Chapter 10

What can a mean-field model tell us about the
dynamics of the cortex?

M.T. Wilson, M.L. Steyn-Ross, D.A. Steyn-Ross, J.W. Sleigh, I.P. Gillies, and
D.J. Hailstone

10.1 Introduction

In this chapter we consider the dynamics of the cortex. We will show that mean-
field models can be applied to predict and explain large-scale features of the elec-
troencephalogram (EEG), such as seizures and K-complexes. The changes between
these states can be viewed as phase transitions. A cortical mean-field model is per-
haps well suited for investigating EEG behavior, given that the EEG is a result of
sampling large numbers of neurons. The model we consider follows the continuum
approach introduced by Nunez [12] and Freeman [2]. This style of model has been
developed by, amongst others, Wright and Liley [23], Robinson et al. [16], Liley
et al. [9], and Rennie et al. [14]. Here we implement a two-dimensional model in
the manner of Liley et al. [9], that specifically incorporates the dynamics of neuron
somas, synapses and axonal propagation.

Mean-field models have a history of being used to describe phase transitions—
for example, the Weiss model of ferromagnetism. Although it is known that mean-
field models are lacking in their description of correlations (and these can influence
the critical exponents of second-order phase transitions), such a basis is a natural
place to begin for describing phase transitions in the cortex. In the limit of spatially
symmetric perturbations, the model exhibits stable and unstable nodes, and under-
goes Hopf bifurcations into limit cycles. We identify these limit cycles as seizures.
If the symmetry is relaxed, traveling-wave solutions can be excited, reminiscent of
the slow-waves and K-complexes found in sleep. These solutions are related to the
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spatially symmetric limit cycles. Also, spiral-wave solutions have been found from
numerical simulation.

10.2 A mean-field model of the cortex

The cortex consists of a large number of macrocolumns, each containing around 10°
neurons in a volume of ~1 mm? area by ~1 mm thickness. We model the cortex
as a two-dimensional continuous area of macrocolumns. We follow the mean-field
continuum approach of Liley et al. [9] in using a set of coupled differential equa-
tions in time and space to describe the excitatory and inhibitory soma potentials V,
and V; within the cortex, and the time-evolution of postsynaptic potentials (PSPs).
This approach, in which the postsynaptic fluxes ®j; (where j and k can correspond
to excitatory e or inhibitory i neuron populations) are described by differential equa-
tions, is equivalent to approaches that describe the build-up of potentials in terms of
time-integrated inputs, for example that of Jirsa and Haken [6]. We use a standard
wave-equation, in the manner of Robinson et al. [16], to describe the propagation of
presynaptic fluxes ¢ from one part of the cortex to another. We model the subcor-
tical input with white noise.

It is important to note that individual firing events are not modeled explicitly,
instead the effects of a firing of a population of neurons are considered.

The complete set of equations describing the macrocolumn averages of soma
potential and synaptic fluxes, as a function of space and time, are described in
Refs [18], [19], and [22], and are given below. Note that later, Eqs (10.1) and (10.2)
will be modified slightly by the introduction of neuromodulators into the model.
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In these equations, V,**' and V/*' are the excitatory and inhibitory neuron resting
potentials, and p, and p; are the strengths of the EPSP and IPSP response functions
(i.e., the area of the plot of PSP response function against time). Note that the in-
hibitory effect is modeled with a negative p;. The variables Y., W,;, Wi, and y;; are
weighting functions dependent upon the soma potentials. They are given by:

Ve —V,

= J v (10.9)

Yab

Here, V¢ is the reversal potential of the type a synapse, due to the concentrations
of the neurotransmitters AMPA and GABA. The suffices a and b can take on the
labels e and i.

The terms 7, and 7; describe the time-constants for the e and i neurons. The 7,
terms are synaptic rate-constants; their reciprocals give the time-scales over which
the EPSPs and IPSPs occur. The mean axonal velocity for long-range interactions
is given by v, and the characteristic length for long-range interactions is given by
1/Acq. Short-range interactions are not modeled with axonal propagation but are

Table 10.1 The standard parameters for a human cortex used throughout this chapter, except where
stated otherwise. In this table the suffix a can take on the labels e and i. The values are taken mostly
from the paper of Rennie et al. [14]. Although there is considerable uncertainty in these parameters,
they form a plausible set that is sufficient for the purposes of elucidating much of the physics of the
cortical model. It is quite possible that further physical effects can be produced by varying these
parameters sufficiently.

