Macromolecular Rate Theory (MMRT) Provides a Thermodynamics Rationale to Underpin the Convergent Temperature Response in Plant Leaf Respiration

dc.contributor.authorLiang, Liyin L.en_NZ
dc.contributor.authorArcus, Vickery L.en_NZ
dc.contributor.authorHeskel, Mary A.en_NZ
dc.contributor.authorO'Sullivan, Odhran S.en_NZ
dc.contributor.authorWeerasinghe, Lasantha K.en_NZ
dc.contributor.authorCreek, Dainelleen_NZ
dc.contributor.authorEgerton, John J.G.en_NZ
dc.contributor.authorTjoelker, Mark G.en_NZ
dc.contributor.authorAtkin, Owen K.en_NZ
dc.contributor.authorSchipper, Louis A.en_NZ
dc.date.accessioned2017-11-20T20:59:06Z
dc.date.available2017-11-20T20:59:06Z
dc.description.abstractTemperature is a crucial factor in determining the rates of ecosystem processes, for example, leaf respiration (R) – the flux of plant respired CO₂ from leaves to the atmosphere. Generally, R increases exponentially with temperature and formulations such as the Arrhenius equation are widely used in earth system models. However, experimental observations have shown a consequential and consistent departure from an exponential increase in R. What are the principles that underlie these observed patterns? Here, we demonstrate that macromolecular rate theory (MMRT), based on transition state theory (TST) for enzyme-catalyzed kinetics, provides a thermodynamic explanation for the observed departure and the convergent temperature response of R using a global database. Three meaningful parameters emerge from MMRT analysis: the temperature at which the rate of respiration would theoretically reach a maximum (the optimum temperature, Tₒₚₜ), the temperature at which the respiration rate is most sensitive to changes in temperature (the inflection temperature, Tᵢₙf) and the overall curvature of the log(rate) versus temperature plot (the change in heat capacity for the system, ΔCǂₚ). On average, the highest potential enzyme-catalyzed rates of respiratory enzymes for R are predicted to occur at 67.0 ± 1.2°C and the maximum temperature sensitivity at 41.4 ± 0.7°C from MMRT. The average curvature (average negative ΔCǂₚ) was −1.2 ± 0.1 kJ mol⁻¹ K⁻¹. Interestingly, Topt, Tᵢₙf and ΔCǂₚ appear insignificantly different across biomes and plant functional types, suggesting that thermal response of respiratory enzymes in leaves could be conserved. The derived parameters from MMRT can serve as thermal traits for plant leaves that represent the collective temperature response of metabolic respiratory enzymes and could be useful to understand regulations of R under a warmer climate. MMRT extends the classic TST to enzyme-catalyzed reactions and provides an accurate and mechanistic model for the short-term temperature response of R around the globe.
dc.format.mimetypeapplication/pdf
dc.identifier.citationLiang, L. L., Arcus, V. L., Heskel, M. A., O’Sullivan, O. S., Weerasinghe, L. K., Creek, D., … Schipper, L. A. (n.d.). Macromolecular Rate Theory (MMRT) Provides a Thermodynamics Rationale to Underpin the Convergent Temperature Response in Plant Leaf Respiration. Global Change Biology, first published on 14 November 2017. https://doi.org/10.1111/gcb.13936en
dc.identifier.doi10.1111/gcb.13936en_NZ
dc.identifier.issn1354-1013en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/11497
dc.language.isoen
dc.publisherJohn Wiley & Sons
dc.relation.isPartOfGlobal Change Biologyen_NZ
dc.rightsThis is an author’s accepted version of an article published in the journal: Global Change Biology. © 2017 John Wiley & Sons Ltd.
dc.titleMacromolecular Rate Theory (MMRT) Provides a Thermodynamics Rationale to Underpin the Convergent Temperature Response in Plant Leaf Respirationen_NZ
dc.typeJournal Article
dspace.entity.typePublication
pubs.publication-statusPublished onlineen_NZ

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ms_2017.10.06_preprint.pdf
Size:
713.03 KB
Format:
Adobe Portable Document Format
Description:
Submitted version

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Research Commons Deposit Agreement 2017.pdf
Size:
188.11 KB
Format:
Adobe Portable Document Format
Description: