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Abstract 

Enteric methane emissions from ruminants constitute a large proportion of 

agricultural greenhouse gas emissions, particularly in New Zealand. The recent 

increase in enteric methane emissions has driven the development of innovative 

strategies for mitigating these emissions. Red seaweed from the genus 

Asparagopsis has demonstrated elimination of enteric methane due to the 

presence of the active anti-methanogenic component, bromoform. 

 

Spatial variation in bromoform content for Asparagopsis armata throughout the 

North Island, New Zealand, was quantified to determine the region that produces 

the highest concentration of bromoform. Alongside Asparagopsis, the New 

Zealand red seaweed species Bonnemaisonia hamifera, Delisea compressa, 

Plocamium sp., Vidalia colensoi, and identified aquaculture-target seaweed 

species, Ecklonia radiata, and Ulva sp. B, were investigated as ruminant feed 

additives to reduce enteric methane emissions. Polyphenol quantification and 

compositional analyses were carried out for these seaweed species to provide a 

baseline for interpreting anti-methanogenic effects. Seaweed species were 

included at 0 %, 2 %, 6 %, and 10 % of feed organic matter (ryegrass hay) during in 

vitro fermentation assays using rumen inoculant from non-lactating cows. Total 

gas, methane, hydrogen, volatile fatty acid (VFA), and ammonia production were 

measured during the incubations.  

 

Bromoform concentration was highest in A. armata sampled from Matheson’s Bay 

at 1 % of the biomass dry weight. Species of red seaweed had a high halogen 

content, while E. radiata and Ulva. sp. B had a high iodine and crude protein 

content, respectively. Inclusions of A. armata and B. hamifera demonstrated near 

elimination of enteric methane production at doses of 2 and 6 % organic matter, 

respectively, while the remaining species (except for Ulva sp. B) caused moderate 

reductions at doses of 6 and 10 % organic matter in comparison to these two 

species. The anti-methanogenic effects of A. armata and B. hamifera resulted in a 

22 % reduction in total VFA production, accompanied by changes in the relative 
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proportions of individual VFAs, and had little or no effect on organic matter 

degradation. 

 

The effectiveness of A. armata and B. hamifera demonstrates the potential of 

these species for mitigating ruminant methane emissions at low inclusion rates, 

dependent on the concentration of their active components, while E. radiata and 

Ulva sp. B could be used as feed additives for nutritional benefit. The undertaking 

of larger scale sampling of A. armata throughout New Zealand, the identification 

of the active component(s) in B. hamifera, and the development of methods and 

infrastructure required for successful large-scale aquaculture and application of 

these seaweed species to livestock management systems are key areas of future 

research highlighted by this thesis. 
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1 Chapter 1 – General introduction 

 

1.1 Contribution of methane emissions to climate change 

Climate change poses a major threat to global ecosystem functioning, and the 

impacts of these changes are becoming increasingly apparent. Following carbon 

dioxide (CO2), methane (CH4) is the second most important greenhouse gas (GHG) 

contributing to climate change. The surface dry air mole fraction of global 

atmospheric CH4 reached 1875 ppb in 2018, increasing by a factor of 2.6 since its 

estimated value of approximately 700 ppb at the beginning of the industrial era in 

1750 (IPCC, 2007, 2014; Saunois et al., 2020). The residence time (Table 1.1) of CH4 

in the atmosphere is approximately nine years. Although this is significantly 

shorter than CO2, which can remain in the atmosphere for centuries, the global 

warming potential (GWP; Table 1.1) of CH4 is 21 times greater than that of CO2 

over a 100-year period (Boucher et al., 2009). This is largely attributed to the ability 

of CH4 to strongly absorb infrared radiation in a region of the spectrum unable to 

be absorbed by CO2 (Pulselli, 2008); thus, an increase in the concentration of CH4 

causes highly effective heating of the atmosphere (Ramaswamy et al., 2001; 

Forster et al., 2007). Furthermore, since the concentration of atmospheric CH4 is 

much lower than atmospheric CO2, increased release of CH4 causes a stronger 

instantaneous radiative forcing (3.63 x 10-4 W/m2/ppb) (Table 1.1) compared to 

CO2 (1.37 x 10-5 W/m2/ppb) per unit of mass in the atmosphere (Pulselli, 2008; 

