607 ± 0.085 0.588 ± 0.076 259.7±12.7 159.6±17.5
200 25 0.614 ± 0.079 0.589 ± 0.073 323.9±23.7 280.0±19.0
200 100 0.592 ± 0.085 0.566 ± 0.077 528.4±70.2 384.0±12.5
200 200 0.594 ± 0.084 0.571 ± 0.069 733.1±97.9 406.6±9.8
500 5 0.611 ± 0.085 0.587 ± 0.071 528.2±8.5 80.7±6.2
500 10 0.618 ± 0.079 0.602 ± 0.070 554.5±12.3 159.8±11.2
500 25 0.622 ± 0.082 0.595 ± 0.079 621.1±22.8 277.6±13.4
500 100 0.624 ± 0.083 0.598 ± 0.075 822.7±59.5 381.6±8.7
500 200 0.612 ± 0.081 0.580 ± 0.075 1032.1±87.9 405.6±6.6

Table A.2: Diterpenes52.3, Standard root, Normal leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.852 ± 0.066 0.776 ± 0.072 49.9±11.9 138.7±42.4
10 10 0.902 ± 0.046 0.842 ± 0.058 83.5±11.4 297.8±63.5
10 25 0.903 ± 0.049 0.876 ± 0.048 129.8±25.5 458.2±57.7
10 100 0.902 ± 0.043 0.880 ± 0.046 182.0±50.2 509.7±76.0
10 200 0.914 ± 0.036 0.888 ± 0.039 176.5±51.4 505.6±64.5
25 5 0.888 ± 0.046 0.816 ± 0.053 62.9±9.8 153.1±47.2
25 10 0.923 ± 0.041 0.857 ± 0.049 99.8±15.1 301.6±65.4
25 25 0.925 ± 0.037 0.877 ± 0.042 150.6±27.4 463.4±60.4
25 100 0.938 ± 0.037 0.893 ± 0.042 191.2±46.4 516.2±58.8
25 200 0.925 ± 0.036 0.884 ± 0.039 199.0±48.1 516.2±65.0

100 5 0.951 ± 0.029 0.883 ± 0.044 139.9±11.6 142.1±27.1
100 10 0.967 ± 0.022 0.908 ± 0.039 172.7±15.4 303.6±36.9
100 25 0.971 ± 0.018 0.918 ± 0.035 223.6±21.9 465.1±43.6
100 100 0.972 ± 0.018 0.916 ± 0.032 266.7±36.8 511.8±48.1
100 200 0.970 ± 0.021 0.915 ± 0.035 271.2±48.8 517.7±45.6
200 5 0.973 ± 0.017 0.918 ± 0.035 240.0±10.3 148.7±22.6
200 10 0.981 ± 0.015 0.938 ± 0.031 274.2±13.6 301.3±29.0
200 25 0.985 ± 0.012 0.942 ± 0.028 322.1±23.9 462.1±30.7
200 100 0.985 ± 0.012 0.939 ± 0.027 373.1±45.0 511.2±36.0
200 200 0.986 ± 0.012 0.943 ± 0.024 368.8±46.0 512.5±38.5
500 5 0.981 ± 0.015 0.941 ± 0.029 539.3±10.2 144.1±11.9
500 10 0.990 ± 0.009 0.954 ± 0.024 570.1±13.8 295.3±19.6
500 25 0.993 ± 0.008 0.965 ± 0.020 623.8±26.9 460.0±20.4
500 100 0.993 ± 0.007 0.962 ± 0.023 668.4±45.5 511.2±22.7
500 200 0.994 ± 0.005 0.962 ± 0.020 676.7±49.0 511.3±28.3
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Table A.3: Diterpenes52.54, Standard root, Normal leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.786 ± 0.083 0.722 ± 0.079 51.1±12.0 150.7±49.6
10 10 0.836 ± 0.055 0.769 ± 0.058 91.6±17.1 338.9±77.2
10 25 0.866 ± 0.045 0.825 ± 0.051 149.1±25.7 549.6±67.0
10 100 0.856 ± 0.049 0.830 ± 0.050 206.6±46.0 645.3±77.2
10 200 0.860 ± 0.044 0.833 ± 0.045 223.8±57.3 641.9±81.6
25 5 0.834 ± 0.065 0.758 ± 0.069 67.2±11.7 156.7±49.3
25 10 0.861 ± 0.061 0.793 ± 0.064 107.3±16.4 333.8±66.0
25 25 0.888 ± 0.044 0.831 ± 0.049 160.9±25.1 559.3±57.7
25 100 0.883 ± 0.049 0.837 ± 0.053 235.3±44.2 653.9±64.2
25 200 0.889 ± 0.045 0.846 ± 0.044 231.3±59.3 635.6±70.3

100 5 0.906 ± 0.050 0.824 ± 0.056 142.4±10.7 155.3±32.5
100 10 0.923 ± 0.035 0.850 ± 0.046 180.3±15.4 329.7±44.7
100 25 0.937 ± 0.036 0.866 ± 0.048 240.9±23.9 554.1±45.5
100 100 0.936 ± 0.031 0.868 ± 0.038 299.8±50.4 641.1±53.5
100 200 0.943 ± 0.032 0.878 ± 0.047 304.1±51.0 636.6±52.6
200 5 0.931 ± 0.037 0.850 ± 0.055 243.6±13.0 152.7±22.3
200 10 0.959 ± 0.022 0.892 ± 0.040 279.3±14.7 334.2±30.4
200 25 0.960 ± 0.023 0.895 ± 0.040 340.0±26.1 548.6±31.2
200 100 0.965 ± 0.019 0.902 ± 0.037 405.8±42.5 638.9±43.2
200 200 0.962 ± 0.019 0.897 ± 0.034 410.9±59.4 644.8±38.5
500 5 0.960 ± 0.023 0.891 ± 0.042 542.1±11.4 152.3±13.5
500 10 0.976 ± 0.016 0.921 ± 0.032 581.6±15.3 332.5±19.0
500 25 0.982 ± 0.012 0.934 ± 0.029 635.3±25.4 555.3±20.8
500 100 0.982 ± 0.013 0.933 ± 0.028 696.0±39.6 640.1±25.6
500 200 0.982 ± 0.013 0.935 ± 0.028 709.1±50.9 641.1±28.5

Table A.4: Diterpenes54.3, Standard root, Normal leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.881 ± 0.062 0.810 ± 0.072 49.6±10.7 127.8±39.5
10 10 0.910 ± 0.052 0.858 ± 0.063 80.5±16.7 255.5±59.2
10 25 0.935 ± 0.043 0.898 ± 0.045 131.4±24.6 382.6±61.4
10 100 0.923 ± 0.040 0.900 ± 0.046 171.7±45.2 410.1±69.0
10 200 0.922 ± 0.047 0.900 ± 0.046 166.9±40.7 413.2±75.8
25 5 0.917 ± 0.051 0.852 ± 0.065 65.6±12.1 125.1±36.8
25 10 0.933 ± 0.043 0.867 ± 0.059 98.0±15.4 254.0±53.1
25 25 0.943 ± 0.039 0.898 ± 0.050 147.6±26.0 387.9±51.5
25 100 0.944 ± 0.037 0.902 ± 0.049 183.8±41.0 412.0±68.4
25 200 0.942 ± 0.034 0.901 ± 0.044 191.2±48.6 416.8±64.1

100 5 0.965 ± 0.028 0.910 ± 0.045 141.9±12.2 127.0±24.0
100 10 0.978 ± 0.017 0.931 ± 0.034 170.9±16.4 251.9±30.7
100 25 0.979 ± 0.020 0.933 ± 0.035 220.0±24.3 376.6±37.0
100 100 0.981 ± 0.018 0.940 ± 0.031 257.2±44.2 410.9±49.2
100 200 0.979 ± 0.016 0.938 ± 0.030 271.7±49.8 414.2±46.5
200 5 0.981 ± 0.018 0.940 ± 0.029 238.1±10.7 127.5±16.9
200 10 0.988 ± 0.011 0.954 ± 0.026 271.1±16.2 246.4±24.3
200 25 0.991 ± 0.010 0.956 ± 0.029 318.1±27.0 386.8±35.2
200 100 0.990 ± 0.012 0.958 ± 0.027 357.6±44.4 416.5±38.8
200 200 0.990 ± 0.012 0.953 ± 0.026 366.1±51.2 422.6±35.5
500 5 0.990 ± 0.011 0.961 ± 0.025 539.6±9.4 128.8±10.5
500 10 0.993 ± 0.009 0.969 ± 0.022 575.5±18.8 252.6±14.7
500 25 0.996 ± 0.006 0.974 ± 0.018 614.3±22.2 380.8±21.8
500 100 0.996 ± 0.006 0.974 ± 0.019 660.6±44.5 416.9±23.3
500 200 0.996 ± 0.006 0.976 ± 0.018 669.4±45.4 413.1±22.8
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Table A.5: Musk1, Standard root, Normal leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.716 ± 0.162 0.650 ± 0.148 34.3±5.2 82.6±10.7
10 10 0.727 ± 0.189 0.666 ± 0.165 42.8±6.2 101.2±8.8
10 25 0.705 ± 0.172 0.655 ± 0.168 52.8±10.5 106.6±8.6
10 100 0.738 ± 0.178 0.677 ± 0.151 55.0±14.3 109.3±8.8
10 200 0.748 ± 0.170 0.693 ± 0.168 54.1±15.1 108.2±9.6
25 5 0.748 ± 0.160 0.680 ± 0.146 49.5±4.5 84.2±7.9
25 10 0.753 ± 0.170 0.673 ± 0.166 56.8±6.0 101.9±6.8
25 25 0.733 ± 0.169 0.661 ± 0.158 66.5±11.0 107.7±8.3
25 100 0.769 ± 0.159 0.705 ± 0.144 69.4±14.6 109.4±7.2
25 200 0.757 ± 0.169 0.702 ± 0.163 69.5±14.8 109.1±7.4

100 5 0.843 ± 0.135 0.765 ± 0.135 123.5±4.9 84.2±4.6
100 10 0.859 ± 0.119 0.780 ± 0.117 131.5±6.0 101.9±3.8
100 25 0.846 ± 0.133 0.754 ± 0.134 140.0±8.4 108.2±4.3
100 100 0.844 ± 0.122 0.772 ± 0.128 144.7±12.5 109.9±4.3
100 200 0.841 ± 0.142 0.761 ± 0.134 143.4±12.5 109.0±4.2
200 5 0.889 ± 0.114 0.787 ± 0.132 224.3±4.8 84.6±3.4
200 10 0.874 ± 0.115 0.796 ± 0.128 231.5±6.3 101.6±2.8
200 25 0.872 ± 0.120 0.782 ± 0.119 240.0±9.9 108.6±3.2
200 100 0.882 ± 0.121 0.796 ± 0.132 243.7±14.8 109.7±3.1
200 200 0.871 ± 0.106 0.788 ± 0.113 244.2±12.9 109.1±2.8
500 5 0.911 ± 0.094 0.810 ± 0.112 524.4±4.7 84.6±2.2
500 10 0.926 ± 0.076 0.834 ± 0.106 532.8±6.9 101.8±2.1
500 25 0.908 ± 0.088 0.808 ± 0.116 540.0±9.1 108.3±2.3
500 100 0.920 ± 0.096 0.819 ± 0.112 546.8±15.9 109.5±2.3
500 200 0.915 ± 0.082 0.823 ± 0.108 543.6±14.1 109.4±2.3

Table A.6: MutagenesisAll, Standard root, Normal leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.713 ± 0.119 0.683 ± 0.086 39.7±8.2 52.8±16.0
10 10 0.740 ± 0.102 0.716 ± 0.088 65.1±13.2 92.3±20.9
10 25 0.761 ± 0.105 0.734 ± 0.093 125.8±27.4 148.8±19.4
10 100 0.740 ± 0.102 0.725 ± 0.090 304.7±58.5 199.5±14.8
10 200 0.750 ± 0.109 0.728 ± 0.097 488.5±83.6 209.6±13.2
25 5 0.747 ± 0.105 0.710 ± 0.085 54.8±8.4 54.4±16.1
25 10 0.768 ± 0.097 0.737 ± 0.091 80.6±13.0 90.4±16.9
25 25 0.759 ± 0.108 0.738 ± 0.088 137.4±23.4 144.9±17.1
25 100 0.760 ± 0.093 0.730 ± 0.077 311.7±51.5 200.7±13.2
25 200 0.767 ± 0.096 0.731 ± 0.092 500.4±88.8 211.1±11.5

100 5 0.791 ± 0.102 0.738 ± 0.092 129.6±7.8 52.5±7.3
100 10 0.791 ± 0.102 0.749 ± 0.095 154.1±13.0 92.3±11.4
100 25 0.790 ± 0.105 0.759 ± 0.094 213.1±24.2 146.6±15.7
100 100 0.788 ± 0.101 0.747 ± 0.102 411.4±60.1 199.1±10.4
100 200 0.783 ± 0.082 0.738 ± 0.077 570.3±87.3 208.8±8.5
200 5 0.801 ± 0.090 0.748 ± 0.088 227.6±8.3 52.6±5.2
200 10 0.814 ± 0.092 0.769 ± 0.083 256.3±12.4 90.3±9.2
200 25 0.807 ± 0.097 0.770 ± 0.090 312.1±20.9 145.0±10.9
200 100 0.802 ± 0.094 0.750 ± 0.089 490.0±56.9 200.4±9.4
200 200 0.798 ± 0.094 0.757 ± 0.090 688.8±91.8 209.5±8.1
500 5 0.811 ± 0.090 0.760 ± 0.079 529.1±9.0 52.8±3.4
500 10 0.818 ± 0.092 0.768 ± 0.085 555.5±13.4 90.5±6.4
500 25 0.823 ± 0.093 0.772 ± 0.084 614.9±23.3 147.6±8.3
500 100 0.812 ± 0.091 0.757 ± 0.084 796.0±52.8 200.5±6.7
500 200 0.813 ± 0.091 0.763 ± 0.086 970.1±88.4 210.0±6.3
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Table A.7: MutagenesisRF , Standard root, Normal leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.762 ± 0.135 0.743 ± 0.096 38.0±8.3 46.7±14.5
10 10 0.795 ± 0.123 0.784 ± 0.091 61.8±13.4 79.7±17.0
10 25 0.807 ± 0.118 0.786 ± 0.102 113.3±20.5 121.7±13.8
10 100 0.803 ± 0.106 0.783 ± 0.099 273.1±47.5 152.5±11.4
10 200 0.803 ± 0.103 0.783 ± 0.093 439.3±90.5 159.1±11.9
25 5 0.790 ± 0.114 0.754 ± 0.085 53.2±7.8 48.6±11.1
25 10 0.823 ± 0.098 0.781 ± 0.081 78.9±13.3 80.0±13.4
25 25 0.828 ± 0.103 0.794 ± 0.093 129.7±23.0 118.5±15.1
25 100 0.817 ± 0.099 0.790 ± 0.085 287.6±49.6 151.6±10.7
25 200 0.828 ± 0.096 0.788 ± 0.081 426.3±86.3 156.9±8.8

100 5 0.845 ± 0.103 0.782 ± 0.088 126.8±7.3 48.5±6.2
100 10 0.870 ± 0.086 0.814 ± 0.085 152.0±12.9 79.3±9.5
100 25 0.876 ± 0.092 0.822 ± 0.092 204.9±25.7 118.8±11.1
100 100 0.859 ± 0.088 0.808 ± 0.078 359.2±54.3 152.4±8.6
100 200 0.863 ± 0.087 0.807 ± 0.085 510.2±85.0 156.2±8.3
200 5 0.866 ± 0.094 0.802 ± 0.092 227.8±7.3 49.0±4.9
200 10 0.874 ± 0.080 0.820 ± 0.077 251.0±12.5 79.9±8.0
200 25 0.887 ± 0.087 0.822 ± 0.093 306.0±23.1 120.0±7.2
200 100 0.879 ± 0.079 0.811 ± 0.084 464.8±56.4 151.3±7.2
200 200 0.869 ± 0.078 0.810 ± 0.074 606.6±74.7 156.7±6.7
500 5 0.869 ± 0.085 0.812 ± 0.085 527.0±7.7 49.0±3.2
500 10 0.889 ± 0.079 0.827 ± 0.077 553.3±13.1 80.1±5.2
500 25 0.893 ± 0.076 0.824 ± 0.082 608.4±25.9 120.4±6.0
500 100 0.892 ± 0.075 0.834 ± 0.079 760.7±51.5 152.3±4.8
500 200 0.883 ± 0.080 0.825 ± 0.082 907.9±70.8 156.9±5.0

Table A.8: Carcinogenesis, Standard root, Random leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.570 ± 0.095 0.555 ± 0.069 40.4±9.2 87.8±30.9
10 10 0.573 ± 0.098 0.561 ± 0.089 68.0±12.0 169.6±36.5
10 25 0.568 ± 0.097 0.565 ± 0.085 133.2±23.3 291.8±31.2
10 100 0.580 ± 0.099 0.568 ± 0.092 332.9±58.4 388.5±17.3
10 200 0.576 ± 0.089 0.565 ± 0.084 547.0±111.6 408.0±14.8
25 5 0.552 ± 0.096 0.556 ± 0.080 55.1±8.4 87.1±27.0
25 10 0.587 ± 0.100 0.581 ± 0.086 83.7±14.1 169.1±36.2
25 25 0.593 ± 0.092 0.588 ± 0.080 147.2±20.7 294.8±27.3
25 100 0.587 ± 0.098 0.569 ± 0.082 333.0±58.8 387.1±15.5
25 200 0.569 ± 0.084 0.553 ± 0.081 532.6±87.6 410.8±13.2

100 5 0.589 ± 0.100 0.571 ± 0.074 128.9±8.6 85.7±15.3
100 10 0.605 ± 0.099 0.581 ± 0.077 161.3±13.0 171.0±22.8
100 25 0.595 ± 0.096 0.580 ± 0.079 222.3±19.3 291.7±22.6
100 100 0.595 ± 0.088 0.563 ± 0.078 403.8±50.6 389.1±13.3
100 200 0.584 ± 0.091 0.559 ± 0.083 642.2±85.7 409.3±11.2
200 5 0.599 ± 0.089 0.574 ± 0.083 228.9±8.3 88.5±11.9
200 10 0.608 ± 0.091 0.588 ± 0.069 258.9±15.0 170.7±17.0
200 25 0.614 ± 0.096 0.591 ± 0.077 322.6±20.3 290.6±16.8
200 100 0.599 ± 0.086 0.571 ± 0.074 515.5±56.5 389.0±12.1
200 200 0.596 ± 0.087 0.574 ± 0.079 721.3±82.7 407.5±8.7
500 5 0.609 ± 0.089 0.587 ± 0.077 530.8±9.5 87.4±6.1
500 10 0.624 ± 0.086 0.599 ± 0.080 558.2±14.9 170.4±12.1
500 25 0.626 ± 0.077 0.603 ± 0.075 622.6±24.1 289.5±13.9
500 100 0.618 ± 0.079 0.586 ± 0.074 821.2±53.0 390.0±7.4
500 200 0.595 ± 0.096 0.568 ± 0.082 1029.0±109.2 409.6±6.9
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Table A.9: Diterpenes52.3, Standard root, Random leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.879 ± 0.055 0.803 ± 0.060 52.0±10.5 160.5±46.6
10 10 0.917 ± 0.044 0.863 ± 0.051 84.2±15.0 319.3±70.1
10 25 0.913 ± 0.043 0.876 ± 0.045 124.6±22.6 467.7±54.4
10 100 0.915 ± 0.034 0.883 ± 0.040 153.5±41.0 491.6±61.9
10 200 0.921 ± 0.036 0.892 ± 0.039 160.8±40.3 500.7±65.6
25 5 0.914 ± 0.042 0.841 ± 0.055 66.0±11.0 166.2±44.9
25 10 0.937 ± 0.034 0.873 ± 0.042 99.5±14.7 320.6±62.7
25 25 0.940 ± 0.036 0.890 ± 0.039 142.3±22.0 460.9±55.1
25 100 0.941 ± 0.031 0.890 ± 0.041 171.7±35.8 502.7±68.1
25 200 0.941 ± 0.032 0.889 ± 0.044 177.0±39.1 499.0±60.0

100 5 0.959 ± 0.024 0.899 ± 0.042 142.8±11.1 161.4±22.6
100 10 0.976 ± 0.017 0.924 ± 0.032 174.2±16.3 319.8±37.1
100 25 0.977 ± 0.017 0.923 ± 0.033 213.8±20.5 463.2±44.1
100 100 0.977 ± 0.016 0.926 ± 0.029 250.0±34.9 499.3±40.2
100 200 0.977 ± 0.017 0.927 ± 0.031 252.5±44.7 506.2±45.0
200 5 0.976 ± 0.017 0.925 ± 0.031 242.3±10.7 162.2±20.9
200 10 0.987 ± 0.011 0.948 ± 0.025 274.4±14.9 319.8±26.6
200 25 0.988 ± 0.011 0.945 ± 0.027 314.6±22.2 465.2±30.4
200 100 0.987 ± 0.009 0.946 ± 0.025 348.6±37.3 499.0±34.2
200 200 0.989 ± 0.010 0.951 ± 0.027 349.4±41.4 502.3±36.6
500 5 0.985 ± 0.012 0.943 ± 0.028 543.0±10.2 166.0±13.8
500 10 0.991 ± 0.009 0.957 ± 0.022 574.5±15.4 323.5±17.7
500 25 0.994 ± 0.006 0.966 ± 0.020 615.4±23.9 469.2±20.9
500 100 0.994 ± 0.006 0.966 ± 0.020 652.4±37.9 500.6±23.6
500 200 0.994 ± 0.005 0.966 ± 0.018 654.1±46.7 500.1±24.0