Parameter ~ Description Standard value
Te,i membrane time constants 0.04, 0.04 s~
QOe.i maximum firing rates 30,60 s~ !

0, sigmoid thresholds —58.5, —58.5mV
O, standard deviation for threshold 4.0,6.0 mV
Pe,i gain per synapse at resting voltage 0.001, —0.00105 mV - s
i reversal potentials at synapse 0, =70 mV
yrest cell resting potential —64, —64 mV
Ngl long-range e to e or i connectivity 3710
Ng, short-range e to e or i connectivity 410
Ng short-range i to e or i connectivity 800
(955) mean e to e or i subcortical flux 750 571
(¢:2) mean i to e or i subcortical flux 1500 s~!
Yea excitatory synaptic rate constant 3005~!
Yia inhibitory synaptic rate constant 655!
Lyy spatial length of cortex in model 500 mm
Ame area of macrocolumn 1 mm?
Aca characteristic inverse length-scale for connections 0.2 mm™!
v mean axonal conduction speed 1400 mm s~!
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assumed to be instantaneous; the N ﬁc terms couple directly with the population firing
rates Oy in equations (10.3)—(10.6).

The sigmoidal functions Q, and Q;, describing the population firing-rate of neu-
rons, are given by:

B Qmax
B 1 +exp[—7((Ve - 6@)/\/§Ge} ’

Qmax
(V) = i .
Q:(v) 1 +exp|—7n(V; — 6;) /v/30]]
Here we have introduced further parameters Q7'** and Q"**, the maximum firing
rates for the excitatory and inhibitory neurons respectively; 6, and 6;, the inflexion-
point voltage; and o, and o;, the standard deviation of the threshold potential.

Qc(Ve)

(10.10)

(10.11)

Finally, the N fb represent numbers of local intra-macrocolumn connections from
type a neurons to type b (again a and b can take on the labels e and i), and the
NZ represent the number of long-range connections from type e neurons to type
a (note that inhibitory neurons have no long-range projections). Noise enters the
model through the ¢} terms.

The list of standard parameters used for a human cortex is given in Table 10.1.

We now modify the equations by introducing two parameters to describe the ef-
fects of neuromodulators. Following Steyn-Ross ef al. [18], we introduce a term
AVI®t to the excitatory resting potential in Eq. (10.1) to model the archetypal
somnogen adenosine, and a multiplier A to the excitatory synaptic strength to ac-
count for the effect of acetylcholine (abundant in rapid-eye-movement (REM) sleep,
but absent in slow-wave sleep). Equations (10.1) and (10.2) now become:

dv,

Teﬁ = V;est_i_AVJeSt_Vg+)~peWee¢eg+p[l[/,'e¢,‘e, (]0]2)
dvi rest
g Vi — Vit ApeWeiPei+ i Vi Pii (10.13)

10.3 Stationary states

The full two-dimensional dynamics of the model will be explored by simulation;
however, it is instructive to calculate the stationary (equilibrium) states of the model
(i.e., solving for the state variables V;, @ji, ¢.;, where j, k = e or i) such that their
time- and spatial-derivatives are zero. The solutions are computed numerically as a
function of the two parameters AV and A. Figure 10.1 is a plot of the solution
for V, against these two parameters (we could also construct associated plots for V;,
®,., etc). It is immediately clear that there exists a region where there are multiple
stationary states. This is suggestive of the presence of phase transitions—e.g., in
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Fig. 10.1 Plot of V, for

stationary states in the sleep 481
domain, using Table 10.1
parameter values. Multiple
stationary states exist in a
region of the sleep domain at
negative AV'*. The thick-
green curve marks turning 64
points (where the gradient
is infinite). (Modified from
Ref. [18]).
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Ref. [18], Steyn-Ross ef al. identified the lower (more negative V,) branch as slow-
wave sleep (SWS) and the upper branch as REM sleep.