Edenhofer, 2015). Atmospheric CH4 is directly responsible for approximately 23 % 

(0.62 Wm-2) of the total radiative forcing produced by long-lived greenhouse gases 

(Etminan et al., 2016). On top of this, CH4 contributes to stratospheric water vapor, 

tropospheric ozone and CO2 (Figure 1.1) which indirectly increase its radiative 

forcing (Dlugokencky et al., 2011; Myhre et al., 2013). The strong radiative forcing 

caused by CH4, along with its high GWP and short atmospheric residence time, 

makes mitigating CH4 emissions an attractive target for combating global climate 

change, as reduced CH4 emissions would have a rapid and positive effect on the 

climate.  
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Currently, CH4 emissions contribute approximately 16 – 20 % of the global GHG 

emissions (IPCC, 2014), with a total of 8.6 Gt carbon dioxide equivalents (CO2-e; 

Table 1.1) emitted in 2016 (CAIT, 2016). With atmospheric CH4 increasing by 

approximately 0.1 – 0.2 GtCO2-e per year since 2000 (CAIT, 2016), reductions in 

CH4 emissions or increased CH4 sinks of near the same amount would be required 

to stabilize these global concentrations. Nevertheless, it is evident that CH4 

emissions have increased at a rate faster than the rate at which CH4 mitigation 

strategies have been developed and implemented to counter these rising 

concentrations. It is therefore imperative that prompt action is taken to prevent 

this imbalance from steepening and to ameliorate its impacts on climate change.  

 

Table 1.1. Fact box explaining terms associated with atmospheric climate change. 

Term Definition Source  
GWP Global warming potential. An index developed to allow 

comparisons of the impact of different GHGs on global 
warming. This describes how much energy the emissions of 
1 T of a gas will absorb over a given period of time (usually 
100 years), relative to the emissions of 1 T of CO2.  

3 

CO2-e Carbon dioxide equivalents. A term used for describing 
different GHGs in a common unit. For any given type of 
quantity of a GHG, the term represents the amount of CO2 
which would have the equivalent global warming impact. 

4 

Radiative 
forcing 

A measure used for quantifying and comparing the 
anthropogenic and natural drivers of climate change. This 
describes the net flux imbalance at the tropopause, i.e.  the 
change in net (downward minus upward) irradiance (solar 
plus longwave; in W m-2) at the tropopause due to a change 
in an external driver of climate change (e.g. a change in the 
concentration of CO2). An increase in radiative forcing 
means that the earth is receiving more incoming energy 
from sunlight than it radiates back into space, leading to a 
net gain in energy that causes warming.  

1,2 

Residence 
time 

The average length of time it takes for a molecule to be 
removed from the atmosphere. 

5 

 
Sources: 1Ramaswamy et al. (2001), 2Forster et al. (2007), 3EPA (2017), 4Brander and Davis 
(2012), 5Edenhofer (2015). 
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Methane is released from both natural (40 %) and anthropogenic (60 %) sources 

(Karakurt et al., 2012). Types of CH4 emissions fall into three broad categories: 

biogenic emissions – due to microbial activity, thermogenic emissions – due to the 

burning of fossil fuels, and pyrogenic emissions – due to the burning of biomass 

(Kirschke et al., 2013). Agriculture (41 %) is the primary contributor to global CH4 

emissions from anthropogenic sources, followed by energy (37 %), and waste 

(17 %) (Figure 1.2). Biogenic sources of CH4, including emissions from natural 

wetlands and agricultural practices (e.g. rice paddies and livestock production), 

are largely responsible for the recent increase in CH4 emissions (Lassey, 2008; Yang 

et al., 2010; Zhang et al., 2017). Coal mining and waste also produce considerable 

amounts of CH4 through the release of CH4 trapped in coal deposits during mining 

operations, and as a result of decomposition of rubbish in landfills (EPA, 2014), 

some of which is burned for energy. Emissions from these sources have not 

increased as dramatically as they have in agricultural practices (Karakurt et al., 

2012; Kirschke et al., 2013), for which emissions have spiked from 3.1 GtCO2-e in 

the 1990’s to 3.5 GtCO2-e in 2016 (CAIT, 2016). 