Table A.10: Diterpenes52.54, Standard root, Random leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.805 ± 0.070 0.736 ± 0.069 53.5±11.5 170.5±53.9
10 10 0.859 ± 0.051 0.790 ± 0.061 92.5±17.9 360.9±76.2
10 25 0.875 ± 0.049 0.827 ± 0.048 147.2±23.2 571.7±65.6
10 100 0.870 ± 0.043 0.834 ± 0.042 189.6±40.0 648.7±71.3
10 200 0.872 ± 0.048 0.838 ± 0.045 197.1±51.4 637.1±76.1
25 5 0.847 ± 0.065 0.766 ± 0.065 71.3±10.7 172.4±50.4
25 10 0.869 ± 0.056 0.798 ± 0.056 108.5±15.1 358.5±66.1
25 25 0.900 ± 0.045 0.842 ± 0.049 156.6±25.2 573.1±57.8
25 100 0.901 ± 0.040 0.844 ± 0.043 208.4±43.2 644.5±71.8
25 200 0.904 ± 0.042 0.848 ± 0.045 213.8±49.4 633.3±67.5

100 5 0.917 ± 0.037 0.831 ± 0.051 146.9±12.5 171.8±31.4
100 10 0.943 ± 0.031 0.869 ± 0.044 182.5±16.7 362.2±48.0
100 25 0.951 ± 0.028 0.882 ± 0.043 231.1±24.6 561.8±38.1
100 100 0.951 ± 0.027 0.881 ± 0.041 286.9±46.4 635.3±48.0
100 200 0.944 ± 0.031 0.881 ± 0.038 291.2±46.7 631.8±46.5
200 5 0.947 ± 0.028 0.870 ± 0.044 246.7±11.7 171.1±21.6
200 10 0.967 ± 0.020 0.909 ± 0.035 282.9±17.5 366.1±34.8
200 25 0.971 ± 0.019 0.913 ± 0.037 329.2±22.9 567.9±33.7
200 100 0.969 ± 0.017 0.910 ± 0.035 381.1±44.7 637.2±36.1
200 200 0.969 ± 0.018 0.912 ± 0.031 387.9±44.7 631.4±35.1
500 5 0.964 ± 0.021 0.898 ± 0.034 543.8±11.2 178.4±15.2
500 10 0.982 ± 0.013 0.938 ± 0.027 583.9±14.4 366.6±22.3
500 25 0.984 ± 0.013 0.940 ± 0.027 635.5±23.5 569.5±21.2
500 100 0.986 ± 0.011 0.944 ± 0.027 681.8±43.0 632.7±27.6
500 200 0.985 ± 0.010 0.941 ± 0.025 688.7±47.4 634.4±25.4
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Table A.11: Diterpenes54.3, Standard root, Random leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.909 ± 0.049 0.839 ± 0.061 53.9±11.3 148.7±45.4
10 10 0.932 ± 0.042 0.881 ± 0.061 85.3±15.9 270.9±63.7
10 25 0.942 ± 0.033 0.909 ± 0.038 124.3±24.4 370.8±59.7
10 100 0.930 ± 0.040 0.904 ± 0.043 153.8±37.7 412.7±65.9
10 200 0.936 ± 0.035 0.910 ± 0.040 160.8±39.6 406.7±61.7
25 5 0.926 ± 0.048 0.860 ± 0.064 68.2±11.6 140.0±35.6
25 10 0.951 ± 0.037 0.893 ± 0.053 99.2±14.8 267.4±54.7
25 25 0.959 ± 0.027 0.911 ± 0.041 136.8±23.7 375.6±54.4
25 100 0.960 ± 0.028 0.917 ± 0.043 158.8±31.8 402.3±59.9
25 200 0.958 ± 0.028 0.913 ± 0.037 166.6±40.3 399.5±60.0

100 5 0.975 ± 0.023 0.926 ± 0.038 143.0±9.8 148.2±24.8
100 10 0.982 ± 0.014 0.938 ± 0.031 171.9±16.4 266.6±34.1
100 25 0.987 ± 0.014 0.948 ± 0.030 213.4±23.4 373.9±37.8
100 100 0.984 ± 0.015 0.945 ± 0.029 239.4±35.4 405.8±45.9
100 200 0.985 ± 0.013 0.947 ± 0.031 248.0±40.3 403.5±41.8
200 5 0.986 ± 0.014 0.948 ± 0.027 242.2±10.9 145.2±17.8
200 10 0.989 ± 0.012 0.957 ± 0.027 274.3±15.4 265.6±26.2
200 25 0.992 ± 0.009 0.963 ± 0.025 312.2±21.7 376.4±28.8
200 100 0.993 ± 0.009 0.964 ± 0.024 341.0±37.3 399.6±30.5
200 200 0.993 ± 0.007 0.966 ± 0.020 346.9±43.9 401.2±31.7
500 5 0.991 ± 0.010 0.966 ± 0.023 542.2±11.2 146.4±11.2
500 10 0.994 ± 0.007 0.973 ± 0.019 573.0±16.2 272.0±16.3
500 25 0.996 ± 0.006 0.979 ± 0.017 611.5±22.3 375.7±18.9
500 100 0.996 ± 0.005 0.976 ± 0.017 634.7±33.3 404.0±23.3
500 200 0.997 ± 0.005 0.976 ± 0.018 637.3±40.9 402.2±21.9

Table A.12: Musk1, Standard root, Random leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.743 ± 0.167 0.672 ± 0.143 35.5±4.8 91.6±9.9
10 10 0.710 ± 0.183 0.658 ± 0.159 40.7±5.2 105.2±8.4
10 25 0.733 ± 0.164 0.671 ± 0.159 45.8±9.1 108.0±8.0
10 100 0.744 ± 0.168 0.679 ± 0.149 49.3±11.6 109.1±8.1
10 200 0.728 ± 0.182 0.676 ± 0.151 48.5±13.6 109.6±10.2
25 5 0.785 ± 0.181 0.713 ± 0.154 49.3±3.9 92.9±7.0
25 10 0.757 ± 0.158 0.698 ± 0.147 54.6±5.8 105.5±7.2
25 25 0.777 ± 0.151 0.705 ± 0.136 60.3±8.5 110.2±6.0
25 100 0.793 ± 0.144 0.715 ± 0.136 61.2±10.2 109.0±6.6
25 200 0.780 ± 0.156 0.708 ± 0.145 62.8±13.4 108.5±6.9

100 5 0.866 ± 0.121 0.772 ± 0.117 124.6±4.4 93.0±4.3
100 10 0.873 ± 0.114 0.777 ± 0.124 129.8±6.8 105.5±3.5
100 25 0.887 ± 0.118 0.797 ± 0.123 135.1±8.5 110.2±3.1
100 100 0.864 ± 0.120 0.783 ± 0.117 136.1±12.3 109.1±3.8
100 200 0.882 ± 0.109 0.804 ± 0.115 138.8±11.8 109.5±3.2
200 5 0.902 ± 0.087 0.809 ± 0.111 224.5±4.2 92.9±2.8
200 10 0.888 ± 0.103 0.786 ± 0.117 229.0±5.2 105.4±2.6
200 25 0.894 ± 0.114 0.795 ± 0.130 235.8±9.1 109.7±2.4
200 100 0.889 ± 0.103 0.804 ± 0.131 236.8±12.3 109.5±2.8
200 200 0.901 ± 0.107 0.808 ± 0.112 237.6±12.4 109.3±2.9
500 5 0.915 ± 0.083 0.824 ± 0.102 524.3±4.5 92.7±2.1
500 10 0.923 ± 0.083 0.824 ± 0.105 529.1±5.7 105.2±1.9
500 25 0.911 ± 0.090 0.805 ± 0.114 535.3±8.2 109.3±2.2
500 100 0.929 ± 0.079 0.813 ± 0.109 538.8±12.0 109.5±2.1
500 200 0.915 ± 0.083 0.816 ± 0.102 538.5±12.1 109.7±2.1



A.3. DETAILED RRR-RF RESULTS 179

Table A.13: MutagenesisAll, Standard root, Random leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.720 ± 0.124 0.693 ± 0.095 38.9±8.5 54.1±15.4
10 10 0.757 ± 0.105 0.737 ± 0.094 66.2±12.6 92.0±19.1
10 25 0.755 ± 0.105 0.734 ± 0.099 124.6±28.3 145.2±20.1
10 100 0.746 ± 0.104 0.717 ± 0.103 306.4±50.2 201.2±14.0
10 200 0.747 ± 0.104 0.720 ± 0.099 467.7±76.0 209.5±12.1
25 5 0.753 ± 0.099 0.705 ± 0.096 53.1±8.1 53.4±14.8
25 10 0.748 ± 0.123 0.725 ± 0.096 78.6±13.3 91.1±19.0
25 25 0.764 ± 0.108 0.737 ± 0.097 139.6±24.0 148.0±19.7
25 100 0.770 ± 0.109 0.741 ± 0.093 323.8±57.3 202.0±13.5
25 200 0.763 ± 0.102 0.733 ± 0.095 487.3±82.5 209.0±11.3

100 5 0.791 ± 0.099 0.732 ± 0.092 127.4±8.9 53.3±7.4
100 10 0.792 ± 0.099 0.747 ± 0.085 154.0±13.8 92.4±11.8
100 25 0.805 ± 0.099 0.751 ± 0.092 211.3±27.4 148.8±12.9
100 100 0.779 ± 0.092 0.737 ± 0.087 399.5±53.3 200.1±10.6
100 200 0.786 ± 0.094 0.751 ± 0.087 568.0±79.9 210.7±8.5
200 5 0.799 ± 0.099 0.753 ± 0.084 229.6±9.3 53.3±5.7
200 10 0.810 ± 0.091 0.767 ± 0.082 256.1±12.1 92.4±10.1
200 25 0.814 ± 0.091 0.768 ± 0.089 309.1±20.4 146.9±11.5
200 100 0.809 ± 0.098 0.751 ± 0.093 494.3±50.4 201.1±8.8
200 200 0.798 ± 0.096 0.752 ± 0.085 676.9±89.2 208.5±8.4
500 5 0.814 ± 0.099 0.749 ± 0.093 529.5±7.9 53.9±4.3
500 10 0.818 ± 0.093 0.769 ± 0.083 554.0±13.5 91.9±6.1
500 25 0.822 ± 0.084 0.770 ± 0.085 616.9±24.4 147.2±7.4
500 100 0.813 ± 0.088 0.764 ± 0.084 797.8±62.5 200.3±7.0
500 200 0.808 ± 0.084 0.759 ± 0.080 965.6±83.3 210.3±6.8

Table A.14: MutagenesisRF , Standard root, Random leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.768 ± 0.147 0.745 ± 0.097 37.6±6.7 49.6±14.0
10 10 0.798 ± 0.112 0.779 ± 0.079 61.2±14.3 80.0±15.0
10 25 0.810 ± 0.112 0.792 ± 0.091 115.2±22.0 122.5±14.7
10 100 0.794 ± 0.121 0.773 ± 0.103 266.3±52.0 153.0±11.8
10 200 0.801 ± 0.107 0.786 ± 0.097 414.3±77.8 155.3±10.0
25 5 0.807 ± 0.119 0.772 ± 0.095 52.9±7.0 51.7±12.5
25 10 0.834 ± 0.102 0.787 ± 0.091 78.1±13.0 79.0±12.8
25 25 0.822 ± 0.107 0.805 ± 0.081 128.7±24.0 120.2±15.7
25 100 0.830 ± 0.097 0.796 ± 0.088 285.9±53.9 151.1±11.4
25 200 0.810 ± 0.101 0.785 ± 0.084 414.9±79.0 156.3±10.2

100 5 0.857 ± 0.089 0.782 ± 0.098 127.8±9.1 48.0±6.4
100 10 0.867 ± 0.088 0.809 ± 0.086 153.8±12.5 81.0±9.5
100 25 0.864 ± 0.090 0.812 ± 0.084 199.1±22.7 120.1±11.4
100 100 0.857 ± 0.095 0.812 ± 0.081 359.4±57.3 153.0±8.3
100 200 0.861 ± 0.093 0.805 ± 0.087 491.5±73.6 156.9±8.5
200 5 0.866 ± 0.083 0.798 ± 0.087 229.3±8.3 49.8±5.5
200 10 0.882 ± 0.078 0.823 ± 0.077 251.8±11.4 81.4±7.7
200 25 0.886 ± 0.075 0.828 ± 0.079 304.2±22.3 121.0±8.4
200 100 0.872 ± 0.084 0.815 ± 0.083 446.4±51.3 153.4±6.7
200 200 0.872 ± 0.080 0.806 ± 0.090 612.8±85.5 157.5±7.1
500 5 0.873 ± 0.082 0.818 ± 0.085 528.2±7.8 48.8±3.1
500 10 0.887 ± 0.082 0.829 ± 0.081 553.1±14.3 81.3±5.2
500 25 0.892 ± 0.083 0.833 ± 0.088 604.2±23.8 121.9±5.4
500 100 0.895 ± 0.078 0.831 ± 0.083 752.8±53.5 152.8±5.3
500 200 0.884 ± 0.082 0.833 ± 0.081 896.9±80.8 157.3±4.9
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Table A.15: Carcinogenesis, Standard root, Info leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.570 ± 0.095 0.555 ± 0.069 40.4±9.2 87.8±30.9
10 10 0.573 ± 0.098 0.561 ± 0.089 68.0±12.0 169.6±36.5
10 25 0.568 ± 0.097 0.565 ± 0.085 133.2±23.3 291.8±31.2
10 100 0.580 ± 0.099 0.568 ± 0.092 332.9±58.4 388.5±17.3
10 200 0.576 ± 0.089 0.565 ± 0.084 547.0±111.6 408.0±14.8
25 5 0.552 ± 0.096 0.556 ± 0.080 55.1±8.4 87.1±27.0
25 10 0.587 ± 0.100 0.581 ± 0.086 83.7±14.1 169.1±36.2
25 25 0.593 ± 0.092 0.588 ± 0.080 147.2±20.7 294.8±27.3
25 100 0.587 ± 0.098 0.569 ± 0.082 333.0±58.8 387.1±15.5
25 200 0.569 ± 0.084 0.553 ± 0.081 532.6±87.6 410.8±13.2

100 5 0.589 ± 0.100 0.571 ± 0.074 128.9±8.6 85.7±15.3
100 10 0.605 ± 0.099 0.581 ± 0.077 161.3±13.0 171.0±22.8
100 25 0.595 ± 0.096 0.580 ± 0.079 222.3±19.3 291.7±22.6
100 100 0.595 ± 0.088 0.563 ± 0.078 403.8±50.6 389.1±13.3
100 200 0.584 ± 0.091 0.559 ± 0.083 642.2±85.7 409.3±11.2
200 5 0.599 ± 0.089 0.574 ± 0.083 228.9±8.3 88.5±11.9
200 10 0.608 ± 0.091 0.588 ± 0.069 258.9±15.0 170.7±17.0
200 25 0.614 ± 0.096 0.591 ± 0.077 322.6±20.3 290.6±16.8
200 100 0.599 ± 0.086 0.571 ± 0.074 515.5±56.5 389.0±12.1
200 200 0.596 ± 0.087 0.574 ± 0.079 721.3±82.7 407.5±8.7
500 5 0.609 ± 0.089 0.587 ± 0.077 530.8±9.5 87.4±6.1
500 10 0.624 ± 0.086 0.599 ± 0.080 558.2±14.9 170.4±12.1
500 25 0.626 ± 0.077 0.603 ± 0.075 622.6±24.1 289.5±13.9
500 100 0.618 ± 0.079 0.586 ± 0.074 821.2±53.0 390.0±7.4
500 200 0.595 ± 0.096 0.568 ± 0.082 1029.0±109.2 409.6±6.9

Table A.16: Diterpenes52.3, Standard root, Info leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.879 ± 0.055 0.803 ± 0.060 52.0±10.5 160.5±46.6
10 10 0.917 ± 0.044 0.863 ± 0.051 84.2±15.0 319.3±70.1
10 25 0.913 ± 0.043 0.876 ± 0.045 124.6±22.6 467.7±54.4
10 100 0.915 ± 0.034 0.883 ± 0.040 153.5±41.0 491.6±61.9
10 200 0.921 ± 0.036 0.892 ± 0.039 160.8±40.3 500.7±65.6
25 5 0.914 ± 0.042 0.841 ± 0.055 66.0±11.0 166.2±44.9
25 10 0.937 ± 0.034 0.873 ± 0.042 99.5±14.7 320.6±62.7
25 25 0.940 ± 0.036 0.890 ± 0.039 142.3±22.0 460.9±55.1
25 100 0.941 ± 0.031 0.890 ± 0.041 171.7±35.8 502.7±68.1
25 200 0.941 ± 0.032 0.889 ± 0.044 177.0±39.1 499.0±60.0

100 5 0.959 ± 0.024 0.899 ± 0.042 142.8±11.1 161.4±22.6
100 10 0.976 ± 0.017 0.924 ± 0.032 174.2±16.3 319.8±37.1
100 25 0.977 ± 0.017 0.923 ± 0.033 213.8±20.5 463.2±44.1
100 100 0.977 ± 0.016 0.926 ± 0.029 250.0±34.9 499.3±40.2
100 200 0.977 ± 0.017 0.927 ± 0.031 252.5±44.7 506.2±45.0
200 5 0.976 ± 0.017 0.925 ± 0.031 242.3±10.7 162.2±20.9
200 10 0.987 ± 0.011 0.948 ± 0.025 274.4±14.9 319.8±26.6
200 25 0.988 ± 0.011 0.945 ± 0.027 314.6±22.2 465.2±30.4
200 100 0.987 ± 0.009 0.946 ± 0.025 348.6±37.3 499.0±34.2
200 200 0.989 ± 0.010 0.951 ± 0.027 349.4±41.4 502.3±36.6
500 5 0.985 ± 0.012 0.943 ± 0.028 543.0±10.2 166.0±13.8
500 10 0.991 ± 0.009 0.957 ± 0.022 574.5±15.4 323.5±17.7
500 25 0.994 ± 0.006 0.966 ± 0.020 615.4±23.9 469.2±20.9
500 100 0.994 ± 0.006 0.966 ± 0.020 652.4±37.9 500.6±23.6
500 200 0.994 ± 0.005 0.966 ± 0.018 654.1±46.7 500.1±24.0
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Table A.17: Diterpenes52.54, Standard root, Info leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.805 ± 0.070 0.736 ± 0.069 53.5±11.5 170.5±53.9
10 10 0.859 ± 0.051 0.790 ± 0.061 92.5±17.9 360.9±76.2
10 25 0.875 ± 0.049 0.827 ± 0.048 147.2±23.2 571.7±65.6
10 100 0.870 ± 0.043 0.834 ± 0.042 189.6±40.0 648.7±71.3
10 200 0.872 ± 0.048 0.838 ± 0.045 197.1±51.4 637.1±76.1
25 5 0.847 ± 0.065 0.766 ± 0.065 71.3±10.7 172.4±50.4
25 10 0.869 ± 0.056 0.798 ± 0.056 108.5±15.1 358.5±66.1
25 25 0.900 ± 0.045 0.842 ± 0.049 156.6±25.2 573.1±57.8
25 100 0.901 ± 0.040 0.844 ± 0.043 208.4±43.2 644.5±71.8
25 200 0.904 ± 0.042 0.848 ± 0.045 213.8±49.4 633.3±67.5

100 5 0.917 ± 0.037 0.831 ± 0.051 146.9±12.5 171.8±31.4
100 10 0.943 ± 0.031 0.869 ± 0.044 182.5±16.7 362.2±48.0
100 25 0.951 ± 0.028 0.882 ± 0.043 231.1±24.6 561.8±38.1
100 100 0.951 ± 0.027 0.881 ± 0.041 286.9±46.4 635.3±48.0
100 200 0.944 ± 0.031 0.881 ± 0.038 291.2±46.7 631.8±46.5
200 5 0.947 ± 0.028 0.870 ± 0.044 246.7±11.7 171.1±21.6
200 10 0.967 ± 0.020 0.909 ± 0.035 282.9±17.5 366.1±34.8
200 25 0.971 ± 0.019 0.913 ± 0.037 329.2±22.9 567.9±33.7
200 100 0.969 ± 0.017 0.910 ± 0.035 381.1±44.7 637.2±36.1
200 200 0.969 ± 0.018 0.912 ± 0.031 387.9±44.7 631.4±35.1
500 5 0.964 ± 0.021 0.898 ± 0.034 543.8±11.2 178.4±15.2
500 10 0.982 ± 0.013 0.938 ± 0.027 583.9±14.4 366.6±22.3
500 25 0.984 ± 0.013 0.940 ± 0.027 635.5±23.5 569.5±21.2
500 100 0.986 ± 0.011 0.944 ± 0.027 681.8±43.0 632.7±27.6
500 200 0.985 ± 0.010 0.941 ± 0.025 688.7±47.4 634.4±25.4