10.4 Hopf bifurcations

In this section we investigate the stability of the stationary solutions. Specifically, we
will show the presence of Hopf bifurcations that lead to instabilities in the stationary
states. Where there is no stable stationary state, a stable spatially-symmetric limit-
cycle oscillatory state exists. The dynamic solutions to the equations are presented
in the next section.

10.4.1 Stability analysis

To carry out a stability analysis, we decompose the six second-order equations
(Egs. (10.3)—(10.8)) into pairs of first-order equations, which, along with Egs. (10.12)
and (10.13), give a total of fourteen coupled first-order differential equations in
time. Then we perform a first-order series expansion in time about the stationary
state. We define uniquely any state of the system by its 14-dimensional state-vector
y(r), which contains the variables V,, Vi, ®,., d e /dt, Poi, dP,;/dt, Pje, dP;, /dt,
Dyi, dD;;/dt, Qe dPee/dt, Poi, and d@,;/dt. These are all functions of space (r),
and Egs. (10.3)-(10.8), (10.12) and (10.13) describe explicitly how these evolve
with time . We then assume a small plane-wave perturbation of the system in two-
dimensional space of wave vector q, about the stationary point Yeqm. That is,

Y(r) = Yeqm +quexp(iq.r) ) (10.14)

where the dynamics can be written as a simple matrix equation
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%(qu) = A(q)Ay?. (10.15)
Here, A is a sparse 14 x 14 matrix which contains all the dynamics of the system; it
is dependent upon the modulus of the wave vector ¢ = |q|. The vector Ay denotes
the amplitude of the plane-wave perturbation.

In order for the system to be stable to small perturbations about a given stationary
point, we require the real parts of all the eigenvalues of A to be negative, for all g.
We do not present the matrix A here, but have described the method in more detail
in Ref. [22].

The choice of wave vector ¢ is important, since some eigenvalues are particularly
sensitive to ¢. In all cases, we find that increasing g decreases the real part of the
eigenvalues (i.e., makes them less positive or more negative). The perturbations that
are most likely to lead to instabilities are therefore those with g = 0, corresponding
to spatially symmetric “breathing” modes. This observation agrees with that made
by Robinson et al. using a different model [15], and is confirmed by simulation.
In what follows, we assess the stability of the system by constructing the matrix
A(g = 0), then finding its eigenvalues. If one or more eigenvalues has a positive real
part, then Eq. (10.15) predicts an instability.

10.4.2 Stability of the stationary states

We begin by presenting a typical result for the stability of the sleep domain.

Figure 10.1 showed graphically the stationary values for V,: across most of the
domain, there is just one stationary state; however, for a small region there are three
stationary states. Figure 10.2 shows the stability of these states. There is a small
lake-like region where the linearized system has a pair of eigenvalues with positive
real part, corresponding to an instability. The nature of this region is discussed in
Ref. [22]; notably the edge of the lake-like region corresponds to a supercritical
Hopf bifurcation. The real parts of these eigenvalues are most positive when g = 0,
and reduce monotonically as g increases.

Let us now comment on how the situation changes with a different parameter set.
We find that the size of the unstable “lake” of Fig. 10.2 is particularly dependent
on the choice of % (we assume 7%, = 7%;;, SO we can use a single index without am-
biguity). This is to be expected since it is this term that governs the rate at which
negative (stabilizing) feedback is applied to the system. A small ¥; corresponds to an
IPSP that is spread-out in time; this allows positive feedback from the excitatory—
excitatory route to build up before being quenched. Figure 10.3 shows the stability
of the domain when 7, is reduced from 65 s~! to 15 s~!. The stationary solutions re-
main unchanged; however, the unstable lake has now grown into the the area of three
stationary states. This means that either or both of the upper and lower branches, in
addition to the mid-branch, can become unstable. There is the possibility of the
system having multiple stationary states, with none of them being stable.
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The limit cycles associated with these instabilities are found by simulation, and
are described in the next section.

