Frank, EibeBouckaert, Remco R.Furnkranz, JScheffer, TSpiliopoulou, M2024-01-162024-01-162006-01-013-540-45374-10302-9743https://hdl.handle.net/10289/16342Multinomial naive Bayes (MNB) is a popular method for document classification due to its computational efficiency and relatively good predictive performance. It has recently been established that predictive performance can be improved further by appropriate data transformations [1,2]. In this paper, we present another transformation that is designed to combat a potential problem with the application of MNB to unbalanced datasets. We propose an appropriate correction by adjusting attribute priors. This correction can be implemented as another data normalization step, and we show that it can significantly improve the area under the ROC curve. We also show that the modified version of MNB is very closely related to the simple centroid-based classifier and compare the two methods empirically.application/pdfenThis is an author’s accepted version of a conference paper published in Proc 10th European Conference on Principles and Practice of Knowledge Discovery in Databases. © 2006 Copyright held by the authors.Science & TechnologyTechnologyComputer Science, Artificial IntelligenceComputer Science, Information SystemsComputer ScienceNaive Bayes for text classification with unbalanced classesConference Contribution1611-3349