Table A.18: Diterpenes54.3, Standard root, Info leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.909 ± 0.049 0.839 ± 0.061 53.9±11.3 148.7±45.4
10 10 0.932 ± 0.042 0.881 ± 0.061 85.3±15.9 270.9±63.7
10 25 0.942 ± 0.033 0.909 ± 0.038 124.3±24.4 370.8±59.7
10 100 0.930 ± 0.040 0.904 ± 0.043 153.8±37.7 412.7±65.9
10 200 0.936 ± 0.035 0.910 ± 0.040 160.8±39.6 406.7±61.7
25 5 0.926 ± 0.048 0.860 ± 0.064 68.2±11.6 140.0±35.6
25 10 0.951 ± 0.037 0.893 ± 0.053 99.2±14.8 267.4±54.7
25 25 0.959 ± 0.027 0.911 ± 0.041 136.8±23.7 375.6±54.4
25 100 0.960 ± 0.028 0.917 ± 0.043 158.8±31.8 402.3±59.9
25 200 0.958 ± 0.028 0.913 ± 0.037 166.6±40.3 399.5±60.0

100 5 0.975 ± 0.023 0.926 ± 0.038 143.0±9.8 148.2±24.8
100 10 0.982 ± 0.014 0.938 ± 0.031 171.9±16.4 266.6±34.1
100 25 0.987 ± 0.014 0.948 ± 0.030 213.4±23.4 373.9±37.8
100 100 0.984 ± 0.015 0.945 ± 0.029 239.4±35.4 405.8±45.9
100 200 0.985 ± 0.013 0.947 ± 0.031 248.0±40.3 403.5±41.8
200 5 0.986 ± 0.014 0.948 ± 0.027 242.2±10.9 145.2±17.8
200 10 0.989 ± 0.012 0.957 ± 0.027 274.3±15.4 265.6±26.2
200 25 0.992 ± 0.009 0.963 ± 0.025 312.2±21.7 376.4±28.8
200 100 0.993 ± 0.009 0.964 ± 0.024 341.0±37.3 399.6±30.5
200 200 0.993 ± 0.007 0.966 ± 0.020 346.9±43.9 401.2±31.7
500 5 0.991 ± 0.010 0.966 ± 0.023 542.2±11.2 146.4±11.2
500 10 0.994 ± 0.007 0.973 ± 0.019 573.0±16.2 272.0±16.3
500 25 0.996 ± 0.006 0.979 ± 0.017 611.5±22.3 375.7±18.9
500 100 0.996 ± 0.005 0.976 ± 0.017 634.7±33.3 404.0±23.3
500 200 0.997 ± 0.005 0.976 ± 0.018 637.3±40.9 402.2±21.9
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Table A.19: Musk1, Standard root, Info leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.743 ± 0.167 0.672 ± 0.143 35.5±4.8 91.6±9.9
10 10 0.710 ± 0.183 0.658 ± 0.159 40.7±5.2 105.2±8.4
10 25 0.733 ± 0.164 0.671 ± 0.159 45.8±9.1 108.0±8.0
10 100 0.744 ± 0.168 0.679 ± 0.149 49.3±11.6 109.1±8.1
10 200 0.728 ± 0.182 0.676 ± 0.151 48.5±13.6 109.6±10.2
25 5 0.785 ± 0.181 0.713 ± 0.154 49.3±3.9 92.9±7.0
25 10 0.757 ± 0.158 0.698 ± 0.147 54.6±5.8 105.5±7.2
25 25 0.777 ± 0.151 0.705 ± 0.136 60.3±8.5 110.2±6.0
25 100 0.793 ± 0.144 0.715 ± 0.136 61.2±10.2 109.0±6.6
25 200 0.780 ± 0.156 0.708 ± 0.145 62.8±13.4 108.5±6.9

100 5 0.866 ± 0.121 0.772 ± 0.117 124.6±4.4 93.0±4.3
100 10 0.873 ± 0.114 0.777 ± 0.124 129.8±6.8 105.5±3.5
100 25 0.887 ± 0.118 0.797 ± 0.123 135.1±8.5 110.2±3.1
100 100 0.864 ± 0.120 0.783 ± 0.117 136.1±12.3 109.1±3.8
100 200 0.882 ± 0.109 0.804 ± 0.115 138.8±11.8 109.5±3.2
200 5 0.902 ± 0.087 0.809 ± 0.111 224.5±4.2 92.9±2.8
200 10 0.888 ± 0.103 0.786 ± 0.117 229.0±5.2 105.4±2.6
200 25 0.894 ± 0.114 0.795 ± 0.130 235.8±9.1 109.7±2.4
200 100 0.889 ± 0.103 0.804 ± 0.131 236.8±12.3 109.5±2.8
200 200 0.901 ± 0.107 0.808 ± 0.112 237.6±12.4 109.3±2.9
500 5 0.915 ± 0.083 0.824 ± 0.102 524.3±4.5 92.7±2.1
500 10 0.923 ± 0.083 0.824 ± 0.105 529.1±5.7 105.2±1.9
500 25 0.911 ± 0.090 0.805 ± 0.114 535.3±8.2 109.3±2.2
500 100 0.929 ± 0.079 0.813 ± 0.109 538.8±12.0 109.5±2.1
500 200 0.915 ± 0.083 0.816 ± 0.102 538.5±12.1 109.7±2.1

Table A.20: MutagenesisAll, Standard root, Info leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.720 ± 0.124 0.693 ± 0.095 38.9±8.5 54.1±15.4
10 10 0.757 ± 0.105 0.737 ± 0.094 66.2±12.6 92.0±19.1
10 25 0.755 ± 0.105 0.734 ± 0.099 124.6±28.3 145.2±20.1
10 100 0.746 ± 0.104 0.717 ± 0.103 306.4±50.2 201.2±14.0
10 200 0.747 ± 0.104 0.720 ± 0.099 467.7±76.0 209.5±12.1
25 5 0.753 ± 0.099 0.705 ± 0.096 53.1±8.1 53.4±14.8
25 10 0.748 ± 0.123 0.725 ± 0.096 78.6±13.3 91.1±19.0
25 25 0.764 ± 0.108 0.737 ± 0.097 139.6±24.0 148.0±19.7
25 100 0.770 ± 0.109 0.741 ± 0.093 323.8±57.3 202.0±13.5
25 200 0.763 ± 0.102 0.733 ± 0.095 487.3±82.5 209.0±11.3

100 5 0.791 ± 0.099 0.732 ± 0.092 127.4±8.9 53.3±7.4
100 10 0.792 ± 0.099 0.747 ± 0.085 154.0±13.8 92.4±11.8
100 25 0.805 ± 0.099 0.751 ± 0.092 211.3±27.4 148.8±12.9
100 100 0.779 ± 0.092 0.737 ± 0.087 399.5±53.3 200.1±10.6
100 200 0.786 ± 0.094 0.751 ± 0.087 568.0±79.9 210.7±8.5
200 5 0.799 ± 0.099 0.753 ± 0.084 229.6±9.3 53.3±5.7
200 10 0.810 ± 0.091 0.767 ± 0.082 256.1±12.1 92.4±10.1
200 25 0.814 ± 0.091 0.768 ± 0.089 309.1±20.4 146.9±11.5
200 100 0.809 ± 0.098 0.751 ± 0.093 494.3±50.4 201.1±8.8
200 200 0.798 ± 0.096 0.752 ± 0.085 676.9±89.2 208.5±8.4
500 5 0.814 ± 0.099 0.749 ± 0.093 529.5±7.9 53.9±4.3
500 10 0.818 ± 0.093 0.769 ± 0.083 554.0±13.5 91.9±6.1
500 25 0.822 ± 0.084 0.770 ± 0.085 616.9±24.4 147.2±7.4
500 100 0.813 ± 0.088 0.764 ± 0.084 797.8±62.5 200.3±7.0
500 200 0.808 ± 0.084 0.759 ± 0.080 965.6±83.3 210.3±6.8
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Table A.21: MutagenesisRF , Standard root, Info leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.768 ± 0.147 0.745 ± 0.097 37.6±6.7 49.6±14.0
10 10 0.798 ± 0.112 0.779 ± 0.079 61.2±14.3 80.0±15.0
10 25 0.810 ± 0.112 0.792 ± 0.091 115.2±22.0 122.5±14.7
10 100 0.794 ± 0.121 0.773 ± 0.103 266.3±52.0 153.0±11.8
10 200 0.801 ± 0.107 0.786 ± 0.097 414.3±77.8 155.3±10.0
25 5 0.807 ± 0.119 0.772 ± 0.095 52.9±7.0 51.7±12.5
25 10 0.834 ± 0.102 0.787 ± 0.091 78.1±13.0 79.0±12.8
25 25 0.822 ± 0.107 0.805 ± 0.081 128.7±24.0 120.2±15.7
25 100 0.830 ± 0.097 0.796 ± 0.088 285.9±53.9 151.1±11.4
25 200 0.810 ± 0.101 0.785 ± 0.084 414.9±79.0 156.3±10.2

100 5 0.857 ± 0.089 0.782 ± 0.098 127.8±9.1 48.0±6.4
100 10 0.867 ± 0.088 0.809 ± 0.086 153.8±12.5 81.0±9.5
100 25 0.864 ± 0.090 0.812 ± 0.084 199.1±22.7 120.1±11.4
100 100 0.857 ± 0.095 0.812 ± 0.081 359.4±57.3 153.0±8.3
100 200 0.861 ± 0.093 0.805 ± 0.087 491.5±73.6 156.9±8.5
200 5 0.866 ± 0.083 0.798 ± 0.087 229.3±8.3 49.8±5.5
200 10 0.882 ± 0.078 0.823 ± 0.077 251.8±11.4 81.4±7.7
200 25 0.886 ± 0.075 0.828 ± 0.079 304.2±22.3 121.0±8.4
200 100 0.872 ± 0.084 0.815 ± 0.083 446.4±51.3 153.4±6.7
200 200 0.872 ± 0.080 0.806 ± 0.090 612.8±85.5 157.5±7.1
500 5 0.873 ± 0.082 0.818 ± 0.085 528.2±7.8 48.8±3.1
500 10 0.887 ± 0.082 0.829 ± 0.081 553.1±14.3 81.3±5.2
500 25 0.892 ± 0.083 0.833 ± 0.088 604.2±23.8 121.9±5.4
500 100 0.895 ± 0.078 0.831 ± 0.083 752.8±53.5 152.8±5.3
500 200 0.884 ± 0.082 0.833 ± 0.081 896.9±80.8 157.3±4.9

Table A.22: Carcinogenesis, Bagging root, Normal leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.554 ± 0.104 0.553 ± 0.086 38.6±8.5 63.3±22.7
10 10 0.560 ± 0.099 0.560 ± 0.089 68.4±11.7 109.8±26.1
10 25 0.590 ± 0.105 0.579 ± 0.085 130.3±20.4 190.5±19.8
10 100 0.592 ± 0.099 0.582 ± 0.095 328.9±48.3 254.3±10.6
10 200 0.575 ± 0.103 0.560 ± 0.093 539.8±104.4 263.6±7.9
25 5 0.588 ± 0.090 0.574 ± 0.077 53.0±7.6 61.0±19.0
25 10 0.584 ± 0.084 0.573 ± 0.066 81.8±13.5 119.1±25.3
25 25 0.579 ± 0.109 0.568 ± 0.096 146.9±23.0 192.0±21.2
25 100 0.580 ± 0.097 0.567 ± 0.084 350.3±58.5 254.4±8.3
25 200 0.580 ± 0.092 0.568 ± 0.084 551.0±91.3 264.5±7.3

100 5 0.590 ± 0.099 0.582 ± 0.078 128.4±7.4 60.3±10.4
100 10 0.616 ± 0.088 0.595 ± 0.069 157.3±11.7 116.5±15.7
100 25 0.599 ± 0.086 0.589 ± 0.080 222.9±21.4 190.1±13.8
100 100 0.608 ± 0.093 0.581 ± 0.082 415.4±53.0 253.1±6.6
100 200 0.604 ± 0.097 0.575 ± 0.075 643.7±104.1 265.0±6.0
200 5 0.608 ± 0.091 0.596 ± 0.074 228.8±7.9 62.5±7.9
200 10 0.609 ± 0.081 0.584 ± 0.066 255.5±11.7 116.1±13.0
200 25 0.630 ± 0.077 0.599 ± 0.077 315.7±21.0 190.7±10.7
200 100 0.605 ± 0.090 0.576 ± 0.083 516.4±54.8 254.5±5.7
200 200 0.604 ± 0.091 0.580 ± 0.075 726.0±84.4 265.7±5.2
500 5 0.614 ± 0.095 0.596 ± 0.078 530.1±8.9 61.3±5.1
500 10 0.634 ± 0.084 0.602 ± 0.075 557.3±12.3 114.1±8.1
500 25 0.633 ± 0.084 0.612 ± 0.070 620.8±23.5 193.5±7.6
500 100 0.626 ± 0.087 0.597 ± 0.079 814.6±54.8 253.9±4.9
500 200 0.612 ± 0.086 0.579 ± 0.069 1036.6±99.0 264.8±3.8
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Table A.23: Diterpenes52.3, Bagging root, Normal leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.851 ± 0.066 0.778 ± 0.070 48.9±10.8 107.9±35.6
10 10 0.906 ± 0.040 0.834 ± 0.051 81.8±15.1 216.7±47.8
10 25 0.935 ± 0.036 0.880 ± 0.042 130.7±25.5 326.4±35.9
10 100 0.931 ± 0.035 0.882 ± 0.042 174.0±38.5 346.8±50.8
10 200 0.929 ± 0.038 0.881 ± 0.045 187.3±51.3 362.4±39.7
25 5 0.881 ± 0.051 0.804 ± 0.061 63.0±10.8 108.0±30.3
25 10 0.930 ± 0.033 0.862 ± 0.045 97.7±15.3 215.8±33.2
25 25 0.943 ± 0.034 0.883 ± 0.047 144.6±19.4 329.1±39.2
25 100 0.947 ± 0.027 0.892 ± 0.037 195.9±45.7 362.2±39.8
25 200 0.949 ± 0.032 0.890 ± 0.042 201.4±45.2 362.6±46.0

100 5 0.950 ± 0.032 0.887 ± 0.046 138.1±11.2 109.1±20.2
100 10 0.965 ± 0.024 0.907 ± 0.041 173.7±14.4 216.6±30.1
100 25 0.973 ± 0.018 0.918 ± 0.033 216.9±24.0 328.6±25.6
100 100 0.978 ± 0.014 0.925 ± 0.031 267.6±42.5 361.5±30.7
100 200 0.976 ± 0.016 0.921 ± 0.034 272.1±61.9 363.5±31.0
200 5 0.970 ± 0.021 0.916 ± 0.035 238.6±10.5 109.1±14.5
200 10 0.980 ± 0.016 0.933 ± 0.032 273.5±15.6 214.1±18.4
200 25 0.986 ± 0.010 0.944 ± 0.027 319.0±21.7 327.0±21.5
200 100 0.987 ± 0.010 0.947 ± 0.027 365.2±35.0 362.1±25.6
200 200 0.986 ± 0.011 0.943 ± 0.028 378.7±49.0 362.5±21.2
500 5 0.980 ± 0.016 0.938 ± 0.029 540.8±10.6 107.7±9.7
500 10 0.989 ± 0.010 0.952 ± 0.025 573.3±14.4 216.5±13.3
500 25 0.993 ± 0.006 0.957 ± 0.023 623.0±23.3 326.0±14.7
500 100 0.993 ± 0.007 0.963 ± 0.020 663.8±37.1 360.3±16.2
500 200 0.993 ± 0.007 0.961 ± 0.024 670.4±44.0 360.1±15.0

Table A.24: Diterpenes52.54, Bagging root, Normal leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.794 ± 0.069 0.723 ± 0.063 51.8±10.5 110.4±35.7
10 10 0.841 ± 0.052 0.770 ± 0.054 90.9±16.8 243.5±51.6
10 25 0.883 ± 0.045 0.819 ± 0.054 146.5±25.4 386.4±41.3
10 100 0.892 ± 0.040 0.836 ± 0.044 212.2±44.2 446.9±42.4
10 200 0.888 ± 0.048 0.833 ± 0.050 226.9±60.5 443.0±45.7
25 5 0.826 ± 0.066 0.748 ± 0.065 65.3±9.9 113.2±35.9
25 10 0.866 ± 0.055 0.790 ± 0.059 103.2±16.4 237.3±50.8
25 25 0.897 ± 0.047 0.829 ± 0.052 163.1±26.1 384.4±40.5
25 100 0.909 ± 0.039 0.844 ± 0.053 235.3±50.4 447.7±46.3
25 200 0.901 ± 0.043 0.833 ± 0.049 243.9±64.0 452.4±44.7

100 5 0.894 ± 0.052 0.812 ± 0.060 141.6±10.7 111.0±18.4
100 10 0.933 ± 0.034 0.857 ± 0.051 180.2±16.0 236.1±30.6
100 25 0.947 ± 0.030 0.881 ± 0.042 232.1±26.0 385.5±28.0
100 100 0.949 ± 0.025 0.884 ± 0.038 294.1±45.5 436.6±35.5
100 200 0.946 ± 0.028 0.878 ± 0.043 317.1±58.2 448.7±35.0
200 5 0.939 ± 0.031 0.855 ± 0.042 241.5±11.3 112.3±14.9
200 10 0.955 ± 0.028 0.889 ± 0.044 281.1±16.5 235.7±23.0
200 25 0.967 ± 0.023 0.907 ± 0.039 337.5±28.1 387.4±20.5
200 100 0.964 ± 0.022 0.901 ± 0.033 401.3±42.7 447.3±25.8
200 200 0.970 ± 0.018 0.910 ± 0.035 420.1±58.5 442.2±24.4
500 5 0.950 ± 0.031 0.874 ± 0.047 542.4±11.0 111.6±10.2
500 10 0.973 ± 0.020 0.917 ± 0.035 581.1±15.9 234.7±18.4
500 25 0.982 ± 0.013 0.935 ± 0.032 639.5±23.0 388.5±12.4
500 100 0.984 ± 0.012 0.938 ± 0.030 706.0±44.0 444.2±15.6
500 200 0.982 ± 0.014 0.936 ± 0.029 722.1±56.7 446.1±15.9
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Table A.25: Diterpenes54.3, Bagging root, Normal leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.862 ± 0.071 0.794 ± 0.076 47.2±9.6 90.6±30.2
10 10 0.918 ± 0.046 0.855 ± 0.063 81.9±14.0 186.2±37.8
10 25 0.941 ± 0.036 0.890 ± 0.047 131.9±21.9 274.4±42.2
10 100 0.943 ± 0.034 0.899 ± 0.039 167.3±41.3 298.0±52.2
10 200 0.942 ± 0.029 0.895 ± 0.039 167.0±38.7 295.6±44.8
25 5 0.909 ± 0.054 0.831 ± 0.070 64.2±9.3 91.3±26.1
25 10 0.941 ± 0.035 0.876 ± 0.057 99.5±15.3 174.3±34.6
25 25 0.961 ± 0.028 0.912 ± 0.041 137.7±22.3 263.2±45.7
25 100 0.962 ± 0.027 0.917 ± 0.038 180.9±41.7 281.3±38.8
25 200 0.960 ± 0.029 0.910 ± 0.038 187.9±50.0 296.6±41.4

100 5 0.966 ± 0.026 0.911 ± 0.045 137.1±10.1 93.7±14.9
100 10 0.979 ± 0.017 0.934 ± 0.036 171.8±14.2 183.8±22.5
100 25 0.980 ± 0.017 0.934 ± 0.038 215.2±22.6 269.4±29.2
100 100 0.984 ± 0.015 0.942 ± 0.032 249.9±40.5 293.0±32.6
100 200 0.983 ± 0.013 0.942 ± 0.027 259.9±46.9 290.9±29.6
200 5 0.982 ± 0.016 0.940 ± 0.033 237.5±10.6 94.2±11.2
200 10 0.987 ± 0.013 0.950 ± 0.032 274.8±16.9 180.4±16.9
200 25 0.992 ± 0.008 0.961 ± 0.025 315.3±20.6 272.0±19.3
200 100 0.992 ± 0.009 0.960 ± 0.023 355.1±39.3 294.6±25.5
200 200 0.991 ± 0.009 0.957 ± 0.022 354.2±41.9 295.4±25.8
500 5 0.988 ± 0.012 0.959 ± 0.023 538.4±10.3 94.2±7.4
500 10 0.993 ± 0.008 0.967 ± 0.022 571.8±16.4 182.7±10.1
500 25 0.995 ± 0.007 0.971 ± 0.020 623.5±24.6 269.6±12.6
500 100 0.996 ± 0.005 0.975 ± 0.018 659.2±41.7 293.0±17.8
500 200 0.996 ± 0.006 0.975 ± 0.019 662.2±44.7 293.1±14.2

Table A.26: Musk1, Bagging root, Normal leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.744 ± 0.182 0.668 ± 0.148 32.1±4.3 57.5±6.6
10 10 0.710 ± 0.171 0.661 ± 0.158 39.1±5.6 66.2±5.5
10 25 0.724 ± 0.188 0.666 ± 0.167 47.6±8.5 71.7±5.4
10 100 0.697 ± 0.177 0.655 ± 0.160 53.6±16.5 72.3±5.1
10 200 0.697 ± 0.187 0.644 ± 0.160 52.4±14.0 72.1±5.2
25 5 0.759 ± 0.181 0.689 ± 0.154 47.7±4.6 55.5±5.0
25 10 0.777 ± 0.156 0.707 ± 0.141 56.0±6.2 67.1±3.9
25 25 0.768 ± 0.156 0.704 ± 0.136 62.9±9.2 70.8±3.5
25 100 0.755 ± 0.175 0.693 ± 0.166 69.1±17.7 71.1±3.7
25 200 0.761 ± 0.173 0.681 ± 0.138 71.1±19.1 71.8±3.7

100 5 0.859 ± 0.123 0.769 ± 0.116 122.8±4.7 56.0±2.5
100 10 0.850 ± 0.126 0.766 ± 0.125 130.7±5.7 67.3±2.0
100 25 0.834 ± 0.120 0.744 ± 0.130 138.0±9.4 71.3±2.3
100 100 0.835 ± 0.122 0.760 ± 0.127 142.9±15.1 71.9±2.5
100 200 0.851 ± 0.130 0.775 ± 0.126 143.3±15.5 71.3±2.3
200 5 0.896 ± 0.091 0.802 ± 0.112 223.3±4.4 56.2±1.9
200 10 0.887 ± 0.108 0.805 ± 0.117 230.9±5.0 67.0±1.4
200 25 0.883 ± 0.102 0.791 ± 0.106 240.7±10.7 71.1±1.6
200 100 0.877 ± 0.109 0.799 ± 0.117 243.6±16.3 71.5±1.5
200 200 0.898 ± 0.088 0.793 ± 0.113 246.2±16.1 71.9±1.8
500 5 0.919 ± 0.088 0.802 ± 0.113 523.3±5.0 56.4±1.1
500 10 0.916 ± 0.086 0.813 ± 0.113 531.6±4.9 67.0±1.0
500 25 0.899 ± 0.092 0.810 ± 0.115 543.0±10.3 71.1±1.2
500 100 0.912 ± 0.091 0.823 ± 0.107 543.9±15.0 71.7±1.1
500 200 0.920 ± 0.076 0.816 ± 0.115 544.0±16.4 71.5±1.2
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Table A.27: MutagenesisAll, Bagging root, Normal leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.714 ± 0.113 0.683 ± 0.089 38.6±8.9 40.5±11.9
10 10 0.747 ± 0.109 0.720 ± 0.095 63.5±13.1 67.6±14.6
10 25 0.767 ± 0.113 0.733 ± 0.094 122.2±25.3 107.3±16.1
10 100 0.781 ± 0.108 0.730 ± 0.090 292.5±56.8 140.7±7.6
10 200 0.781 ± 0.099 0.744 ± 0.087 488.1±78.0 145.6±8.5
25 5 0.738 ± 0.102 0.696 ± 0.093 53.6±8.3 40.7±10.5
25 10 0.763 ± 0.111 0.721 ± 0.093 75.9±11.5 66.1±14.7
25 25 0.782 ± 0.106 0.745 ± 0.088 139.4±24.6 106.4±13.1
25 100 0.771 ± 0.101 0.731 ± 0.089 320.7±51.1 140.8±7.2
25 200 0.787 ± 0.102 0.734 ± 0.095 486.3±81.4 145.7±6.9

100 5 0.787 ± 0.105 0.731 ± 0.081 129.0±7.9 40.7±5.3
100 10 0.799 ± 0.088 0.753 ± 0.084 155.2±13.7 67.7±9.3
100 25 0.798 ± 0.099 0.760 ± 0.088 213.9±25.5 107.2±10.5
100 100 0.795 ± 0.105 0.748 ± 0.102 402.9±46.8 140.2±6.3
100 200 0.800 ± 0.096 0.757 ± 0.089 579.8±89.3 145.4±5.7
200 5 0.796 ± 0.099 0.743 ± 0.085 229.8±8.4 40.2±4.3
200 10 0.811 ± 0.092 0.766 ± 0.082 255.9±12.9 67.5±6.0
200 25 0.813 ± 0.096 0.770 ± 0.082 308.9±22.3 106.9±6.6
200 100 0.805 ± 0.098 0.757 ± 0.087 498.5±56.8 140.1±5.6
200 200 0.814 ± 0.093 0.755 ± 0.086 675.4±78.4 146.1±4.5
500 5 0.807 ± 0.099 0.741 ± 0.079 533.0±8.7 40.0±2.9
500 10 0.814 ± 0.097 0.771 ± 0.088 560.6±14.1 68.1±4.7
500 25 0.819 ± 0.089 0.774 ± 0.085 619.2±27.2 106.2±4.7
500 100 0.823 ± 0.093 0.766 ± 0.086 794.3±44.9 140.5±4.0
500 200 0.821 ± 0.092 0.765 ± 0.087 959.9±80.7 146.1±3.5

Table A.28: MutagenesisRF , Bagging root, Normal leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.762 ± 0.125 0.733 ± 0.091 38.0±7.8 36.3±8.6
10 10 0.792 ± 0.111 0.765 ± 0.100 63.0±13.9 58.3±11.8
10 25 0.821 ± 0.106 0.782 ± 0.098 115.9±24.2 85.8±9.3
10 100 0.830 ± 0.097 0.801 ± 0.082 269.6±54.9 107.6±7.9
10 200 0.827 ± 0.105 0.796 ± 0.092 400.1±72.8 110.4±7.6
25 5 0.797 ± 0.120 0.748 ± 0.104 53.5±7.8 34.6±7.8
25 10 0.834 ± 0.097 0.789 ± 0.094 78.1±12.5 60.1±10.5
25 25 0.827 ± 0.102 0.791 ± 0.091 128.8±23.4 88.4±9.5
25 100 0.836 ± 0.105 0.805 ± 0.090 290.9±55.9 107.2±6.2
25 200 0.840 ± 0.093 0.794 ± 0.088 439.9±82.7 109.8±6.2

100 5 0.846 ± 0.096 0.784 ± 0.092 128.2±7.5 35.6±5.0
100 10 0.857 ± 0.096 0.804 ± 0.091 154.2±12.1 59.7±6.2
100 25 0.865 ± 0.097 0.817 ± 0.080 209.5±25.0 87.5±7.1
100 100 0.857 ± 0.095 0.814 ± 0.097 357.1±54.2 107.6±4.8
100 200 0.863 ± 0.089 0.816 ± 0.086 503.7±77.7 110.0±5.3
200 5 0.855 ± 0.095 0.780 ± 0.082 230.9±8.1 36.3±3.3
200 10 0.865 ± 0.081 0.812 ± 0.081 252.0±12.3 58.2±5.2
200 25 0.871 ± 0.092 0.822 ± 0.084 309.7±21.5 87.1±5.1
200 100 0.885 ± 0.085 0.832 ± 0.082 459.3±52.5 107.3±4.8
200 200 0.877 ± 0.090 0.816 ± 0.088 604.9±69.6 109.7±4.4
500 5 0.868 ± 0.090 0.787 ± 0.096 533.2±9.0 35.7±2.2
500 10 0.878 ± 0.081 0.827 ± 0.083 558.8±13.9 59.4±3.5
500 25 0.890 ± 0.081 0.840 ± 0.073 615.2±26.3 87.1±3.4
500 100 0.894 ± 0.080 0.830 ± 0.077 780.1±60.0 106.9±3.2
500 200 0.891 ± 0.077 0.835 ± 0.078 930.1±95.6 109.9±2.9
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Table A.29: Carcinogenesis, Bagging root, Random leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.586 ± 0.088 0.561 ± 0.069 39.1±8.6 66.7±19.4
10 10 0.554 ± 0.102 0.546 ± 0.079 66.7±12.3 121.8±29.6
10 25 0.596 ± 0.099 0.576 ± 0.082 127.0±21.2 202.5±19.5
10 100 0.573 ± 0.096 0.567 ± 0.080 308.8±50.7 257.2±10.9
10 200 0.567 ± 0.096 0.547 ± 0.075 508.9±85.0 266.1±8.2
25 5 0.569 ± 0.098 0.559 ± 0.086 54.0±7.9 64.6±18.5
25 10 0.570 ± 0.098 0.564 ± 0.088 82.0±13.9 119.9±23.5
25 25 0.599 ± 0.092 0.587 ± 0.084 143.1±19.8 197.2±19.8
25 100 0.593 ± 0.094 0.568 ± 0.084 341.3±57.5 256.5±7.5
25 200 0.593 ± 0.091 0.570 ± 0.084 538.6±86.9 266.5±7.1

100 5 0.593 ± 0.086 0.578 ± 0.080 128.7±7.6 65.0±11.3
100 10 0.619 ± 0.103 0.600 ± 0.087 155.7±10.3 123.9±18.3
100 25 0.612 ± 0.085 0.591 ± 0.076 218.1±20.0 200.8±13.4
100 100 0.592 ± 0.096 0.569 ± 0.081 404.7±58.4 257.4±7.1
100 200 0.590 ± 0.086 0.575 ± 0.080 613.7±90.4 266.3±5.5
200 5 0.606 ± 0.094 0.580 ± 0.080 229.4±8.5 67.2±7.5
200 10 0.616 ± 0.086 0.590 ± 0.071 259.8±14.4 122.1±12.3
200 25 0.622 ± 0.074 0.602 ± 0.068 322.1±22.5 199.5±10.7
200 100 0.598 ± 0.097 0.577 ± 0.081 512.7±50.4 255.9±6.1
200 200 0.611 ± 0.086 0.583 ± 0.078 704.9±89.1 266.8±4.5
500 5 0.620 ± 0.083 0.596 ± 0.072 530.9±8.4 66.0±5.4
500 10 0.627 ± 0.078 0.593 ± 0.069 558.9±13.6 121.8±7.2
500 25 0.625 ± 0.078 0.605 ± 0.070 618.4±20.3 199.6±7.7
500 100 0.617 ± 0.081 0.579 ± 0.071 802.7±51.3 256.7±4.1
500 200 0.616 ± 0.085 0.585 ± 0.079 1024.7±106.2 266.7±3.7

Table A.30: Diterpenes52.3, Bagging root, Random leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.878 ± 0.058 0.800 ± 0.064 50.3±9.0 119.5±36.1
10 10 0.920 ± 0.043 0.848 ± 0.054 82.1±15.1 234.0±48.9
10 25 0.936 ± 0.034 0.880 ± 0.045 119.3±20.1 330.0±42.7
10 100 0.936 ± 0.035 0.887 ± 0.046 154.2±35.7 349.6±46.2
10 200 0.941 ± 0.029 0.890 ± 0.039 159.7±45.8 357.3±43.8
25 5 0.906 ± 0.051 0.833 ± 0.056 65.5±9.4 128.8±34.6
25 10 0.935 ± 0.035 0.871 ± 0.046 97.7±14.9 233.0±37.2
25 25 0.950 ± 0.028 0.890 ± 0.044 139.8±21.3 334.7±41.4
25 100 0.952 ± 0.030 0.898 ± 0.041 171.7±35.6 349.9±42.0
25 200 0.951 ± 0.028 0.897 ± 0.043 169.8±38.2 353.8±41.7

100 5 0.960 ± 0.026 0.902 ± 0.041 140.9±9.6 121.2±18.8
100 10 0.976 ± 0.017 0.925 ± 0.035 172.1±13.6 231.4±26.9
100 25 0.978 ± 0.018 0.930 ± 0.032 212.1±22.1 333.7±23.8
100 100 0.981 ± 0.013 0.933 ± 0.030 251.2±35.2 349.5±32.3
100 200 0.980 ± 0.016 0.934 ± 0.033 253.1±41.1 352.3±26.4
200 5 0.977 ± 0.017 0.929 ± 0.033 240.1±9.6 123.8±15.2
200 10 0.985 ± 0.012 0.941 ± 0.027 269.9±13.1 235.2±20.0
200 25 0.988 ± 0.010 0.948 ± 0.028 308.4±18.9 331.2±18.5
200 100 0.988 ± 0.010 0.951 ± 0.024 344.9±37.9 352.9±24.0
200 200 0.989 ± 0.009 0.953 ± 0.028 346.4±40.3 350.5±22.1
500 5 0.983 ± 0.014 0.944 ± 0.029 540.8±10.4 123.5±10.9
500 10 0.990 ± 0.009 0.955 ± 0.025 571.8±12.0 233.1±13.0
500 25 0.994 ± 0.006 0.963 ± 0.022 616.3±21.0 332.1±12.7
500 100 0.994 ± 0.006 0.966 ± 0.019 647.2±36.4 353.9±15.2
500 200 0.994 ± 0.006 0.966 ± 0.018 657.6±45.3 353.3±13.6
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Table A.31: Diterpenes52.54, Bagging root, Random leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.815 ± 0.080 0.750 ± 0.072 54.7±11.0 127.7±40.7
10 10 0.863 ± 0.053 0.790 ± 0.058 88.6±14.3 261.8±46.2
10 25 0.892 ± 0.043 0.825 ± 0.052 139.2±25.2 395.8±40.8
10 100 0.888 ± 0.051 0.831 ± 0.055 183.5±41.0 442.1±44.0
10 200 0.895 ± 0.040 0.837 ± 0.048 192.1±43.6 437.9±46.9
25 5 0.842 ± 0.062 0.759 ± 0.059 70.4±12.2 129.1±35.1
25 10 0.882 ± 0.050 0.804 ± 0.056 103.3±16.6 255.1±39.7
25 25 0.908 ± 0.044 0.838 ± 0.049 158.2±22.1 394.7±40.0
25 100 0.914 ± 0.042 0.848 ± 0.051 203.9±47.0 442.8±43.9
25 200 0.907 ± 0.047 0.841 ± 0.051 215.6±51.7 453.6±43.8

100 5 0.913 ± 0.041 0.831 ± 0.048 143.5±10.1 130.4±21.0
100 10 0.933 ± 0.036 0.859 ± 0.050 180.4±15.3 259.5±31.9
100 25 0.951 ± 0.026 0.882 ± 0.042 231.3±23.4 398.7±24.3
100 100 0.956 ± 0.025 0.891 ± 0.040 279.0±41.4 441.2±33.4
100 200 0.956 ± 0.028 0.891 ± 0.043 284.7±42.3 438.4±31.3
200 5 0.946 ± 0.029 0.869 ± 0.044 243.5±11.8 126.7±15.0
200 10 0.965 ± 0.022 0.902 ± 0.036 279.5±15.5 258.6±22.2
200 25 0.972 ± 0.019 0.918 ± 0.034 329.1±24.8 398.5±20.8
200 100 0.969 ± 0.019 0.911 ± 0.033 379.6±39.9 445.2±24.7
200 200 0.971 ± 0.023 0.918 ± 0.036 388.2±45.9 441.2±25.4
500 5 0.964 ± 0.021 0.892 ± 0.039 543.3±12.2 128.5±11.0
500 10 0.980 ± 0.013 0.931 ± 0.029 578.2±14.3 259.1±16.3
500 25 0.985 ± 0.012 0.941 ± 0.028 631.0±25.6 397.8±13.8
500 100 0.984 ± 0.011 0.939 ± 0.027 679.8±37.6 443.0±16.2
500 200 0.985 ± 0.011 0.941 ± 0.025 684.9±42.2 440.6±17.9

Table A.32: Diterpenes54.3, Bagging root, Random leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.885 ± 0.065 0.817 ± 0.067 50.4±10.6 102.4±34.5
10 10 0.935 ± 0.044 0.874 ± 0.058 81.8±13.7 194.7±34.8
10 25 0.949 ± 0.036 0.901 ± 0.047 121.4±20.4 264.4±40.9
10 100 0.949 ± 0.029 0.900 ± 0.042 139.1±32.7 288.8±48.8
10 200 0.948 ± 0.032 0.901 ± 0.045 150.2±38.6 289.1±52.7
25 5 0.937 ± 0.040 0.874 ± 0.054 65.6±10.6 113.0±28.0
25 10 0.954 ± 0.032 0.891 ± 0.052 97.7±15.8 191.7±31.5
25 25 0.964 ± 0.026 0.914 ± 0.041 131.8±22.8 269.8±38.3
25 100 0.968 ± 0.026 0.917 ± 0.042 158.4±31.2 290.4±38.4
25 200 0.967 ± 0.026 0.918 ± 0.036 165.1±45.2 286.9±43.2

100 5 0.974 ± 0.022 0.927 ± 0.034 139.4±9.9 108.1±17.1
100 10 0.982 ± 0.017 0.940 ± 0.034 173.3±16.2 193.2±22.8
100 25 0.986 ± 0.013 0.947 ± 0.030 207.5±20.2 274.6±24.8
100 100 0.988 ± 0.012 0.948 ± 0.033 236.0±31.9 286.9±28.3
100 200 0.989 ± 0.011 0.952 ± 0.023 240.3±37.4 292.2±30.7
200 5 0.985 ± 0.013 0.947 ± 0.029 239.2±10.7 107.5±13.0
200 10 0.990 ± 0.010 0.959 ± 0.025 270.0±13.2 194.3±17.3
200 25 0.993 ± 0.009 0.965 ± 0.024 312.4±20.1 271.5±20.2
200 100 0.993 ± 0.009 0.968 ± 0.023 345.9±35.3 281.9±20.5
200 200 0.993 ± 0.008 0.964 ± 0.025 336.6±34.9 286.8±21.9
500 5 0.991 ± 0.011 0.963 ± 0.022 540.1±9.2 106.9±8.0
500 10 0.994 ± 0.008 0.971 ± 0.019 574.6±15.1 195.6±10.3
500 25 0.996 ± 0.006 0.976 ± 0.019 613.3±24.5 270.8±12.7
500 100 0.996 ± 0.005 0.977 ± 0.019 638.0±31.9 288.0±14.0
500 200 0.996 ± 0.005 0.977 ± 0.017 645.6±40.1 287.1±15.0
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Table A.33: Musk1, Bagging root, Random leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.727 ± 0.199 0.671 ± 0.156 31.9±4.0 62.8±5.7
10 10 0.745 ± 0.193 0.669 ± 0.169 37.6±5.7 67.9±4.8
10 25 0.728 ± 0.162 0.673 ± 0.154 41.9±8.0 71.9±4.9
10 100 0.751 ± 0.157 0.691 ± 0.144 43.4±10.7 71.7±5.0
10 200 0.725 ± 0.149 0.671 ± 0.138 43.3±9.9 72.3±4.3
25 5 0.811 ± 0.148 0.723 ± 0.129 46.3±3.6 62.1±4.7
25 10 0.791 ± 0.148 0.716 ± 0.150 52.7±4.7 69.2±3.4
25 25 0.767 ± 0.154 0.696 ± 0.136 58.4±8.8 70.9±3.6
25 100 0.785 ± 0.150 0.714 ± 0.156 61.1±13.1 71.4±3.6
25 200 0.792 ± 0.151 0.731 ± 0.145 59.6±13.0 72.1±3.7

100 5 0.876 ± 0.118 0.782 ± 0.128 122.2±4.4 61.7±2.0
100 10 0.860 ± 0.125 0.773 ± 0.123 128.3±4.7 69.0±2.0
100 25 0.890 ± 0.107 0.780 ± 0.120 134.6±9.3 71.1±1.7
100 100 0.871 ± 0.118 0.783 ± 0.126 136.2±12.0 71.4±2.2
100 200 0.872 ± 0.105 0.769 ± 0.125 134.8±9.3 71.8±1.9
200 5 0.892 ± 0.103 0.793 ± 0.116 223.3±4.4 61.4±1.5
200 10 0.890 ± 0.108 0.809 ± 0.118 228.5±5.5 69.1±1.5
200 25 0.880 ± 0.109 0.792 ± 0.122 232.6±9.9 71.4±1.5
200 100 0.896 ± 0.099 0.821 ± 0.109 235.9±11.2 71.6±1.6
200 200 0.894 ± 0.108 0.801 ± 0.119 234.4±10.8 71.5±1.5
500 5 0.918 ± 0.086 0.816 ± 0.106 523.0±4.3 61.6±1.2
500 10 0.912 ± 0.089 0.812 ± 0.110 528.1±6.2 69.2±1.0
500 25 0.920 ± 0.081 0.815 ± 0.105 534.9±9.3 71.4±1.1
500 100 0.923 ± 0.077 0.813 ± 0.110 534.3±10.1 71.7±1.1
500 200 0.922 ± 0.083 0.813 ± 0.114 536.8±11.1 71.6±1.1

Table A.34: MutagenesisAll, Bagging root, Random leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.711 ± 0.117 0.694 ± 0.082 39.4±8.7 40.3±10.2
10 10 0.743 ± 0.118 0.716 ± 0.098 63.9±11.9 68.5±12.9
10 25 0.772 ± 0.103 0.730 ± 0.095 121.4±25.6 105.2±13.6
10 100 0.770 ± 0.100 0.724 ± 0.095 308.0±54.7 142.1±7.8
10 200 0.765 ± 0.111 0.721 ± 0.096 478.2±85.5 145.8±6.8
25 5 0.749 ± 0.111 0.705 ± 0.101 53.3±7.4 41.1±10.0
25 10 0.770 ± 0.103 0.733 ± 0.096 81.0±12.7 67.8±15.1
25 25 0.780 ± 0.097 0.741 ± 0.085 136.5±23.0 109.1±11.5
25 100 0.778 ± 0.101 0.738 ± 0.094 332.5±62.0 140.6±7.3
25 200 0.778 ± 0.098 0.738 ± 0.087 495.7±73.7 146.0±6.4