10.5 Dynamic simulations

Numerical simulations of the equations on a two-dimensional grid allow the explo-
ration of a range of different dynamic behaviors. We first outline how this is done,
then consider spatially symmetric and asymmetric solutions. We tentatively suggest
how these solutions might correspond with gross features of the EEG. The param-
eter values used here are broadly representative of human cortex; parameters and
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bifurcation structures more appropriate for rat cortex are discussed in the chapter by
Sleigh et al.!

In one dimension, a study of spatial and temporal structures such as traveling
waves in a similar model has been performed by Hutt et al. [5] using both a stability
analysis similar to that in Sect. 10.4.1, and numerical simulations.

We have performed grid simulations on the full set of equations in 2-D space.
We used a regular square grid to represent the cortex in space, and iterated the full
equations in time using an order-1 Euler predictor—corrector method [7], as detailed
in reference [22]. Noise is fed into the system through the subcortical terms, but does
not affect gross dynamic behaviors that dominate when there is no stable stationary
state available.

10.5.1 Breathing modes

We now look at the stability and dynamics of the system in more detail. We con-
sider vertical slices across the domains of Figs. 10.2 and 10.3: we fix AV;**, and
show the mean soma potential as a function of A. The slice-plot for Fig. 10.2 (with
% = 65 s~ 1) is shown in Fig. 10.4; and the slice-plot for Fig. 10.3 (y; = 15 s7!) is
shown in Fig. 10.5. Also indicated on these plots is the stability of the solution (solid
= stable, dashed = unstable), and the extent of “breathing mode” (spatially symmet-
ric) limit cycles. The breathing-mode cycle, corresponding to ¢ = 0, is always the
most unstable perturbation, and is usually the cycle reached in the limit of large
times. The dominance of the ¢ = 0 instability arises because the model used in this
chapter has no spatial diffusion; when diffusive coupling in space is introduced—for
example, via gap-junctions—instabilities at nonzero ¢ can dominate, as discussed
in the chapter by Steyn-Ross et al.?

The limit cycles were found by simulation, and are indicated by plotting thick-
solid lines in Figs 10.4 and 10.5 to show the maximum and minimum values of the
mean excitatory soma potential during the cycle; unstable limit cycles associated
with these Hopf bifurcations are not shown.

We start with Fig. 10.4 (7, = 65 s!), and discuss the solutions with reference
to stepped decreases in the AV parameter. For AV/®*" larger than about +10 mV,
there is a single stationary state, and this is stable (e.g., see Fig. 10.4(a)). When
AVt is reduced, a small unstable region appears, associated with a pair of Hopf
bifurcations (marked with “x” on Fig. 10.4(b, c, d)). If a simulation is performed
in the unstable region, a spatially-symmetric (breathing mode) limit cycle results,
with an amplitude extent as marked on the plot with thick-solid lines. Note the
supercritical nature of the Hopf bifurcations for this value of 7;.

This region of instability disappears when AV®! is reduced to about 1 mV. At
the same time the slope of membrane potential against A increases; and for AV

1 See Ch. 9 of the present volume.
2 See Ch. 12 of the present volume.
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Fig. 10.4 Stationary states, bifurcations (found by calculation), and breathing modes (found by
simulation) corresponding to six vertical slices through Fig. 10.2 with %; = 65 s~!. Graphs plot
excitatory soma potential V, versus excitatory synaptic strength A for six values of AV (dis-
played in the subtitles as AV). Thin line indicates stationary states of V,: solid = stable; dotted =
unstable. Supercritical Hopf bifurcations are marked with x. Thick-solid line denotes maximum
and minimum extent of the associated limit cycle (only stable part of the limit cycle is shown).

less than about 1 mV (see Fig. 10.4(e, f)), multiple stationary states can exist (i.e.,
there exists a saddle—node bifurcation for variations in A.) The middle branch of the
three solutions is unstable. As AV®! decreases further, the extent of the multiple
solutions increases.

