Cavenagh, Nicholas J.Ramadurai, Reshma2018-09-0320162018-09-032016Cavenagh, N. J., & Ramadurai, R. (2016). On the distances between Latin squares and the smallest defining set size. Electronic Notes in Discrete Mathematics, 54, 15–20. https://doi.org/10.1016/j.endm.2016.09.0041571-0653https://hdl.handle.net/10289/12056We show that for each Latin square L of order n ≥ 2 , there exists a Latin square L’ ≠ L of order n such that L and L’ differ in at most 8√n̅ cells. Equivalently, each Latin square of order n contains a Latin trade of size at most 8√n̅ . We also show that the size of the smallest defining set in a Latin square is Ω(n³/²).application/pdfenThis is an author’s accepted version of an article published in the journal: Electronic Notes in Discrete Mathematics. © 2016 Elsevier B.V.mathematicsLatin squareLatin tradedefining setcritical setHamming distanceOn the distances between Latin squares and the smallest defining set sizeJournal Article10.1016/j.endm.2016.09.004