100 5 0.801 ± 0.100 0.741 ± 0.086 129.0±8.5 41.2±5.8
100 10 0.791 ± 0.101 0.749 ± 0.089 153.7±12.7 69.8±8.2
100 25 0.813 ± 0.092 0.760 ± 0.081 213.1±24.9 109.4±9.3
100 100 0.806 ± 0.099 0.759 ± 0.092 392.8±50.7 140.6±5.4
100 200 0.798 ± 0.095 0.751 ± 0.084 564.9±69.3 145.3±5.8
200 5 0.797 ± 0.098 0.744 ± 0.088 230.7±8.7 40.5±4.5
200 10 0.809 ± 0.099 0.761 ± 0.085 255.7±13.4 69.5±6.9
200 25 0.809 ± 0.091 0.773 ± 0.085 312.8±22.2 108.3±6.5
200 100 0.816 ± 0.100 0.767 ± 0.098 497.4±56.0 141.0±5.0
200 200 0.813 ± 0.097 0.760 ± 0.092 662.7±85.4 145.7±4.7
500 5 0.805 ± 0.094 0.741 ± 0.079 534.4±8.4 39.9±2.8
500 10 0.816 ± 0.091 0.774 ± 0.078 559.5±12.9 69.0±4.1
500 25 0.822 ± 0.094 0.780 ± 0.087 618.3±21.1 108.1±4.8
500 100 0.824 ± 0.089 0.774 ± 0.079 791.5±63.1 141.3±3.6
500 200 0.820 ± 0.095 0.768 ± 0.081 969.9±93.1 146.6±3.2
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Table A.35: MutagenesisRF , Bagging root, Random leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.768 ± 0.122 0.727 ± 0.087 37.3±7.8 35.4±10.4
10 10 0.807 ± 0.105 0.771 ± 0.094 62.2±13.1 61.2±12.0
10 25 0.824 ± 0.110 0.793 ± 0.079 114.2±27.4 87.5±11.0
10 100 0.824 ± 0.109 0.780 ± 0.102 267.4±48.6 107.4±7.8
10 200 0.829 ± 0.104 0.795 ± 0.096 403.9±78.5 110.2±6.5
25 5 0.807 ± 0.109 0.751 ± 0.089 53.0±7.8 37.0±8.7
25 10 0.815 ± 0.100 0.764 ± 0.090 79.0±11.9 59.6±10.7
25 25 0.833 ± 0.112 0.798 ± 0.094 129.9±23.1 86.2±9.2
25 100 0.841 ± 0.103 0.799 ± 0.090 287.1±51.9 106.9±6.1
25 200 0.851 ± 0.101 0.805 ± 0.088 425.7±81.3 109.9±6.2

100 5 0.851 ± 0.089 0.778 ± 0.085 128.2±8.7 36.6±5.6
100 10 0.859 ± 0.094 0.803 ± 0.098 154.3±14.0 59.6±7.0
100 25 0.871 ± 0.087 0.829 ± 0.079 205.0±22.1 88.8±6.7
100 100 0.865 ± 0.093 0.821 ± 0.090 362.7±56.1 107.4±5.2
100 200 0.865 ± 0.098 0.814 ± 0.101 494.9±72.9 109.4±4.6
200 5 0.857 ± 0.083 0.777 ± 0.083 230.3±8.6 36.4±3.9
200 10 0.871 ± 0.088 0.821 ± 0.087 253.6±11.0 60.2±4.7
200 25 0.885 ± 0.081 0.835 ± 0.085 308.9±23.9 87.4±4.3
200 100 0.882 ± 0.082 0.822 ± 0.095 461.3±52.7 107.3±4.3
200 200 0.884 ± 0.071 0.836 ± 0.070 611.4±78.3 109.9±4.1
500 5 0.863 ± 0.088 0.791 ± 0.085 536.7±9.3 36.4±2.6
500 10 0.882 ± 0.084 0.832 ± 0.081 559.9±13.3 59.7±3.3
500 25 0.891 ± 0.079 0.836 ± 0.080 609.1±24.0 87.9±3.4
500 100 0.890 ± 0.077 0.843 ± 0.075 756.7±51.1 107.5±3.4
500 200 0.888 ± 0.079 0.830 ± 0.077 912.2±74.6 110.3±3.1

Table A.36: Carcinogenesis, Bagging root, Info leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.567 ± 0.097 0.554 ± 0.088 38.2±8.4 61.0±21.8
10 10 0.577 ± 0.107 0.577 ± 0.090 68.0±12.1 121.5±27.1
10 25 0.603 ± 0.092 0.581 ± 0.073 127.9±22.2 198.0±18.5
10 100 0.589 ± 0.084 0.578 ± 0.079 316.4±56.2 256.2±9.4
10 200 0.584 ± 0.094 0.566 ± 0.077 533.0±99.6 266.0±8.1
25 5 0.582 ± 0.096 0.574 ± 0.076 53.2±7.1 66.6±21.4
25 10 0.594 ± 0.106 0.571 ± 0.089 81.4±10.1 119.7±26.9
25 25 0.585 ± 0.109 0.567 ± 0.085 141.9±20.6 197.6±19.5
25 100 0.591 ± 0.087 0.578 ± 0.086 338.8±56.9 255.5±8.2
25 200 0.585 ± 0.087 0.563 ± 0.085 541.4±76.9 265.8±7.1

100 5 0.597 ± 0.079 0.580 ± 0.063 129.6±8.5 65.5±11.9
100 10 0.612 ± 0.093 0.592 ± 0.079 159.0±12.9 119.7±16.5
100 25 0.611 ± 0.088 0.596 ± 0.075 223.4±22.9 196.0±14.9
100 100 0.591 ± 0.096 0.580 ± 0.083 415.5±53.6 255.6±7.0
100 200 0.600 ± 0.091 0.574 ± 0.086 614.2±76.5 265.3±5.9
200 5 0.609 ± 0.091 0.588 ± 0.074 229.2±8.3 65.6±7.5
200 10 0.618 ± 0.087 0.592 ± 0.073 258.4±13.5 120.3±12.0
200 25 0.617 ± 0.087 0.600 ± 0.076 321.0±20.9 199.3±9.4
200 100 0.603 ± 0.088 0.580 ± 0.078 510.1±57.2 255.9±5.7
200 200 0.602 ± 0.091 0.571 ± 0.079 731.2±95.1 266.0±4.6
500 5 0.612 ± 0.091 0.587 ± 0.078 530.4±8.1 65.6±5.4
500 10 0.623 ± 0.088 0.596 ± 0.070 559.4±14.0 122.8±7.3
500 25 0.627 ± 0.081 0.602 ± 0.073 620.4±21.4 198.1±7.3
500 100 0.615 ± 0.094 0.588 ± 0.079 815.0±51.9 255.6±4.1
500 200 0.612 ± 0.080 0.579 ± 0.072 1011.2±97.1 266.1±3.0
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Table A.37: Diterpenes52.3, Bagging root, Info leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.866 ± 0.063 0.786 ± 0.075 50.5±9.9 118.8±40.9
10 10 0.920 ± 0.038 0.851 ± 0.047 79.6±13.5 231.5±43.9
10 25 0.936 ± 0.037 0.881 ± 0.047 116.6±18.9 320.5±42.9
10 100 0.939 ± 0.032 0.894 ± 0.042 151.4±35.7 342.2±40.2
10 200 0.934 ± 0.035 0.885 ± 0.044 158.2±48.3 344.8±43.5
25 5 0.902 ± 0.053 0.825 ± 0.068 65.0±10.8 115.0±31.4
25 10 0.941 ± 0.036 0.875 ± 0.051 94.7±15.2 230.2±41.5
25 25 0.948 ± 0.028 0.890 ± 0.040 135.7±22.4 329.4±34.3
25 100 0.954 ± 0.025 0.897 ± 0.038 165.6±36.2 344.3±42.5
25 200 0.956 ± 0.026 0.898 ± 0.038 172.9±45.1 345.5±40.2

100 5 0.964 ± 0.024 0.907 ± 0.041 139.2±11.1 124.4±21.6
100 10 0.975 ± 0.018 0.926 ± 0.035 169.5±12.5 231.5±28.3
100 25 0.980 ± 0.015 0.931 ± 0.032 208.1±22.9 324.9±29.1
100 100 0.979 ± 0.015 0.930 ± 0.032 249.2±35.1 346.7±27.6
100 200 0.982 ± 0.012 0.936 ± 0.031 244.6±42.6 346.4±29.6
200 5 0.975 ± 0.019 0.925 ± 0.034 238.9±10.1 121.5±14.1
200 10 0.985 ± 0.013 0.942 ± 0.031 272.2±13.0 230.8±17.9
200 25 0.987 ± 0.010 0.947 ± 0.024 310.6±22.7 323.7±18.7
200 100 0.990 ± 0.009 0.953 ± 0.025 348.1±34.3 349.3±21.5
200 200 0.987 ± 0.011 0.950 ± 0.027 346.9±38.5 348.0±20.5
500 5 0.983 ± 0.014 0.946 ± 0.027 539.0±9.1 120.4±9.8
500 10 0.991 ± 0.008 0.957 ± 0.023 571.5±13.7 230.2±12.1
500 25 0.994 ± 0.007 0.965 ± 0.021 616.0±19.1 326.5±12.7
500 100 0.994 ± 0.007 0.965 ± 0.022 647.4±38.2 346.4±12.2
500 200 0.994 ± 0.007 0.966 ± 0.021 648.5±39.4 345.3±13.9

Table A.38: Diterpenes52.54, Bagging root, Info leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.811 ± 0.071 0.746 ± 0.065 52.8±12.2 124.4±44.1
10 10 0.864 ± 0.057 0.793 ± 0.064 87.3±17.0 258.7±51.2
10 25 0.894 ± 0.044 0.834 ± 0.048 134.0±22.0 391.2±40.0
10 100 0.894 ± 0.039 0.832 ± 0.046 189.6±41.7 437.8±47.1
10 200 0.895 ± 0.045 0.837 ± 0.044 196.5±50.0 442.0±45.4
25 5 0.840 ± 0.063 0.760 ± 0.062 68.4±11.9 126.7±34.1
25 10 0.881 ± 0.059 0.806 ± 0.064 104.4±15.7 254.9±44.5
25 25 0.907 ± 0.040 0.836 ± 0.048 151.3±23.5 391.1±36.2
25 100 0.913 ± 0.041 0.846 ± 0.048 211.6±45.8 436.4±43.3
25 200 0.911 ± 0.043 0.845 ± 0.054 213.2±53.3 440.4±45.2

100 5 0.907 ± 0.045 0.826 ± 0.054 142.5±10.5 123.4±21.1
100 10 0.941 ± 0.030 0.868 ± 0.043 179.1±15.1 257.4±30.9
100 25 0.948 ± 0.029 0.879 ± 0.044 227.3±23.0 393.9±26.5
100 100 0.955 ± 0.025 0.887 ± 0.042 275.3±37.4 433.0±29.1
100 200 0.952 ± 0.026 0.883 ± 0.042 290.5±52.0 437.6±31.7
200 5 0.942 ± 0.029 0.868 ± 0.046 243.2±11.9 125.3±16.1
200 10 0.962 ± 0.025 0.899 ± 0.040 277.0±15.3 257.3±23.7
200 25 0.973 ± 0.017 0.917 ± 0.032 323.9±22.5 393.6±20.0
200 100 0.971 ± 0.019 0.913 ± 0.037 381.0±50.2 435.4±22.5
200 200 0.974 ± 0.017 0.916 ± 0.035 386.4±52.9 432.1±24.9
500 5 0.963 ± 0.024 0.895 ± 0.037 543.3±11.3 125.7±12.1
500 10 0.978 ± 0.015 0.927 ± 0.031 579.4±15.4 256.4±16.1
500 25 0.984 ± 0.013 0.938 ± 0.030 627.5±23.9 395.4±14.5
500 100 0.985 ± 0.011 0.938 ± 0.028 679.2±46.3 433.2±18.9
500 200 0.985 ± 0.011 0.940 ± 0.026 682.9±48.1 433.2±12.5
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Table A.39: Diterpenes54.3, Bagging root, Info leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.896 ± 0.054 0.821 ± 0.061 50.2±11.3 109.1±33.0
10 10 0.936 ± 0.040 0.878 ± 0.052 83.3±16.1 200.2±33.9
10 25 0.947 ± 0.033 0.901 ± 0.045 117.4±23.7 268.4±42.5
10 100 0.955 ± 0.030 0.912 ± 0.042 146.1±27.7 269.7±51.5
10 200 0.950 ± 0.031 0.905 ± 0.043 150.5±42.0 273.7±51.0
25 5 0.920 ± 0.048 0.848 ± 0.067 66.1±10.8 110.0±30.0
25 10 0.956 ± 0.030 0.899 ± 0.046 91.1±13.3 189.1±34.2
25 25 0.966 ± 0.028 0.914 ± 0.042 131.1±22.7 254.4±37.6
25 100 0.970 ± 0.026 0.922 ± 0.039 162.2±37.1 270.4±44.2
25 200 0.965 ± 0.025 0.919 ± 0.035 161.9±38.7 281.6±42.5

100 5 0.979 ± 0.018 0.935 ± 0.038 138.1±10.2 105.3±15.6
100 10 0.981 ± 0.018 0.937 ± 0.036 170.2±12.4 190.7±22.3
100 25 0.984 ± 0.014 0.942 ± 0.034 208.6±22.6 269.2±25.4
100 100 0.986 ± 0.011 0.948 ± 0.027 234.5±37.1 282.6±33.2
100 200 0.989 ± 0.010 0.953 ± 0.024 235.5±41.3 281.6±28.2
200 5 0.986 ± 0.013 0.951 ± 0.028 240.1±8.9 106.9±13.0
200 10 0.990 ± 0.013 0.959 ± 0.025 272.3±14.3 191.5±17.7
200 25 0.993 ± 0.009 0.966 ± 0.023 308.1±22.7 263.4±19.0
200 100 0.993 ± 0.009 0.963 ± 0.025 334.7±35.0 279.4±22.4
200 200 0.993 ± 0.009 0.964 ± 0.023 338.1±39.5 279.6±26.0
500 5 0.991 ± 0.010 0.962 ± 0.024 540.3±9.7 105.3±7.3
500 10 0.994 ± 0.008 0.973 ± 0.019 573.7±15.8 189.9±10.9
500 25 0.996 ± 0.005 0.979 ± 0.016 602.7±19.3 263.8±13.2
500 100 0.996 ± 0.006 0.980 ± 0.015 635.3±36.6 278.9±12.1
500 200 0.996 ± 0.005 0.974 ± 0.018 639.5±40.4 278.4±13.6

Table A.40: Musk1, Bagging root, Info leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.738 ± 0.177 0.677 ± 0.152 31.2±4.1 58.9±6.3
10 10 0.754 ± 0.163 0.689 ± 0.140 38.0±5.4 65.2±5.5
10 25 0.746 ± 0.161 0.678 ± 0.158 41.4±7.8 67.4±5.3
10 100 0.732 ± 0.171 0.680 ± 0.152 45.2±10.9 66.9±5.1
10 200 0.740 ± 0.159 0.682 ± 0.147 44.5±11.7 68.3±4.8
25 5 0.785 ± 0.168 0.731 ± 0.153 46.9±4.0 58.7±3.6
25 10 0.810 ± 0.147 0.737 ± 0.134 52.6±5.8 64.9±3.4
25 25 0.787 ± 0.135 0.719 ± 0.137 58.4±9.3 67.2±3.8
25 100 0.771 ± 0.158 0.704 ± 0.156 58.0±11.5 67.5±3.9
25 200 0.787 ± 0.153 0.706 ± 0.132 59.5±11.4 67.7±3.7

100 5 0.879 ± 0.116 0.789 ± 0.128 122.0±4.2 58.9±2.0
100 10 0.887 ± 0.101 0.784 ± 0.111 128.1±6.2 65.5±2.0
100 25 0.871 ± 0.124 0.785 ± 0.127 133.2±8.1 67.4±2.5
100 100 0.872 ± 0.112 0.783 ± 0.115 135.2±12.0 67.3±2.3
100 200 0.862 ± 0.128 0.776 ± 0.134 136.8±13.2 67.9±2.0
200 5 0.901 ± 0.103 0.802 ± 0.108 221.9±3.9 58.4±1.6
200 10 0.897 ± 0.086 0.800 ± 0.116 227.6±5.3 65.3±1.3
200 25 0.900 ± 0.107 0.797 ± 0.127 234.2±9.1 67.3±1.5
200 100 0.887 ± 0.103 0.793 ± 0.121 234.7±11.1 67.4±1.6
200 200 0.906 ± 0.096 0.807 ± 0.126 235.1±12.7 67.7±1.6
500 5 0.926 ± 0.085 0.827 ± 0.111 523.3±4.4 58.4±1.2
500 10 0.925 ± 0.084 0.825 ± 0.113 528.2±5.6 65.3±1.0
500 25 0.926 ± 0.083 0.826 ± 0.109 534.1±8.8 67.3±1.2
500 100 0.922 ± 0.072 0.811 ± 0.098 536.6±11.4 67.5±1.3
500 200 0.917 ± 0.084 0.823 ± 0.098 534.4±10.2 67.6±1.0
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Table A.41: MutagenesisAll, Bagging root, Info leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.727 ± 0.111 0.692 ± 0.089 37.9±8.1 41.2±11.6
10 10 0.739 ± 0.115 0.715 ± 0.098 66.5±14.6 70.2±12.7
10 25 0.762 ± 0.095 0.733 ± 0.088 122.7±25.8 106.1±12.4
10 100 0.780 ± 0.100 0.735 ± 0.096 306.9±52.0 140.6±8.4
10 200 0.778 ± 0.098 0.739 ± 0.090 476.0±84.8 145.0±8.3
25 5 0.750 ± 0.109 0.703 ± 0.092 52.9±7.5 40.4±9.8
25 10 0.765 ± 0.099 0.721 ± 0.089 80.2±12.8 67.7±13.2
25 25 0.786 ± 0.094 0.737 ± 0.086 137.5±27.0 108.4±12.1
25 100 0.790 ± 0.106 0.747 ± 0.094 311.1±54.4 141.4±7.6
25 200 0.783 ± 0.105 0.737 ± 0.087 487.6±75.7 147.3±7.2

100 5 0.790 ± 0.098 0.731 ± 0.088 128.5±7.7 40.4±5.5
100 10 0.799 ± 0.099 0.754 ± 0.090 157.0±13.5 69.5±9.0
100 25 0.802 ± 0.094 0.758 ± 0.091 212.3±24.7 109.1±8.9
100 100 0.799 ± 0.097 0.749 ± 0.084 400.9±58.2 140.4±6.4
100 200 0.800 ± 0.099 0.753 ± 0.084 573.9±87.2 145.9±5.5
200 5 0.800 ± 0.098 0.743 ± 0.080 230.8±8.4 40.3±3.8
200 10 0.810 ± 0.091 0.765 ± 0.081 256.8±13.3 68.6±5.7
200 25 0.814 ± 0.091 0.776 ± 0.085 317.6±26.2 107.6±6.5
200 100 0.811 ± 0.088 0.756 ± 0.079 497.3±49.9 140.1±4.8
200 200 0.813 ± 0.092 0.761 ± 0.082 676.6±72.2 145.6±5.2
500 5 0.804 ± 0.100 0.742 ± 0.081 533.6±7.6 40.4±3.1
500 10 0.812 ± 0.094 0.773 ± 0.084 555.8±13.6 69.0±4.5
500 25 0.813 ± 0.089 0.776 ± 0.085 620.2±24.8 107.8±4.7
500 100 0.825 ± 0.088 0.774 ± 0.085 799.0±53.2 140.5±3.6
500 200 0.822 ± 0.089 0.770 ± 0.081 976.1±100.8 145.6±3.8

Table A.42: MutagenesisRF , Bagging root, Info leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.779 ± 0.105 0.735 ± 0.087 37.4±7.6 36.6±10.2
10 10 0.805 ± 0.113 0.766 ± 0.087 63.9±11.8 60.8±10.5
10 25 0.813 ± 0.106 0.783 ± 0.087 118.1±25.2 86.9±10.4
10 100 0.817 ± 0.108 0.790 ± 0.099 272.5±54.2 107.7±7.1
10 200 0.822 ± 0.099 0.776 ± 0.091 403.4±76.5 110.7±8.1
25 5 0.798 ± 0.126 0.751 ± 0.089 54.0±9.9 36.7±8.5
25 10 0.824 ± 0.103 0.772 ± 0.084 77.4±13.1 58.7±10.8
25 25 0.839 ± 0.094 0.804 ± 0.089 126.0±23.3 87.3±9.4
25 100 0.844 ± 0.096 0.807 ± 0.083 286.2±53.6 107.1±7.4
25 200 0.849 ± 0.089 0.811 ± 0.084 424.4±76.8 109.2±6.3