We now look at the case of a time-lengthened IPSP, where % = 15 s~!. Fig-
ure 10.3 shows that this delayed feedback leads to a large increase in instability;
the corresponding slice-plots are shown in Fig. 10.5. There are three key differences
from Fig. 10.4. First, we note that the extent of the unstable area (the region be-
tween Hopf bifurcation pairs) has increased. Second, the bifurcations have become
subcritical—i.e., the limit cycle extends beyond the region bracketed by the Hopf
bifurcations. This means that the system can have both a stable node and a stable
limit cycle available to it simultaneously. Finally, we see that the unstable region
co-exists with the region of multiple stationary state solutions. This can result in a
rich variety of solutions; for example, at AV/®' = —2.5 mV and A = 1.25 there
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Fig. 10.5 Stationary states, bifurcations, and breathing modes corresponding to six vertical slices
through Fig. 10.3: % has been reduced to 15 s~!. Graphs plot V, versus A for six values of AV
(displayed in the subtitles as AV'). Thin line indicates stationary states of V,: solid = stable; dotted
= unstable. Subcritical Hopf bifurcations are marked with x. Thick-solid line denotes maximum
and minimum extent of the associated stable limit cycle.

are two stable stationary states and a stable limit cycle available (see Fig. 10.6). For
negative AV, an unstable “lip” remains on the top branch of the stationary states,
and a very small unstable lip remains on the bottom branch. (See also Fig. 3).

The Fig. 10.5 limit cycles arise as a result of small inhibitory synaptic rate-
constant (i.e., large synaptic time-constant), leading to an effective delay in appli-
cation of negative feedback. The formation of this instability has been linked with
seizures (e.g., Kramer et al. [8]), and in Ref. [20] we have suggested that the ten-
dency for the anesthetic enflurane to promote seizures is due to its lengthening of
the inhibitory postsynaptic potential, causing Hopf bifurcation to a limit cycle. It is
unlikely that a healthy brain would operate in such a region.
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10.5.2 Response to localized perturbations

To investigate the dynamic, spatially asymmetric response of this model, we look
specifically at the response to small “kicks” to the cortex, which physically could
be a result of thalamic pathways to the cortex, or spontaneous neurostransmitter
release. As will be shown below, these kicks can produce traveling-wave structures
which we will identify with slow waves or K-complexes [21].

We have carried out simulations on a 64 x 64 spatial grid, for different values of
the control parameter A for the case ¥ = 15 s~! and AV/*' = —2.5 mV. This choice
of parameters leads to the stationary-state structure of Fig. 10.6, and gives rich dy-
namic behavior. In these simulations we place the system initially in a stationary
state (where multiple stationary states exist we start on the lower-branch). The noise
input results in the soma potential V, undergoing fluctuations about this stationary
state, as described by Wilson et al. [22]. Here, we examine the response of the sys-
tem to a sharp kick applied at a single point in space. This has been done by making
a momentary (0.1 s) increase in AV!*' (by 10 mV) at a single point on the simula-
tion grid (e.g., AV/*" becomes +7.5 mV for 0.1 s, before returning to —2.5 mV).
This corresponds to a large increase in cortical excitation at this point in space only.

With reference to the stationary states shown in Fig. 10.6, for 3 = 15 s™!, we
will now present results for simulations at various points along the A axis. We start
with A small, where there is just one stationary state, and then raise A to move
into the region of multiple stationary states, then into the region where the limit
cycle exists. Results are presented as grayscale plots (white = high, black = low)
of the excitatory soma potential V, for a slice through the cortex (incorporating the
position of the kick) against time. We look first at A = 0.8 where there is only a
single, stable stationary state available that is well away from the region of multiple
stationary states. Figure 10.7 shows that a kick of 10 mV for 0.1 s does not lead to
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any interesting dynamics—the soma potential rises at the location of the kick only,

and then decays quickly back to the stationary state.

Fig. 10.7 Excitatory soma
potential as a function of
time in response to a short,
localized impulse when only
one stationary state is accessi-
ble to the system. Parameter
values: AVt = —2.5 mV,
% =15s71, with A = 0.8.
The effect of the kick does
not propagate. (Reprinted
from [21] with permission.)