100 5 0.848 ± 0.105 0.773 ± 0.087 131.4±8.3 36.0±4.0
100 10 0.860 ± 0.084 0.803 ± 0.085 154.4±12.8 59.7±6.5
100 25 0.872 ± 0.088 0.817 ± 0.079 204.4±24.4 87.9±6.9
100 100 0.874 ± 0.080 0.817 ± 0.082 356.0±50.7 106.7±4.9
100 200 0.869 ± 0.087 0.817 ± 0.069 529.9±81.2 109.0±5.3
200 5 0.864 ± 0.086 0.787 ± 0.095 229.5±8.2 36.4±3.8
200 10 0.872 ± 0.086 0.824 ± 0.090 256.2±13.7 60.3±5.7
200 25 0.883 ± 0.086 0.838 ± 0.082 312.7±24.0 87.5±5.2
200 100 0.889 ± 0.077 0.830 ± 0.086 465.0±52.9 106.9±4.2
200 200 0.882 ± 0.081 0.824 ± 0.074 617.4±88.5 109.5±3.5
500 5 0.864 ± 0.084 0.803 ± 0.086 534.3±8.7 36.3±2.5
500 10 0.878 ± 0.084 0.828 ± 0.078 557.4±11.7 60.0±3.1
500 25 0.891 ± 0.078 0.834 ± 0.079 611.4±22.8 88.3±3.3
500 100 0.891 ± 0.079 0.841 ± 0.081 758.6±54.2 107.4±2.9
500 200 0.890 ± 0.080 0.837 ± 0.080 916.1±88.6 109.5±2.8
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Table A.43: Carcinogenesis, Unique root, Normal leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.563 ± 0.093 0.553 ± 0.082 40.6±7.8 83.0±32.4
10 10 0.576 ± 0.101 0.566 ± 0.084 68.8±12.2 160.7±42.2
10 25 0.574 ± 0.088 0.568 ± 0.082 134.0±25.1 277.5±29.5
10 100 0.570 ± 0.100 0.565 ± 0.093 325.8±55.1 383.1±19.9
10 200 0.557 ± 0.085 0.548 ± 0.073 546.6±93.5 405.1±13.8
25 5 0.575 ± 0.109 0.571 ± 0.077 58.5±9.1 82.6±23.1
25 10 0.580 ± 0.094 0.577 ± 0.080 92.9±14.2 158.4±35.3
25 25 0.593 ± 0.096 0.582 ± 0.083 157.6±24.1 280.6±28.7
25 100 0.577 ± 0.089 0.567 ± 0.079 355.8±56.6 384.9±14.2
25 200 0.587 ± 0.097 0.569 ± 0.088 582.7±98.7 406.3±13.6

100 5 0.600 ± 0.088 0.590 ± 0.077 133.1±8.1 81.5±12.0
100 10 0.598 ± 0.099 0.587 ± 0.087 168.7±15.4 158.4±24.5
100 25 0.597 ± 0.079 0.582 ± 0.075 250.0±22.3 276.0±22.2
100 100 0.607 ± 0.084 0.577 ± 0.076 526.0±59.0 384.6±12.0
100 200 0.605 ± 0.100 0.578 ± 0.085 785.2±110.4 404.4±8.9
200 5 0.599 ± 0.090 0.588 ± 0.072 233.9±8.6 81.1±10.9
200 10 0.602 ± 0.083 0.584 ± 0.069 268.4±13.0 154.7±19.7
200 25 0.607 ± 0.091 0.588 ± 0.080 351.2±24.9 281.0±18.9
200 100 0.603 ± 0.084 0.573 ± 0.074 626.6±52.7 384.5±10.8
200 200 0.602 ± 0.085 0.572 ± 0.072 942.6±97.0 404.9±7.2
500 5 0.610 ± 0.090 0.592 ± 0.075 534.5±9.5 80.7±5.7
500 10 0.623 ± 0.090 0.592 ± 0.077 568.9±13.6 160.8±10.5
500 25 0.622 ± 0.080 0.598 ± 0.067 648.1±21.5 279.0±11.6
500 100 0.613 ± 0.084 0.572 ± 0.070 943.8±59.9 382.7±8.1
500 200 0.609 ± 0.087 0.588 ± 0.075 1259.2±95.3 405.5±7.2

Table A.44: Diterpenes52.3, Unique root, Normal leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.853 ± 0.071 0.779 ± 0.074 50.4±10.9 146.2±52.3
10 10 0.900 ± 0.046 0.845 ± 0.054 82.4±14.3 297.3±63.3
10 25 0.909 ± 0.042 0.874 ± 0.041 133.9±24.0 466.3±69.1
10 100 0.902 ± 0.043 0.878 ± 0.039 181.1±44.0 508.0±69.9
10 200 0.900 ± 0.043 0.877 ± 0.045 182.1±45.0 505.9±69.4
25 5 0.901 ± 0.051 0.822 ± 0.058 66.5±11.8 138.7±33.0
25 10 0.926 ± 0.036 0.859 ± 0.047 101.0±16.3 291.1±62.8
25 25 0.935 ± 0.035 0.885 ± 0.041 150.0±19.4 459.9±54.4
25 100 0.929 ± 0.035 0.888 ± 0.042 194.0±46.0 516.6±65.5
25 200 0.936 ± 0.034 0.890 ± 0.045 194.8±46.6 513.5±65.3

100 5 0.955 ± 0.027 0.889 ± 0.045 144.3±10.7 144.7±27.4
100 10 0.967 ± 0.020 0.911 ± 0.038 183.6±14.9 297.2±37.5
100 25 0.974 ± 0.019 0.919 ± 0.037 236.4±24.5 466.6±38.2
100 100 0.974 ± 0.020 0.924 ± 0.034 278.7±44.5 507.9±41.6
100 200 0.977 ± 0.019 0.928 ± 0.035 287.9±49.9 507.0±43.4
200 5 0.972 ± 0.022 0.920 ± 0.040 244.1±11.4 145.8±17.8
200 10 0.981 ± 0.014 0.938 ± 0.030 283.8±14.2 303.3±26.4
200 25 0.986 ± 0.011 0.947 ± 0.022 342.4±21.9 460.9±29.4
200 100 0.987 ± 0.012 0.948 ± 0.030 411.0±40.8 514.8±38.5
200 200 0.989 ± 0.010 0.953 ± 0.023 424.5±44.3 509.0±32.9
500 5 0.982 ± 0.013 0.938 ± 0.029 544.8±9.5 145.0±12.0
500 10 0.990 ± 0.010 0.954 ± 0.026 584.6±15.7 299.4±19.0
500 25 0.993 ± 0.007 0.963 ± 0.022 649.0±27.9 462.6±21.8
500 100 0.994 ± 0.006 0.963 ± 0.021 774.3±43.5 509.7±23.1
500 200 0.995 ± 0.005 0.968 ± 0.020 870.2±46.5 511.1±20.3
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Table A.45: Diterpenes52.54, Unique root, Normal leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.787 ± 0.082 0.723 ± 0.077 52.1±12.5 143.4±51.3
10 10 0.843 ± 0.061 0.775 ± 0.064 91.9±15.7 333.4±68.1
10 25 0.852 ± 0.052 0.814 ± 0.054 147.9±24.7 561.5±64.5
10 100 0.856 ± 0.048 0.831 ± 0.048 213.7±49.9 650.6±77.6
10 200 0.859 ± 0.047 0.837 ± 0.050 219.5±55.1 631.7±76.6
25 5 0.823 ± 0.068 0.748 ± 0.068 68.3±12.8 154.8±46.4
25 10 0.863 ± 0.058 0.787 ± 0.062 110.9±17.9 326.2±60.8
25 25 0.885 ± 0.047 0.828 ± 0.051 159.0±23.6 556.0±60.5
25 100 0.886 ± 0.049 0.838 ± 0.052 231.7±42.4 646.4±63.7
25 200 0.884 ± 0.050 0.836 ± 0.051 242.4±57.0 647.0±71.5

100 5 0.909 ± 0.051 0.830 ± 0.058 147.3±11.5 151.0±30.3
100 10 0.931 ± 0.035 0.860 ± 0.045 189.5±16.6 329.5±38.3
100 25 0.940 ± 0.029 0.871 ± 0.045 260.9±29.1 553.6±43.5
100 100 0.944 ± 0.032 0.873 ± 0.047 315.9±39.3 645.7±52.3
100 200 0.948 ± 0.029 0.883 ± 0.038 329.8±59.6 640.5±51.3
200 5 0.933 ± 0.037 0.852 ± 0.050 247.6±12.2 154.3±18.8
200 10 0.952 ± 0.026 0.888 ± 0.041 290.9±17.0 328.5±33.6
200 25 0.965 ± 0.020 0.906 ± 0.038 366.8±28.0 555.1±30.2
200 100 0.969 ± 0.017 0.913 ± 0.032 459.5±51.9 639.5±34.1
200 200 0.970 ± 0.018 0.909 ± 0.031 479.9±59.3 642.5±42.3
500 5 0.960 ± 0.025 0.889 ± 0.041 549.1±12.4 152.3±13.1
500 10 0.976 ± 0.016 0.924 ± 0.035 589.7±13.8 331.4±20.5
500 25 0.983 ± 0.013 0.937 ± 0.027 659.9±25.2 558.2±26.0
500 100 0.983 ± 0.011 0.937 ± 0.028 806.8±49.2 641.2±30.0
500 200 0.987 ± 0.009 0.945 ± 0.025 909.6±55.9 638.3±22.3

Table A.46: Diterpenes54.3, Unique root, Normal leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.875 ± 0.058 0.808 ± 0.064 51.0±11.5 129.0±45.7
10 10 0.915 ± 0.047 0.859 ± 0.058 82.3±14.5 254.1±53.5
10 25 0.922 ± 0.038 0.892 ± 0.042 128.8±20.8 386.1±62.7
10 100 0.918 ± 0.041 0.894 ± 0.048 163.9±40.0 409.6±60.2
10 200 0.923 ± 0.040 0.901 ± 0.043 170.1±42.6 416.1±59.0
25 5 0.916 ± 0.048 0.846 ± 0.062 67.8±11.1 123.6±27.7
25 10 0.933 ± 0.044 0.876 ± 0.056 99.1±15.7 249.8±53.7
25 25 0.947 ± 0.032 0.896 ± 0.047 144.4±23.9 376.8±58.0
25 100 0.948 ± 0.034 0.907 ± 0.042 184.8±42.9 406.9±63.2
25 200 0.947 ± 0.032 0.911 ± 0.041 197.9±49.6 419.3±62.0

100 5 0.969 ± 0.021 0.915 ± 0.041 145.2±10.3 129.1±20.0
100 10 0.980 ± 0.017 0.937 ± 0.034 184.0±17.5 251.0±35.2
100 25 0.984 ± 0.016 0.943 ± 0.030 238.1±26.0 375.7±37.1
100 100 0.984 ± 0.013 0.941 ± 0.032 277.6±44.3 413.1±43.7
100 200 0.986 ± 0.012 0.946 ± 0.030 279.7±45.4 414.9±43.4
200 5 0.982 ± 0.014 0.939 ± 0.032 245.9±12.2 126.4±15.7
200 10 0.989 ± 0.011 0.953 ± 0.027 285.2±18.1 251.5±23.2
200 25 0.992 ± 0.009 0.960 ± 0.024 348.5±24.1 375.5±29.0
200 100 0.993 ± 0.010 0.965 ± 0.024 409.2±41.6 419.5±31.8
200 200 0.993 ± 0.007 0.961 ± 0.021 424.4±46.4 411.9±34.0
500 5 0.990 ± 0.011 0.963 ± 0.021 544.5±12.7 130.6±11.5
500 10 0.993 ± 0.010 0.967 ± 0.022 583.9±16.8 255.5±15.5
500 25 0.996 ± 0.007 0.977 ± 0.018 642.7±23.6 377.2±18.4
500 100 0.996 ± 0.006 0.974 ± 0.019 764.1±38.8 414.7±23.0
500 200 0.997 ± 0.005 0.978 ± 0.016 862.9±43.5 415.1±19.9
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Table A.47: Musk1, Unique root, Normal leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.724 ± 0.158 0.665 ± 0.136 34.2±4.9 84.8±12.2
10 10 0.701 ± 0.171 0.654 ± 0.157 42.7±5.8 103.6±8.2
10 25 0.680 ± 0.175 0.644 ± 0.170 51.3±9.7 109.4±9.3
10 100 0.717 ± 0.190 0.667 ± 0.170 53.3±14.1 109.1±8.6
10 200 0.714 ± 0.168 0.668 ± 0.151 51.1±13.9 108.6±9.4
25 5 0.732 ± 0.185 0.683 ± 0.151 48.6±4.4 85.1±8.8
25 10 0.736 ± 0.183 0.667 ± 0.168 56.9±5.7 102.8±6.9
25 25 0.746 ± 0.153 0.695 ± 0.144 65.1±10.6 109.4±7.5
25 100 0.752 ± 0.172 0.682 ± 0.171 70.3±17.3 107.7±8.2
25 200 0.752 ± 0.164 0.689 ± 0.151 70.7±13.7 108.2±7.6

100 5 0.856 ± 0.126 0.770 ± 0.142 127.1±5.6 84.0±4.5
100 10 0.853 ± 0.131 0.771 ± 0.122 136.7±6.3 102.5±4.1
100 25 0.843 ± 0.112 0.761 ± 0.121 146.2±10.3 108.7±4.2
100 100 0.850 ± 0.129 0.763 ± 0.121 147.1±14.4 110.1±4.6
100 200 0.829 ± 0.134 0.749 ± 0.143 147.6±13.3 109.9±4.0
200 5 0.896 ± 0.103 0.801 ± 0.128 228.5±5.1 83.9±3.5
200 10 0.878 ± 0.103 0.772 ± 0.113 241.6±5.8 101.6±2.9
200 25 0.893 ± 0.112 0.811 ± 0.122 253.0±11.1 108.7±2.9
200 100 0.894 ± 0.119 0.801 ± 0.125 258.1±14.1 109.5±3.2
200 200 0.905 ± 0.093 0.812 ± 0.113 259.2±16.6 109.6±3.2
500 5 0.917 ± 0.092 0.824 ± 0.110 529.0±4.9 84.6±1.9
500 10 0.920 ± 0.086 0.826 ± 0.113 542.0±6.0 101.8±2.0
500 25 0.919 ± 0.087 0.819 ± 0.114 565.4±10.8 109.0±2.0
500 100 0.909 ± 0.094 0.825 ± 0.109 618.8±18.3 109.4±2.1
500 200 0.916 ± 0.082 0.813 ± 0.108 617.5±20.9 109.6±2.0
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Table A.48: MutagenesisAll, Unique root, Normal leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.736 ± 0.095 0.702 ± 0.091 41.3±9.6 48.6±13.3
10 10 0.753 ± 0.111 0.719 ± 0.094 66.6±13.6 87.2±20.4
10 25 0.746 ± 0.106 0.726 ± 0.091 124.2±23.0 147.9±19.4
10 100 0.737 ± 0.094 0.715 ± 0.084 305.2±52.8 200.6±13.0
10 200 0.745 ± 0.092 0.721 ± 0.088 474.4±66.0 208.4±12.1
25 5 0.768 ± 0.105 0.723 ± 0.089 58.5±8.4 53.6±12.8
25 10 0.766 ± 0.104 0.746 ± 0.089 90.3±13.9 91.1±17.5
25 25 0.780 ± 0.113 0.747 ± 0.089 153.1±25.0 145.5±17.0
25 100 0.773 ± 0.102 0.731 ± 0.083 347.0±65.8 199.8±10.8
25 200 0.774 ± 0.089 0.735 ± 0.087 524.8±91.5 210.2±11.1

100 5 0.794 ± 0.100 0.731 ± 0.080 134.0±9.9 52.9±6.9
100 10 0.784 ± 0.098 0.750 ± 0.091 165.7±12.7 90.9±11.7
100 25 0.795 ± 0.091 0.749 ± 0.075 247.2±24.3 147.9±13.3
100 100 0.795 ± 0.095 0.750 ± 0.092 515.6±59.8 199.6±8.2
100 200 0.807 ± 0.092 0.757 ± 0.096 756.7±76.1 209.0±7.9
200 5 0.799 ± 0.094 0.746 ± 0.080 234.2±8.3 52.9±6.3
200 10 0.809 ± 0.093 0.762 ± 0.088 265.6±14.6 89.8±9.1
200 25 0.815 ± 0.096 0.766 ± 0.084 342.7±26.6 146.6±12.5
200 100 0.800 ± 0.091 0.755 ± 0.092 617.6±55.2 199.7±8.6
200 200 0.804 ± 0.091 0.757 ± 0.084 893.3±81.9 209.8±6.9
500 5 0.805 ± 0.096 0.752 ± 0.086 534.8±8.7 52.7±4.0
500 10 0.812 ± 0.101 0.763 ± 0.082 566.5±14.0 90.8±5.6
500 25 0.820 ± 0.091 0.773 ± 0.087 643.0±23.1 147.4±9.0
500 100 0.814 ± 0.092 0.763 ± 0.086 913.9±53.5 199.6±6.6
500 200 0.809 ± 0.096 0.755 ± 0.093 1207.8±89.4 210.5±6.2

Table A.49: MutagenesisRF , Unique root, Normal leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.758 ± 0.127 0.741 ± 0.086 40.1±8.6 48.8±11.9
10 10 0.809 ± 0.103 0.779 ± 0.084 64.3±12.6 80.4±14.2
10 25 0.808 ± 0.120 0.786 ± 0.099 115.8±22.5 121.4±15.7
10 100 0.817 ± 0.109 0.797 ± 0.098 271.4±53.1 151.9±11.8
10 200 0.807 ± 0.103 0.785 ± 0.085 415.9±83.7 156.0±12.0
25 5 0.793 ± 0.116 0.755 ± 0.089 57.5±7.5 48.1±10.2
25 10 0.845 ± 0.093 0.791 ± 0.082 86.2±11.6 79.9±14.0
25 25 0.844 ± 0.107 0.808 ± 0.089 138.5±26.6 122.6±13.8
25 100 0.831 ± 0.086 0.786 ± 0.083 297.3±48.5 151.6±9.7
25 200 0.844 ± 0.091 0.798 ± 0.086 441.7±79.3 156.0±10.1

100 5 0.842 ± 0.094 0.781 ± 0.096 132.3±8.1 49.8±7.0
100 10 0.863 ± 0.097 0.808 ± 0.097 162.7±13.1 78.8±9.4
100 25 0.880 ± 0.082 0.822 ± 0.088 233.0±23.3 120.9±8.6
100 100 0.875 ± 0.084 0.817 ± 0.082 471.5±58.4 152.1±7.5
100 200 0.873 ± 0.088 0.820 ± 0.079 694.2±80.8 156.6±5.9
200 5 0.860 ± 0.096 0.804 ± 0.089 233.5±7.8 48.0±5.3
200 10 0.881 ± 0.079 0.822 ± 0.083 261.2±11.9 79.3±6.8
200 25 0.884 ± 0.086 0.823 ± 0.091 339.2±25.5 118.5±8.2
200 100 0.894 ± 0.079 0.839 ± 0.076 574.5±54.9 152.4±6.4
200 200 0.878 ± 0.083 0.813 ± 0.080 821.6±80.8 157.1±5.5
500 5 0.868 ± 0.080 0.811 ± 0.082 531.6±7.5 48.5±2.9
500 10 0.886 ± 0.083 0.823 ± 0.081 564.5±14.0 79.5±4.8
500 25 0.898 ± 0.078 0.844 ± 0.079 635.9±25.2 121.1±5.0
500 100 0.893 ± 0.079 0.838 ± 0.081 879.3±46.6 152.3±5.6
500 200 0.886 ± 0.078 0.832 ± 0.078 1140.6±75.0 156.5±4.7
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Table A.50: Carcinogenesis, Unique root, Random leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.581 ± 0.091 0.563 ± 0.075 40.9±8.9 90.7±29.5
10 10 0.589 ± 0.090 0.573 ± 0.076 69.6±14.9 172.9±40.2
10 25 0.574 ± 0.091 0.570 ± 0.085 131.8±22.9 297.2±31.8
10 100 0.570 ± 0.087 0.563 ± 0.077 332.8±54.0 392.5±15.7
10 200 0.573 ± 0.091 0.563 ± 0.080 527.4±95.2 408.4±12.7
25 5 0.569 ± 0.107 0.559 ± 0.082 59.2±7.8 89.7±27.4
25 10 0.586 ± 0.087 0.578 ± 0.071 90.7±15.6 166.7±39.2
25 25 0.596 ± 0.089 0.579 ± 0.075 153.6±27.1 290.8±28.0
25 100 0.583 ± 0.091 0.572 ± 0.083 345.0±56.2 389.8±13.8
25 200 0.575 ± 0.090 0.569 ± 0.084 555.7±104.5 407.4±12.7

100 5 0.597 ± 0.102 0.581 ± 0.081 134.8±9.1 87.9±15.2
100 10 0.608 ± 0.088 0.582 ± 0.086 169.0±14.0 167.5±20.4
100 25 0.604 ± 0.089 0.578 ± 0.072 251.6±21.5 287.0±21.6
100 100 0.611 ± 0.083 0.578 ± 0.080 511.8±61.5 390.1±11.2
100 200 0.585 ± 0.091 0.563 ± 0.084 744.4±115.5 407.7±9.0
200 5 0.599 ± 0.086 0.574 ± 0.070 235.7±9.6 88.8±11.5
200 10 0.606 ± 0.092 0.587 ± 0.085 269.6±14.8 170.5±18.7
200 25 0.604 ± 0.084 0.588 ± 0.072 351.0±23.5 290.4±18.6
200 100 0.603 ± 0.093 0.581 ± 0.082 630.5±61.0 391.0±9.3
200 200 0.599 ± 0.088 0.575 ± 0.079 933.5±100.6 408.5±7.6
500 5 0.607 ± 0.086 0.580 ± 0.066 534.0±8.8 88.0±7.8
500 10 0.625 ± 0.080 0.592 ± 0.072 570.2±13.4 169.5±12.4
500 25 0.627 ± 0.089 0.601 ± 0.080 650.8±21.0 292.1±11.7
500 100 0.605 ± 0.078 0.588 ± 0.067 913.6±53.3 388.8±7.3
500 200 0.602 ± 0.081 0.566 ± 0.071 1261.2±100.9 409.6±6.6

Table A.51: Diterpenes52.3, Unique root, Random leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.881 ± 0.059 0.809 ± 0.063 52.2±11.1 167.4±56.7
10 10 0.908 ± 0.044 0.852 ± 0.052 83.2±16.1 322.7±63.0
10 25 0.929 ± 0.038 0.894 ± 0.040 124.6±20.4 452.1±56.8
10 100 0.921 ± 0.036 0.889 ± 0.042 159.2±36.0 494.0±62.6
10 200 0.920 ± 0.039 0.889 ± 0.045 161.2±35.4 506.6±70.7
25 5 0.909 ± 0.044 0.837 ± 0.053 66.3±9.9 174.3±47.8
25 10 0.939 ± 0.034 0.879 ± 0.044 102.1±15.1 332.0±53.7
25 25 0.947 ± 0.029 0.894 ± 0.041 140.3±22.3 466.8±55.2
25 100 0.944 ± 0.031 0.890 ± 0.041 176.7±37.1 508.3±64.5
25 200 0.937 ± 0.041 0.889 ± 0.045 173.9±40.5 498.9±66.3

100 5 0.964 ± 0.023 0.909 ± 0.040 144.0±8.6 172.1±31.8
100 10 0.975 ± 0.016 0.925 ± 0.031 177.9±12.0 320.3±38.2
100 25 0.979 ± 0.018 0.933 ± 0.034 220.4±22.9 466.9±37.7
100 100 0.981 ± 0.016 0.935 ± 0.030 251.2±38.3 493.0±42.0
100 200 0.977 ± 0.017 0.926 ± 0.035 256.6±43.6 506.9±42.4
200 5 0.976 ± 0.017 0.929 ± 0.032 245.6±12.0 162.2±21.4
200 10 0.986 ± 0.011 0.944 ± 0.027 282.5±14.3 320.7±26.4
200 25 0.990 ± 0.009 0.953 ± 0.027 331.5±26.7 468.1±29.5
200 100 0.989 ± 0.010 0.951 ± 0.025 374.7±41.3 502.4±35.6
200 200 0.989 ± 0.009 0.953 ± 0.025 376.6±49.7 493.5±30.4
500 5 0.985 ± 0.011 0.949 ± 0.025 546.3±10.4 166.9±12.7
500 10 0.992 ± 0.008 0.961 ± 0.022 585.7±17.2 322.7±16.7
500 25 0.994 ± 0.007 0.966 ± 0.021 639.3±20.6 467.3±18.6
500 100 0.994 ± 0.006 0.968 ± 0.019 758.8±43.5 503.1±20.3
500 200 0.996 ± 0.005 0.969 ± 0.019 764.1±47.1 503.6±20.5
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Table A.52: Diterpenes52.54, Unique root, Random leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.809 ± 0.067 0.738 ± 0.065 54.9±11.6 176.8±61.6
10 10 0.864 ± 0.057 0.802 ± 0.062 92.7±16.0 358.5±65.6
10 25 0.874 ± 0.047 0.831 ± 0.048 140.7±24.4 564.7±64.5
10 100 0.872 ± 0.050 0.837 ± 0.050 191.7±38.8 643.2±73.0
10 200 0.870 ± 0.044 0.832 ± 0.044 195.3±43.0 649.4±69.3
25 5 0.840 ± 0.066 0.766 ± 0.068 71.0±13.4 166.9±48.0
25 10 0.879 ± 0.046 0.806 ± 0.057 106.6±17.9 359.0±61.9
25 25 0.900 ± 0.042 0.839 ± 0.051 158.6±27.4 571.4±61.1
25 100 0.901 ± 0.041 0.847 ± 0.048 210.4±42.9 634.6±66.0
25 200 0.901 ± 0.040 0.840 ± 0.045 216.7±49.2 640.7±56.7

100 5 0.918 ± 0.043 0.833 ± 0.056 149.3±13.8 167.2±30.9
100 10 0.941 ± 0.034 0.872 ± 0.046 187.7±16.4 368.3±44.2
100 25 0.950 ± 0.027 0.884 ± 0.041 241.9±25.9 567.5±41.7
100 100 0.946 ± 0.032 0.879 ± 0.047 283.3±41.4 637.4±52.4
100 200 0.950 ± 0.025 0.880 ± 0.037 290.8±45.6 639.2±54.3
200 5 0.949 ± 0.028 0.873 ± 0.047 249.0±12.9 176.7±23.1
200 10 0.965 ± 0.021 0.901 ± 0.036 291.4±15.9 364.8±34.2
200 25 0.972 ± 0.018 0.916 ± 0.037 348.3±24.9 569.5±29.7
200 100 0.973 ± 0.016 0.918 ± 0.031 404.3±41.4 627.1±34.6
200 200 0.970 ± 0.020 0.915 ± 0.038 411.0±57.3 635.8±39.7
500 5 0.964 ± 0.022 0.893 ± 0.040 550.0±11.1 172.2±14.4
500 10 0.984 ± 0.012 0.937 ± 0.025 592.6±19.3 366.5±20.1
500 25 0.984 ± 0.012 0.939 ± 0.026 661.2±25.5 574.7±21.7
500 100 0.986 ± 0.011 0.939 ± 0.025 784.2±37.7 636.1±22.5
500 200 0.987 ± 0.010 0.943 ± 0.024 819.4±55.7 635.9±22.4

Table A.53: Diterpenes54.3, Unique root, Random leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.899 ± 0.067 0.837 ± 0.078 51.9±10.3 145.1±45.2
10 10 0.934 ± 0.039 0.886 ± 0.046 85.7±14.7 271.1±58.7
10 25 0.940 ± 0.037 0.905 ± 0.043 121.9±20.9 371.1±64.3
10 100 0.943 ± 0.032 0.911 ± 0.039 151.0±37.2 400.1±63.6
10 200 0.936 ± 0.036 0.906 ± 0.038 145.0±32.7 404.0±63.8
25 5 0.933 ± 0.041 0.863 ± 0.062 69.4±10.8 153.6±42.5
25 10 0.953 ± 0.033 0.899 ± 0.050 103.8±15.9 259.0±49.5
25 25 0.960 ± 0.029 0.917 ± 0.041 137.0±26.2 372.3±52.6
25 100 0.954 ± 0.030 0.914 ± 0.038 167.1±32.2 412.4±59.2
25 200 0.954 ± 0.031 0.910 ± 0.039 170.2±43.3 410.5±66.3

100 5 0.977 ± 0.019 0.934 ± 0.035 145.5±10.6 144.8±22.5
100 10 0.983 ± 0.016 0.941 ± 0.033 180.0±15.9 264.9±28.6
100 25 0.987 ± 0.013 0.948 ± 0.033 219.5±23.4 378.4±40.0
100 100 0.987 ± 0.010 0.948 ± 0.028 247.3±34.5 403.1±46.2
100 200 0.987 ± 0.012 0.946 ± 0.029 248.5±39.1 402.0±44.4
200 5 0.987 ± 0.014 0.956 ± 0.028 248.1±11.1 145.0±17.8
200 10 0.991 ± 0.010 0.962 ± 0.023 285.1±14.8 271.8±24.9
200 25 0.994 ± 0.007 0.965 ± 0.024 332.9±23.6 378.7±27.8
200 100 0.993 ± 0.009 0.968 ± 0.022 363.0±34.6 400.7±29.2
200 200 0.994 ± 0.007 0.967 ± 0.023 358.2±36.6 402.6±33.4
500 5 0.991 ± 0.010 0.963 ± 0.023 549.8±12.4 146.4±12.2
500 10 0.995 ± 0.008 0.974 ± 0.019 585.3±15.0 269.3±16.8
500 25 0.997 ± 0.005 0.977 ± 0.018 637.0±20.9 377.2±19.0
500 100 0.997 ± 0.004 0.979 ± 0.018 741.2±36.8 400.6±22.9
500 200 0.997 ± 0.005 0.979 ± 0.016 774.2±41.4 403.8±19.8
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Table A.54: Musk1, Unique root, Random leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.727 ± 0.183 0.679 ± 0.155 34.4±4.6 94.0±9.6
10 10 0.749 ± 0.162 0.686 ± 0.152 40.1±5.6 104.3±8.7
10 25 0.721 ± 0.162 0.674 ± 0.142 44.7±7.8 109.9±8.0
10 100 0.730 ± 0.171 0.661 ± 0.162 47.3±13.5 109.2±8.4
10 200 0.739 ± 0.165 0.694 ± 0.143 46.7±9.3 110.2±8.7
25 5 0.811 ± 0.144 0.744 ± 0.142 49.4±4.2 92.7±6.9
25 10 0.767 ± 0.164 0.718 ± 0.145 56.0±6.0 105.8±6.1
25 25 0.822 ± 0.142 0.749 ± 0.136 60.8±8.7 108.6±5.8
25 100 0.781 ± 0.155 0.723 ± 0.135 62.2±12.2 110.8±6.2
25 200 0.784 ± 0.147 0.713 ± 0.132 63.2±11.4 108.1±7.0

100 5 0.865 ± 0.117 0.774 ± 0.129 124.8±4.9 92.9±3.6
100 10 0.856 ± 0.105 0.765 ± 0.124 130.8±6.6 104.9±3.4
100 25 0.872 ± 0.101 0.775 ± 0.110 135.0±9.3 109.7±3.4
100 100 0.871 ± 0.126 0.796 ± 0.132 140.3±11.5 109.5±3.6
100 200 0.858 ± 0.127 0.779 ± 0.132 136.8±10.7 109.5±3.6
200 5 0.903 ± 0.094 0.810 ± 0.117 224.5±4.9 92.8±3.0
200 10 0.902 ± 0.106 0.813 ± 0.116 230.8±6.3 105.5±2.8
200 25 0.902 ± 0.093 0.803 ± 0.116 236.0±8.3 109.2±2.9
200 100 0.905 ± 0.090 0.816 ± 0.110 238.6±12.3 109.4±2.9
200 200 0.883 ± 0.103 0.783 ± 0.117 237.0±8.6 109.8±2.9
500 5 0.922 ± 0.073 0.815 ± 0.107 525.3±4.4 92.8±2.2
500 10 0.917 ± 0.082 0.820 ± 0.116 530.3±5.7 105.2±1.9
500 25 0.923 ± 0.079 0.828 ± 0.112 536.2±8.4 109.2±1.8
500 100 0.911 ± 0.080 0.823 ± 0.096 538.6±14.8 109.4±2.0
500 200 0.921 ± 0.081 0.811 ± 0.106 537.2±11.0 109.5±2.0

Table A.55: MutagenesisAll, Unique root, Random leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.737 ± 0.106 0.705 ± 0.081 40.0±9.7 51.8±14.1
10 10 0.736 ± 0.116 0.716 ± 0.096 70.4±13.1 94.3±17.7
10 25 0.756 ± 0.108 0.735 ± 0.092 128.0±27.0 149.6±22.0
10 100 0.747 ± 0.096 0.720 ± 0.088 300.3±52.2 200.2±13.2
10 200 0.743 ± 0.096 0.724 ± 0.084 487.0±88.4 210.3±11.3
25 5 0.745 ± 0.120 0.702 ± 0.095 58.7±8.4 55.2±14.2
25 10 0.776 ± 0.092 0.738 ± 0.081 90.1±13.3 90.4±16.6
25 25 0.776 ± 0.096 0.744 ± 0.087 155.5±27.8 145.8±17.6
25 100 0.769 ± 0.095 0.725 ± 0.090 334.0±60.9 201.1±11.7
25 200 0.763 ± 0.098 0.727 ± 0.085 515.4±81.6 209.0±10.9

100 5 0.781 ± 0.104 0.731 ± 0.087 134.1±7.8 51.8±7.4
100 10 0.803 ± 0.098 0.751 ± 0.087 165.1±12.7 92.6±12.6
100 25 0.801 ± 0.090 0.759 ± 0.085 242.7±24.4 147.4±14.4
100 100 0.808 ± 0.095 0.752 ± 0.088 511.4±52.2 200.9±8.0
100 200 0.807 ± 0.088 0.752 ± 0.080 727.8±83.5 210.3±7.1
200 5 0.798 ± 0.103 0.750 ± 0.087 235.7±9.1 52.5±5.1
200 10 0.812 ± 0.090 0.768 ± 0.077 266.0±12.8 91.3±9.1
200 25 0.809 ± 0.088 0.767 ± 0.075 345.2±26.6 149.1±11.2
200 100 0.809 ± 0.090 0.756 ± 0.094 614.7±50.0 200.9±8.7
200 200 0.804 ± 0.092 0.757 ± 0.084 903.9±91.0 210.0±6.8
500 5 0.806 ± 0.095 0.754 ± 0.086 535.0±8.9 53.7±4.1
500 10 0.817 ± 0.090 0.770 ± 0.085 566.7±13.1 91.7±6.2
500 25 0.819 ± 0.091 0.778 ± 0.085 640.0±23.7 147.8±6.9
500 100 0.824 ± 0.087 0.771 ± 0.083 911.9±49.8 200.3±6.7
500 200 0.815 ± 0.091 0.766 ± 0.086 1217.0±82.5 209.8±6.4
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Table A.56: MutagenesisRF , Unique root, Random leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.773 ± 0.125 0.747 ± 0.101 41.2±7.8 46.8±10.5
10 10 0.807 ± 0.114 0.773 ± 0.091 63.7±13.3 80.3±18.0
10 25 0.829 ± 0.101 0.800 ± 0.092 118.5±19.9 121.8±12.7
10 100 0.810 ± 0.107 0.795 ± 0.093 261.8±49.8 152.6±12.3
10 200 0.805 ± 0.109 0.787 ± 0.090 398.7±66.4 156.9±10.6
25 5 0.819 ± 0.106 0.758 ± 0.089 57.2±7.6 49.8±9.5
25 10 0.841 ± 0.093 0.788 ± 0.082 86.3±15.0 83.4±13.3
25 25 0.857 ± 0.093 0.812 ± 0.080 149.1±23.4 122.7±12.3
25 100 0.835 ± 0.107 0.798 ± 0.088 305.1±61.2 150.6±10.1
25 200 0.824 ± 0.109 0.792 ± 0.095 441.9±87.9 155.8±8.6

100 5 0.843 ± 0.102 0.767 ± 0.089 133.3±8.6 47.9±6.3
100 10 0.867 ± 0.092 0.813 ± 0.076 161.5±11.9 80.4±8.9
100 25 0.874 ± 0.082 0.821 ± 0.073 230.7±22.1 122.8±9.5
100 100 0.877 ± 0.090 0.822 ± 0.087 460.3±49.6 153.3±5.9
100 200 0.876 ± 0.087 0.813 ± 0.087 667.6±87.7 157.6±5.8
200 5 0.863 ± 0.091 0.795 ± 0.093 232.4±7.7 48.5±4.8
200 10 0.884 ± 0.078 0.814 ± 0.081 263.5±13.6 81.3±6.6
200 25 0.887 ± 0.077 0.828 ± 0.079 330.9±21.5 121.3±7.8
200 100 0.882 ± 0.076 0.831 ± 0.081 573.9±47.5 151.8±5.5
200 200 0.873 ± 0.087 0.817 ± 0.083 831.0±79.6 156.3±5.4
500 5 0.875 ± 0.079 0.814 ± 0.084 532.8±8.0 49.2±2.8
500 10 0.888 ± 0.078 0.832 ± 0.081 564.4±12.0 80.6±4.9
500 25 0.898 ± 0.073 0.833 ± 0.077 633.1±24.8 122.0±4.9
500 100 0.891 ± 0.077 0.837 ± 0.077 876.5±60.9 152.4±5.1
500 200 0.886 ± 0.077 0.827 ± 0.071 1147.2±69.7 156.7±5.4

Table A.57: Carcinogenesis, Unique root, Info leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.557 ± 0.098 0.555 ± 0.080 40.3±9.3 84.1±29.1
10 10 0.576 ± 0.095 0.566 ± 0.085 70.8±14.0 168.5±39.5
10 25 0.566 ± 0.102 0.562 ± 0.084 136.0±23.2 288.6±33.1
10 100 0.578 ± 0.091 0.565 ± 0.083 314.1±57.1 388.1±15.6
10 200 0.564 ± 0.091 0.552 ± 0.081 528.2±83.5 406.6±16.2
25 5 0.572 ± 0.091 0.555 ± 0.077 59.5±9.2 89.5±25.7
25 10 0.576 ± 0.099 0.565 ± 0.086 91.0±13.1 167.9±30.9
25 25 0.584 ± 0.094 0.572 ± 0.078 150.4±21.7 293.0±28.5
25 100 0.583 ± 0.103 0.572 ± 0.088 336.7±58.5 388.7±16.7
25 200 0.583 ± 0.088 0.566 ± 0.081 563.4±95.6 407.9±13.8

100 5 0.600 ± 0.083 0.581 ± 0.068 134.1±8.6 88.1±17.4
100 10 0.606 ± 0.086 0.584 ± 0.079 170.2±14.0 175.6±21.6
100 25 0.597 ± 0.088 0.578 ± 0.080 251.1±22.6 291.8±23.4
100 100 0.601 ± 0.085 0.576 ± 0.082 497.0±54.7 388.4±12.3
100 200 0.603 ± 0.091 0.566 ± 0.074 705.5±96.9 406.5±10.5
200 5 0.617 ± 0.092 0.593 ± 0.075 234.5±8.3 88.9±10.9
200 10 0.609 ± 0.083 0.588 ± 0.076 270.4±14.2 170.5±16.6
200 25 0.610 ± 0.089 0.582 ± 0.087 349.8±23.2 292.3±16.9
200 100 0.601 ± 0.086 0.573 ± 0.076 631.6±65.2 388.5±9.3
200 200 0.620 ± 0.090 0.585 ± 0.081 943.7±104.4 407.7±7.6
500 5 0.608 ± 0.085 0.582 ± 0.069 533.3±8.4 88.1±7.6
500 10 0.619 ± 0.082 0.588 ± 0.073 568.5±14.3 167.5±11.6
500 25 0.616 ± 0.085 0.585 ± 0.076 653.3±24.2 290.1±11.1
500 100 0.603 ± 0.084 0.576 ± 0.074 933.3±53.9 389.3±6.7
500 200 0.601 ± 0.083 0.566 ± 0.076 1263.1±104.6 407.1±6.4
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Table A.58: Diterpenes52.3, Unique root, Info leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.882 ± 0.057 0.815 ± 0.062 50.4±9.2 168.8±52.8
10 10 0.911 ± 0.041 0.855 ± 0.048 83.3±14.1 319.3±60.6
10 25 0.921 ± 0.040 0.886 ± 0.045 118.9±22.1 449.7±65.9
10 100 0.907 ± 0.040 0.883 ± 0.041 155.3±34.4 485.8±59.5
10 200 0.910 ± 0.036 0.883 ± 0.040 156.1±40.9 494.3±63.5
25 5 0.906 ± 0.045 0.831 ± 0.055 66.5±10.9 170.9±51.8
25 10 0.936 ± 0.031 0.879 ± 0.041 98.3±14.4 314.7±59.1
25 25 0.938 ± 0.032 0.892 ± 0.040 138.3±20.7 455.7±61.9
25 100 0.940 ± 0.033 0.893 ± 0.037 166.8±35.9 491.9±64.3
25 200 0.939 ± 0.035 0.893 ± 0.038 172.2±41.8 484.8±58.1

100 5 0.963 ± 0.024 0.900 ± 0.040 143.8±12.4 163.8±27.9
100 10 0.975 ± 0.020 0.927 ± 0.035 174.9±14.2 315.0±35.3
100 25 0.977 ± 0.017 0.928 ± 0.039 215.9±24.7 457.3±41.1
100 100 0.976 ± 0.015 0.927 ± 0.030 259.7±43.6 495.2±48.1
100 200 0.979 ± 0.015 0.929 ± 0.033 262.2±48.3 483.4±43.3
200 5 0.976 ± 0.017 0.930 ± 0.035 244.4±10.9 166.0±20.7
200 10 0.986 ± 0.012 0.946 ± 0.030 283.1±14.6 315.3±27.0
200 25 0.988 ± 0.011 0.952 ± 0.026 326.3±20.5 457.9±30.0
200 100 0.988 ± 0.010 0.950 ± 0.025 361.8±36.8 494.8±34.1
200 200 0.988 ± 0.011 0.951 ± 0.025 364.2±39.4 493.0±32.8
500 5 0.985 ± 0.013 0.944 ± 0.027 547.5±10.8 162.3±13.5
500 10 0.991 ± 0.008 0.957 ± 0.024 581.7±13.6 316.7±20.1
500 25 0.994 ± 0.007 0.967 ± 0.020 637.3±21.9 460.7±20.5
500 100 0.995 ± 0.005 0.969 ± 0.019 738.8±32.8 489.3±24.3
500 200 0.995 ± 0.005 0.972 ± 0.018 752.1±48.4 494.3±22.5