Fig. 10.8 Excitatory soma
potential as a function of time
for a short kick at one point
in space when lower branch is
stable, upper branch unstable.
Parameter values: AV*' =
—2.5mV, ¥ =15 s~!, with
A = 1.1. Left-hand graph
shows V, for two points on
the cortex (the point of initial
kick, and 25 cm from this
point) versus time. Right-
hand image shows V, as
grayscale (white = high, black
= low) against space and time
for a line through the position
of the kick. The resulting
traveling wave is similar to

a K-complex. (Reprinted
from [21] with permission.)
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However, the dynamics changes markedly as we approach the region of multiple
stationary states. We look at the response of the system to the same kick, but with
the control parameter increased to A = 1.1; there are now three stationary states,
but only the lower-branch state is stable. The results are shown in Fig. 10.8. We see
that the response propagates as a wave of constant velocity over the whole cortex.
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The system is pushed from its stable lower branch, beginning at the point where the
impulse is applied, and heads towards the unstable upper branch. However, since
the upper branch is unstable, it cannot remain there, and instead returns to the stable
lower branch, where it finally comes to rest (the kick having been removed). This
process generates a single circular traveling wave that propagates outwards from
the point of the initial kick—every point in space leaves the lower branch, heads
towards the upper branch, overshoots, then falls down towards the lower branch,
overshoots this, and eventually settles back on the lower branch. The shape of the
plot of Fig. 10.8 is similar to that of the K-complex seen in EEGs. Indeed, we will
follow Massimini et al. [10] and identify this traveling wave with a K-complex.
Golomb and Amitai have shown that a disinhibited network model can also give
a similar result [3]—the significant difference between their work and ours is that
inhibitory neurons are included here, and multiple stationary states are involved.

The cause of the K-complex in the EEG is uncertain—it can occur either as a
response to a specific stimulus (e.g. a sound), or sometimes spontaneously with no
obvious cause. In his summary paper, Colrain [1] describes the K-complex, with
reference to the earlier work of Numminen ef al. [11] as,

—a nonspecific reaction of the cortex to various stimuli during sleep, via activation of pro-
jection pathways from the nonspecific thalamic nuclei.

We now raise A further, to A = 1.25. From Fig. 10.6 we note that, in addition
to the stable stationary state of the lower branch, there is now a stable limit cycle
available to the spatially-homogeneous system. When we apply a kick to the system

—45 7 —yr 0.5
< -50f E', ' 0.4
£ H i
o " \
g " '
(ﬂ; -55} E‘ '.: g 0.3
g i 8
3 5 i &
> —60f i i @ 02
o : : 1
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x : ,' 1
W _g5t i ' V{ 0.1
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0 2 4 0 2 4
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Fig. 10.9 Excitatory soma potential as a function of time when there is a limit cycle available to
the system. Parameter settings: A = 1.25, AV = —2.5mV, 3, = 15 s~!. Note how the limit cycle
begins to synchronize in space as time increases. (Reprinted from [21] with permission.)
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14 Wilson, Steyn-Ross, Steyn-Ross, Sleigh, Gillies, and Hailstone

that is initially on the lower branch, the system is provoked into this limit cycle, as
illustrated in Fig. 10.9. The firing rate moves from near zero to near maximum, in a
similar way to spike—wave seizures [17]. Figure 10.9 also shows the limit cycle be-
coming progressively more synchronized in space as time increases, corresponding
to the g = 0 breathing mode.

To explore the possibilities further, we look at the crucial significance of the in-
hibitory synaptic rate-constant, 7¥;, in determining the stability of the cortical model.
An increase in % to 65 s~! leads to a stabilization of the stationary states—i.e., the
Hopf bifurcations and limit cycles are removed from Fig. 10.6. In this case a kick
produces no traveling waves—i.e., the existence of the traveling wave (K-complex)
state depends upon having a sufficiently long inhibitory time-constant.

10.5.3 K-complex revisited

We return to the situation that produced the single traveling-wave solution which
we identify as a K-complex [21], and explore the response to impulsive kicks of
varying size. In Fig. 10.10 we have summarized the four possible dynamic outcomes
of a voltage kick of given size at a given value of the parameter A. Where there are
multiple stationary states, we consider the system to be initially on the lower branch.
We set AVt = —2.5mV and ¥ = 15 s7!, i.e., the stability diagram of Fig. 10.6
applies.