Table A.59: Diterpenes52.54, Unique root, Info leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.803 ± 0.069 0.735 ± 0.066 54.7±11.3 172.1±57.4
10 10 0.858 ± 0.058 0.796 ± 0.061 89.8±16.6 371.8±67.9
10 25 0.870 ± 0.042 0.833 ± 0.046 136.9±23.0 558.0±54.9
10 100 0.868 ± 0.049 0.839 ± 0.044 188.9±42.9 625.7±66.7
10 200 0.860 ± 0.045 0.833 ± 0.044 202.3±45.4 645.3±66.0
25 5 0.839 ± 0.062 0.767 ± 0.060 70.4±11.4 176.1±50.8
25 10 0.888 ± 0.050 0.820 ± 0.053 105.1±17.0 357.7±67.5
25 25 0.901 ± 0.045 0.844 ± 0.046 158.1±25.5 551.3±58.6
25 100 0.890 ± 0.047 0.845 ± 0.052 206.3±43.0 637.8±64.4
25 200 0.895 ± 0.038 0.840 ± 0.041 208.1±47.1 617.1±65.3

100 5 0.919 ± 0.044 0.842 ± 0.056 144.8±12.0 177.3±30.2
100 10 0.937 ± 0.033 0.869 ± 0.044 182.2±15.2 362.3±40.6
100 25 0.950 ± 0.029 0.883 ± 0.044 234.2±22.1 559.3±40.9
100 100 0.950 ± 0.030 0.887 ± 0.041 281.4±40.1 621.1±48.4
100 200 0.947 ± 0.030 0.876 ± 0.041 293.7±54.7 633.4±49.7
200 5 0.947 ± 0.031 0.873 ± 0.046 247.0±10.7 174.5±22.8
200 10 0.967 ± 0.020 0.905 ± 0.037 289.6±15.4 361.9±31.1
200 25 0.971 ± 0.021 0.918 ± 0.036 353.4±23.0 559.6±30.8
200 100 0.972 ± 0.017 0.918 ± 0.033 392.8±38.0 628.9±37.3
200 200 0.973 ± 0.018 0.913 ± 0.037 405.0±50.0 625.3±34.3
500 5 0.968 ± 0.021 0.908 ± 0.037 549.4±11.3 175.5±13.7
500 10 0.981 ± 0.014 0.934 ± 0.027 592.3±16.0 362.2±22.8
500 25 0.984 ± 0.012 0.938 ± 0.027 655.8±26.6 565.0±22.0
500 100 0.986 ± 0.011 0.943 ± 0.025 775.3±41.9 626.0±23.9
500 200 0.987 ± 0.011 0.944 ± 0.029 814.7±54.3 627.9±21.8



A.3. DETAILED RRR-RF RESULTS 203

Table A.60: Diterpenes54.3, Unique root, Info leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.908 ± 0.049 0.835 ± 0.064 51.6±10.8 143.6±35.3
10 10 0.928 ± 0.047 0.882 ± 0.057 80.9±15.7 265.0±49.6
10 25 0.937 ± 0.034 0.905 ± 0.037 119.2±22.1 362.0±65.9
10 100 0.937 ± 0.036 0.910 ± 0.041 149.5±36.7 389.3±64.9
10 200 0.929 ± 0.039 0.902 ± 0.039 148.4±43.1 404.7±70.4
25 5 0.926 ± 0.043 0.861 ± 0.057 65.1±10.1 149.4±44.8
25 10 0.953 ± 0.032 0.898 ± 0.047 95.7±13.4 263.9±44.9
25 25 0.956 ± 0.028 0.910 ± 0.037 133.0±22.0 379.7±56.3
25 100 0.958 ± 0.028 0.919 ± 0.040 156.4±34.9 393.4±65.2
25 200 0.957 ± 0.032 0.923 ± 0.042 162.3±37.7 387.3±64.7

100 5 0.975 ± 0.020 0.925 ± 0.035 145.5±10.4 141.1±22.4
100 10 0.984 ± 0.014 0.945 ± 0.030 176.5±16.4 267.6±35.1
100 25 0.986 ± 0.013 0.946 ± 0.029 214.6±21.5 363.1±40.1
100 100 0.984 ± 0.016 0.943 ± 0.032 244.2±37.6 394.9±49.6
100 200 0.986 ± 0.013 0.948 ± 0.028 248.7±41.6 395.3±48.4
200 5 0.986 ± 0.014 0.952 ± 0.029 242.3±11.2 140.4±14.3
200 10 0.991 ± 0.010 0.961 ± 0.022 277.0±16.1 261.7±22.2
200 25 0.993 ± 0.008 0.968 ± 0.024 328.1±23.5 364.1±30.1
200 100 0.993 ± 0.009 0.969 ± 0.024 354.3±37.4 390.3±34.7
200 200 0.993 ± 0.008 0.965 ± 0.024 365.8±40.6 390.8±29.2
500 5 0.991 ± 0.011 0.966 ± 0.023 546.3±12.0 144.1±12.0
500 10 0.994 ± 0.008 0.970 ± 0.020 579.1±14.2 265.0±17.3
500 25 0.997 ± 0.005 0.979 ± 0.017 634.0±22.7 369.0±20.0
500 100 0.997 ± 0.004 0.981 ± 0.015 737.0±34.8 389.6±18.4
500 200 0.997 ± 0.005 0.978 ± 0.017 773.1±48.2 390.5±20.3

Table A.61: Musk1, Unique root, Info leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.716 ± 0.166 0.658 ± 0.163 33.7±5.2 86.9±10.2
10 10 0.719 ± 0.172 0.671 ± 0.154 38.4±5.3 99.2±7.9
10 25 0.730 ± 0.160 0.680 ± 0.137 45.4±9.4 102.8±8.8
10 100 0.753 ± 0.153 0.681 ± 0.151 45.8±10.0 103.1±9.0
10 200 0.734 ± 0.169 0.681 ± 0.155 45.4±10.7 103.9±9.1
25 5 0.790 ± 0.167 0.699 ± 0.138 48.8±4.2 87.5±7.8
25 10 0.793 ± 0.162 0.717 ± 0.165 54.4±5.7 99.4±6.9
25 25 0.786 ± 0.146 0.700 ± 0.140 60.1±8.2 103.9±6.4
25 100 0.782 ± 0.135 0.733 ± 0.121 63.7±14.5 102.3±7.2
25 200 0.783 ± 0.145 0.706 ± 0.141 59.3±11.8 102.9±6.8

100 5 0.879 ± 0.106 0.777 ± 0.125 124.4±4.7 87.5±3.7
100 10 0.861 ± 0.110 0.787 ± 0.116 129.3±5.9 98.4±4.0
100 25 0.845 ± 0.131 0.784 ± 0.143 136.4±9.1 102.5±3.8
100 100 0.871 ± 0.130 0.783 ± 0.137 137.0±10.6 102.4±3.8
100 200 0.852 ± 0.139 0.782 ± 0.138 136.1±8.3 102.5±3.7
200 5 0.909 ± 0.101 0.815 ± 0.109 224.0±4.4 87.4±3.0
200 10 0.889 ± 0.104 0.802 ± 0.112 230.3±6.2 98.4±2.8
200 25 0.886 ± 0.094 0.787 ± 0.112 234.5±9.8 101.9±2.7
200 100 0.895 ± 0.093 0.824 ± 0.102 235.7±10.7 102.4±3.1
200 200 0.912 ± 0.087 0.800 ± 0.119 236.2±10.8 102.2±2.7
500 5 0.937 ± 0.069 0.836 ± 0.099 524.1±5.0 87.3±2.1
500 10 0.924 ± 0.087 0.815 ± 0.106 530.5±6.4 98.9±2.0
500 25 0.917 ± 0.094 0.832 ± 0.103 536.4±9.6 102.4±2.2
500 100 0.925 ± 0.081 0.831 ± 0.106 536.0±10.6 102.8±2.0
500 200 0.922 ± 0.084 0.825 ± 0.109 537.3±13.1 102.8±2.1
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Table A.62: MutagenesisAll, Unique root, Info leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.717 ± 0.104 0.697 ± 0.086 42.1±8.3 53.7±13.7
10 10 0.739 ± 0.104 0.715 ± 0.088 68.8±14.4 87.5±20.0
10 25 0.758 ± 0.102 0.739 ± 0.087 125.1±24.9 148.4±22.6
10 100 0.764 ± 0.101 0.730 ± 0.094 303.9±58.9 200.6±12.1
10 200 0.748 ± 0.098 0.723 ± 0.092 481.9±87.4 209.2±12.6
25 5 0.764 ± 0.086 0.723 ± 0.076 59.6±9.3 53.0±12.9
25 10 0.769 ± 0.094 0.724 ± 0.090 88.8±12.8 92.1±19.2
25 25 0.765 ± 0.107 0.737 ± 0.088 152.5±24.8 147.8±16.6
25 100 0.767 ± 0.101 0.741 ± 0.093 332.6±55.8 200.3±11.5
25 200 0.775 ± 0.106 0.735 ± 0.094 494.4±84.8 211.3±10.4

100 5 0.792 ± 0.108 0.741 ± 0.094 134.1±8.6 52.8±7.4
100 10 0.789 ± 0.094 0.743 ± 0.088 163.5±10.9 92.6±10.7
100 25 0.808 ± 0.089 0.761 ± 0.085 246.3±26.2 146.6±13.6
100 100 0.800 ± 0.082 0.744 ± 0.078 508.5±60.2 200.6±8.8
100 200 0.804 ± 0.092 0.759 ± 0.088 735.7±88.5 208.8±7.4
200 5 0.798 ± 0.098 0.753 ± 0.083 233.5±9.0 54.5±5.8
200 10 0.809 ± 0.102 0.767 ± 0.081 265.5±13.6 92.9±8.5
200 25 0.815 ± 0.088 0.771 ± 0.090 345.5±26.2 147.5±13.6
200 100 0.810 ± 0.096 0.757 ± 0.087 608.4±52.1 200.6±7.1
200 200 0.807 ± 0.095 0.756 ± 0.091 886.5±87.3 209.8±6.5
500 5 0.812 ± 0.093 0.759 ± 0.087 533.2±9.4 53.5±3.7
500 10 0.824 ± 0.092 0.777 ± 0.081 565.8±13.6 92.6±6.2
500 25 0.823 ± 0.089 0.778 ± 0.084 640.1±22.0 148.7±7.8
500 100 0.811 ± 0.092 0.764 ± 0.088 905.8±47.3 200.7±7.4
500 200 0.812 ± 0.090 0.760 ± 0.087 1211.8±84.1 210.3±5.9

Table A.63: MutagenesisRF , Unique root, Info leaves

Forest MFC AUC Accuracy Rules Tree
size generated size
10 5 0.787 ± 0.126 0.747 ± 0.104 40.1±8.1 49.2±13.1
10 10 0.806 ± 0.117 0.768 ± 0.100 64.6±13.6 81.8±15.1
10 25 0.820 ± 0.115 0.802 ± 0.095 116.8±23.0 121.4±15.0
10 100 0.805 ± 0.104 0.785 ± 0.087 271.0±50.3 152.5±10.2
10 200 0.805 ± 0.098 0.794 ± 0.087 412.7±72.5 155.6±11.9
25 5 0.805 ± 0.116 0.767 ± 0.089 58.4±8.7 48.6±11.8
25 10 0.831 ± 0.099 0.797 ± 0.084 87.2±14.3 82.4±12.2
25 25 0.838 ± 0.105 0.801 ± 0.089 145.0±24.0 121.4±13.6
25 100 0.851 ± 0.094 0.799 ± 0.079 302.4±59.8 152.2±12.0
25 200 0.841 ± 0.098 0.801 ± 0.083 439.9±80.5 157.2±10.2

100 5 0.851 ± 0.091 0.789 ± 0.085 133.4±9.0 50.0±6.5
100 10 0.863 ± 0.094 0.808 ± 0.091 165.2±12.5 80.2±8.4
100 25 0.884 ± 0.085 0.820 ± 0.091 230.6±23.2 120.9±10.9
100 100 0.872 ± 0.089 0.816 ± 0.083 470.4±57.5 151.5±6.1
100 200 0.877 ± 0.084 0.826 ± 0.080 687.5±85.0 156.3±5.7
200 5 0.867 ± 0.085 0.800 ± 0.090 232.5±7.3 49.1±5.1
200 10 0.879 ± 0.085 0.815 ± 0.081 265.1±14.5 81.1±7.3
200 25 0.887 ± 0.084 0.831 ± 0.077 332.7±22.7 120.6±8.5
200 100 0.889 ± 0.072 0.837 ± 0.077 585.4±54.0 151.6±6.6
200 200 0.884 ± 0.080 0.819 ± 0.083 824.3±76.9 156.2±6.0
500 5 0.874 ± 0.085 0.808 ± 0.083 533.7±9.0 48.8±3.3
500 10 0.892 ± 0.078 0.825 ± 0.082 563.6±12.3 80.5±5.4
500 25 0.897 ± 0.075 0.836 ± 0.077 631.6±21.2 121.2±5.9
500 100 0.898 ± 0.073 0.828 ± 0.084 879.1±54.7 151.9±5.2
500 200 0.884 ± 0.084 0.826 ± 0.081 1143.9±93.2 157.0±5.3
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Table A.64: Unique root, Track leaves, 500 trees

Dataset MRC AUC Accuracy Rules Tree
generated size

Carcinogenesis 25 0.635 ± 0.082 0.592 ± 0.070 1429.6±113.9 239.3±5.2
Carcinogenesis 50 0.634 ± 0.082 0.595 ± 0.077 2531.8±213.7 246.2±4.5
Diterpenes52.3 25 0.996 ± 0.005 0.974 ± 0.019 972.7±51.5 179.7±11.2
Diterpenes52.3 50 0.997 ± 0.004 0.975 ± 0.018 1331.6±84.4 136.3±10.4
Diterpenes52.54 25 0.994 ± 0.007 0.963 ± 0.023 1074.0±57.1 242.6±20.7
Diterpenes52.54 50 0.995 ± 0.005 0.966 ± 0.021 1507.5±92.3 180.3±11.9
Diterpenes54.3 25 0.998 ± 0.003 0.983 ± 0.017 920.0±49.3 127.2±9.7
Diterpenes54.3 50 0.999 ± 0.002 0.985 ± 0.015 1232.8±74.9 95.6±8.2
Musk1 25 0.958 ± 0.059 0.866 ± 0.089 806.3±35.4 39.1±1.6
Musk1 50 0.958 ± 0.052 0.865 ± 0.106 1055.0±56.4 32.5±1.2
MutagenesisAll 25 0.830 ± 0.088 0.791 ± 0.085 1109.0±67.2 120.1±5.2
MutagenesisAll 50 0.830 ± 0.091 0.780 ± 0.085 1836.8±123.1 126.7±4.9
MutagenesisRF 25 0.902 ± 0.073 0.850 ± 0.076 1028.0±64.1 88.9±4.0
MutagenesisRF 50 0.905 ± 0.070 0.850 ± 0.077 1566.2±111.7 86.0±4.1

Table A.65: Bagging root, Track leaves, 500 trees

Dataset MRC AUC Accuracy Rules Tree
generated size

Carcinogenesis 50 0.646 ± 0.084 0.612 ± 0.074 2157.7±158.1 163.5±2.5
Diterpenes52.3 50 0.996 ± 0.005 0.973 ± 0.019 1245.7±75.5 104.1±7.5
Diterpenes52.54 50 0.994 ± 0.006 0.962 ± 0.024 1442.2±105.5 136.5±10.0
Diterpenes54.3 50 0.999 ± 0.002 0.984 ± 0.015 1175.6±67.6 75.5±5.1
Musk1 50 0.945 ± 0.070 0.853 ± 0.108 970.0±43.7 24.3±0.6
MutagenesisAll 50 0.839 ± 0.088 0.793 ± 0.080 1669.8±112.9 89.3±2.7
MutagenesisRF 50 0.906 ± 0.068 0.860 ± 0.078 1454.2±87.9 61.7±2.5
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Comparative evaluation of approaches to propositionalization. In Pro-

ceedings of the 13th Int. Conference on Inductive Logic Programming.

Springer-Verlag, 2003.

[42] M.-A. Krogel and T. Scheffer. Multi-relational learning, text mining,

and semi-supervised learning for functional genomics. Machine Learning,

57(1-2):61–81, 2004.

[43] M. A. Krogel and S. Wrobel. Transformation-based learning using mul-

tirelational aggregation. In ILP ’01: Proceedings of the 11th International

Conference on Inductive Logic Programming, pages 142–155, London, UK,

2001. Springer-Verlag.

[44] N. Landwehr, K. Kersting, and L. De Raedt. Integrating näıve Bayes and

FOIL. Machine Learning, 8:481–507, 2007.

[45] N. Landwehr, A. Passerini, L. De Raedt, and P. Frasconi. kfoil: Learn-

ing simple relational kernels. In Proceedings, The Twenty-First National

Conference on Artificial Intelligence and the Eighteenth Innovative Ap-

plications of Artificial Intelligence Conference, July 16-20, 2006, Boston,

Massachusetts, USA. AAAI Press, 2006.

[46] J. Larson and R. S. Michalski. Inductive inference of VL decision rules.

SIGART Bulletin, (63):38–44, 1977.

[47] S. le Cessie and J.C. van Houwelingen. Ridge estimators in logistic re-

gression. Applied Statistics, 41(1):191–201, 1992.

[48] P. Ling, Z. Wang, and C. Zhou. A spectrum-based support vector algo-

rithm for relational data semi-supervised classification. In ICONIP (1),

pages 801–810, 2006.

[49] H. Lodhi and S. Muggleton. Is mutagenesis still challenging? In ILP-05

Late-Breaking Papers, pages 35–40, 2005.

[50] J. B. Macqueen. Some methods of classification and analysis of multi-

variate observations. In Proceedings of the Fifth Berkeley Symposium on

Mathemtical Statistics and Probability, pages 281–297, 1967.



212 BIBLIOGRAPHY

[51] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schtze. In-

troduction to Information Retrieval. Cambridge University Press, New

York, NY, USA, 2008.

[52] A. Mpagouli and I. Hatzilygeroudis. Converting first order logic into

natural language: A first level approach. In Theodore S. Papatheodorou,

Dimitris N. Christodoulakis, and Nikitas N. Karanikolas, editors, Current

Trends in Informatics: 11th Panhellenic Conference on Informatics, PCI

2007, volume A, pages 517–526. New Technologies Publications, 2007.

[53] S. Muggleton. Inductive logic programming. New Generation Computing,

8(4):295–318, 1991.

[54] S. Muggleton. Inverse entailment and Progol. New Generation Com-

puting, Special issue on Inductive Logic Programming, 13(3-4):245–286,

1995.

[55] C. Nadeau and Y. Bengio. Inference for the generalization error. Machine

Learning, 52(3):239–281, 2003.

[56] S.-H. Nienhuys-Cheng and R. de Wolf. Foundations of Inductive Logic

Programming, chapter 9, pages 162–177. Springer, 1997.

[57] C. W. Olofson. Competitive analysis - worldwide RDBMS 2006 vendor

shares. IDC survey, April 2007.

[58] M. J. Pazzani and D. F. Kibler. The utility of knowledge in inductive

learning. Machine Learning, 9:57–94, 1992.

[59] B. Pfahringer, C. Leschi, and P. Reutemann. Scaling up semi-supervised

learning: An efficient and effective LLGC variant. In Zhi-Hua Zhou, Hang

Li, and Qiang Yang, editors, PAKDD, volume 4426 of Lecture Notes in

Computer Science, pages 236–247. Springer, 2007.

[60] J. C. Platt. Fast training of support vector machines using sequential

minimal optimization. pages 185–208. MIT Press, Cambridge, MA, USA,

1999.

[61] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106,

1986.

[62] J. R. Quinlan. Learning logical definitions from relations. Machine Learn-

ing, 5(3):239–266, 1990.



BIBLIOGRAPHY 213

[63] J. R. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 1993.

[64] J. Ross Quinlan and R. Mike Cameron-Jones. Induction of logic programs:

Foil and related systems. New Generation Computing, 13(3&4):287–312,

1995.

[65] L. De Raedt. Attribute-value learning versus inductive logic programming:

The missing links (extended abstract). In ILP ’98: Proceedings of the

8th International Workshop on Inductive Logic Programming, pages 1–8,

London, UK, 1998. Springer-Verlag.

[66] S. Ray and M. Craven. Supervised versus multiple instance learning: an

empirical comparison. In ICML ’05: Proceedings of the 22nd international

conference on Machine learning, pages 697–704, New York, NY, USA,

2005. ACM.

[67] G. Riccardi. Principles of Database Systems with Internet and Java Ap-

plications. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA, 2001.

[68] G. Ridgeway, D. Madigan, and T. Richardson. Interpretable boosted
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