Atlarge A (corresponding to A > 1.27), a small kick results in the system moving
to the upper state where the stability is greater. Indeed, for A > 1.35 (region (d) of
Fig. 10.10), there is no stable lower state, and the system moves spontaneously to
the upper state without any applied kick.

For 1.0 < A < 1.27 (region (¢)) a kick of sufficient size will result in a traveling
wave of the form of Fig. 10.8. Note that the size of the kick is important; if it is
not large enough, the disturbance will rapidly die away rather than propagating over
space, as in Fig. 10.7. The required size of the kick reduces as A increases; the lower
stationary state has become less stable. Note that the boundary between regions (c)
and (d) is very distinct.

For A < 1.0, no kick can generate a traveling wave. However, a large enough
kick (region (b) of Fig. 10.10) will result in initial local growth of the disturbance,
but one that fails to propagate entirely to other regions. At very low A, the boundary
between the region of initial growth (b) and of initial decay (a) is quite indistinct;
it is marked on Fig. 10.10 by dashed lines. However, the boundary between regions
(b) and (c) is very sharp.

This abrupt triggering of a K-complex in region (c) can be explained with
reference to the orbits of the spatially-homogeneous system in phase-space. In
Fig. 10.11(a), for AV!*' = —2.5 mV, A = 1.15, we plot a projection of the trajec-
tories in phase-space of the spatially-homogeneous system. The top graph is for a
small inhibitory synaptic rate-constant, 7; = 15 s~!; the bottom graph is for a larger
rate of 65 s~!. All state variables have been started at their equilibrium values except
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10 Cortical dynamics 15

for ®,, and P;;. The equations (10.1-10.8), if written as a set of first-order differ-
ential equations, have fourteen dynamic variables; the two variables that illustrate
the situation most clearly are ®,., the e—e synaptic flux, and ®;;, the i—i synaptic
flux. For this reason, these two variables have been plotted here. For the top case,
since there is only one stable solution, all of the trajectories eventually end on the
lower-branch solution (Os in lower left-hand corner). However, looking at the tra-
jectories starting in this vicinity, it is clear that two initial points very close together
can generate manifestly different trajectories in order to return to the single stable
solution. In one case, the trajectory returns quickly to the stable solution of the lower
branch; in the other, first the e—e synaptic flux grows, then the i—i flux, the e—e
flux diminishes, and finally the i—i flux diminishes, and the trajectory returns to the
stable lower branch (Os). This path takes the system around the unstable solution of
the upper branch (Au in top-right corner). This divergence of trajectories explains
why a tiny increase in the size of the kick (e.g., from region (a) to region (c) of
Fig. 10.10) can result in a very different solution to the dynamical equations.

Diagram for limit-cycle generation

20
18 (c) (d)
16 \ Generation System
\ of alarge jumps to
14 1 \  (b) Large orbit but no propagation f orbitin uppermost
< \ phase state
= \ space with
£ 127 \ traveling
i~ \ wave
S 10| N
x~ ™~ N
© ~
> 8 ~ AN
AN
© ~
= - ~
O 67 ~ ~
= ~2-
4 (a) No Effect IR -
IS
=~ =~
2 \»\\\\
0 ‘ ‘ ‘ ‘ ‘ — ‘
0 0.2 0.4 0.6 0.8 1 12 14 1.6

Fig.10.10 Summary of the effect of disturbing the cortical system at one point in space. Parameter
settings: AV/®' = —2.5mV, 7; = 15 s~!. (a) For small kicks, except when the lower branch is un-
stable, the generated disturbance quickly dies away. (b) At low A, a large kick can result in a large,
localized response (an orbit in phase space similar to Fig. 10.11) but with no propagation away
from the site of disturbance. (c) In the vicinity of the region where there are multiple stationary
states, with the top state being unstable, a sufficiently-sized kick can generate a large disturbance
that propagates as a wave. Note that this can occur even when there is only one stationary state
(e.g., A=1.0); however the system has to be close to the saddle-node bifurcation. The boundary
between a (c) propagating and (b) nonpropagating disturbance is very distinct. (d) At high values
of A, a small kick will displace the system onto the upper state, where it will remain. Again, a
distinct boundary separates regions (c) and (d).
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Fig. 10.11 Phase-space trajectories for parameter settings AVI®' = —2.5 mV, A = 1.15, and (a)
Yi=15 s~ (b) Y% =65 s~!. Panel (a): Lower, stable stationary state is in the bottom left-hand cor-
ner of the figure (marked “Os”); the unstable upper state in the top-right corner (Au); the unstable
mid-branch solution is in the center (x). Two trajectories have been started on each of the upper-
and mid-branches—these eventually reach the lower, stable branch (Os). Other trajectories have
been started close to the lower state. Two of these return quickly to this state, but the third, ini-
tially displaced by a very small distance from the first two, exhibits a markedly different trajectory
that loops around the upper state (Au). We identify this trajectory with a K-complex. The vicinity
of the lower state has been expanded in the subpanel for clarity (but the different starting points
are still indistinguishable). Panel (b): Trajectories have changed markedly with a reduced synaptic
response-time. The stationary states remain in the same positions, but the upper state is no longer
unstable (now marked “(As)”). There is no longer divergence of trajectories as in (a). The solid
and dotted lines denote different trajectories leaving the same unstable initial point. (Reprinted
from [21] with permission.)
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10 Cortical dynamics 17

Why does the numerical simulation produce a traveling wave? Different points in
space are coupled through the V2-term of Eqs (10.7) and (10.8). If a single point in
space is kicked from its stable equilibrium onto the trajectory that travels around the
upper branch, as happens in Fig. 10.8, the V2 spatial-coupling will pull the neigh-
boring points from their position on the lower stable branch onto this trajectory too.
These in turn influence their neighbors, sending out a traveling disturbance. After
the wave has passed, all points return to the original, lower-branch stable steady
state (Os).

In Fig. 10.11(b) we see the effect of restoring the inhibitory rate-constant to y; =
65 s~ !, thereby removing the instability from the upper branch of Fig. 10.6. A large
kick, large enough to take the system past the unstable mid-state (x), will cause the
system to move to the upper stationary state (As). This removes the possibility of
producing a K-complex, and instead, a sufficiently large kick, applied to the bottom
branch, results in the system moving directly to the top branch.

10.5.4 Spiral waves

Finally, we remark on another limit-cycle that is available to an oscillatory system,
namely that of spiral waves. These persistent features sometimes can be generated
when a simulation is run through an unstable region of the sleep domain. These
waves are spatially structured states consisting of pairs of counter-rotating spirals.
Figure 10.12 shows a gray-scale plot of V,(r) at a given time. Specifically, this sim-
ulation involved starting on a stable, upper-branch solution and then, by reducing
A, moving the system through an unstable region into the region where the lower
branch is stable. These limit-cycles are extremely persistent—to quench them, a
large reduction in A or AV**" is required (i.e., a large reduction in excitatory compo-
nent). Experimentally, spirals have been observed in disinhibited cortical slices [4],
and demonstrated in neuron models with no inhibition [4, 13]. However, their pres-
ence in the cortex, and their relationship with states such as epileptic seizures, is
unclear.

10.6 Conclusions

In this chapter we have demonstrated some of the dynamic features associated with
a nonlinear mean-field cortical model. In particular, spatially symmetric limit cy-
cles are reminiscent of seizure-like states [8, 20], and arise as a result of a delay
in negative feedback through a lengthened inhibitory postsynaptic potential. This
delay may explain of the tendancy of some anesthetic drugs, such as enflurane, to
promote seizures.

For certain parameter sets, traveling waves of activity can be produced. These are
associated with the combination of saddle—node bifurcations and Hopf bifurcations,
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Fig. 10.12 Snapshot of a 05 T
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and are reminiscent of the K-complexes and slow oscillations of slow-wave sleep.
Such waves can be activated by a point-like disturbance of sufficient magnitude—a
below-threshold disturbance will fail to propagate.

In some limited conditions, spiral waves are generated. These are extremely per-

sistent once established. The biological significance of such waves is not entirely
clear, although, in general, the ability of a 2-D nonlinear system to produce spiral
waves is not surprising.
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