 

In 2016 New Zealand’s GHG emissions reached 63 MtCO2-e, over half of which (33 

MtCO2-e) were CH4 emissions: of these, 28 MtCO2-e (86 % of New Zealand’s total 

CH4 emissions) came from the agricultural sector (Figure 1.2), making this New 

Zealand’s primary source of both CH4 and total GHG emissions (CAIT, 2016). The 

primary contributors to global agricultural CH4 emissions include India (26 %), 

China (19 %), Brazil (18 %), the European Union (13 %) and the United States (10 

%) (CAIT, 2016). New Zealand’s agricultural CH4 emissions are low in comparison 

with other top emitting countries, accounting for 1.5 % of global emissions. On the 

other hand, New Zealand has the highest CH4 emissions per capita, at 7 GtCO2-e 

per capita, followed by Brazil at 2.2 GtCO2-e per capita (CAIT, 2016), highlighting 

the disproportional contribution of agricultural emissions in New Zealand 

compared with the lesser contribution of agricultural emissions worldwide. 
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Figure 1.2. Contribution of anthropogenic CH4 emissions from each of the major sectors 
globally (A) and from New Zealand (B). Source: CAIT (2016).   

 

Figure 1.1. Simplified diagram describing atmospheric biogeochemical CH4 processes. 

Methane from natural and anthropogenic sources on Earth is emitted into the atmosphere. In 
the troposphere, CH4 reacts with hydroxyl radicals to produce CH3 and H2O (CH4 + OH à CH3 + 
H2O). This represents the greatest sink of atmospheric CH4 (approximately 85 %). Most of the 
remaining CH4 is removed in the stratosphere either by this same process, by Cl atoms, or by 
electronically excited oxygen atoms, O(1D). A small fraction of remaining CH4 travels to the 
mesosphere where high energy UV radiation leads to its photolytic decomposition. These 
reaction pathways also influence the amount of O3 and CO2. Complete oxidation of CH4 leads to 
the production of CO2 and H2O (CH4 + 2O2 à CO2 + 2H2O), which can also produce O3 and 
hydroxyl radicals. Source: Oremland (1988). 

(A) (B) 
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1.2 Livestock production as a source of methane emissions 

Livestock production is a major source of global CH4 emissions due to the 

processes of enteric fermentation and waste management (IPCC, 2007). Enteric 

fermentation, a digestive process in which microorganisms break down 

carbohydrates, produces CH4 as a result of the anaerobic fermentation of feed 

organic matter (OM) (Basarab et al., 2013) (Figure 1.3). Enteric CH4 constitutes the 

largest proportion of CH4 from livestock production, making up 89.5 % of global 

livestock CH4 emissions (USEPA, 2006) and releasing approximately 2 GtCO2-e/yr 

(in 2013) (Smith et al., 2014). The remaining emissions come primarily from 

manure management, whereby CH4 is released during the anaerobic 

decomposition of manure organic matter (FAO, 2010). Livestock CH4 emissions 

have increased by 51 % from 1961 to 2010, which is largely due to enteric 

fermentation emissions (Caro et al., 2014). A combination of human population 

growth and increased per capita consumption of livestock products has 

predominantly driven this increase (Garnett, 2009), causing higher demands for 

livestock products and the expansion of dairy and beef cattle herds, particularly in 

developing countries (van Beek et al., 2010; Caro et al., 2014). By 2030, CH4 

emissions from enteric fermentation are expected to reach 2,729 MtCO2-e (an 

increase of 527 MtCO2-e since 2010) (EPA, 2014). The rise in CH4 emissions has 

been mostly driven by developing countries, where CH4 emissions have doubled 

over the last five decades (Tubiello et al., 2013). In Vietnam and Mongolia for 

example, agricultural CH4 emissions increased by 23 and 33 %, respectively over a 

10-year period (1990 – 2000) (van Beek et al., 2010). Conversely, some developing 

countries have reduced their CH4 emissions (Tubiello et al., 2013), such as South 

Africa and Argentina who reduced their CH4 emissions by 9 and 7 %, respectively, 

over the same 10-year period (van Beek et al., 2010). 

 

In New Zealand, enteric fermentation from livestock production was ranked as the 

largest source of GHG emissions from the agricultural sector (MfE, 2019). In 2018, 

CH4 emissions from enteric fermentation reached 27,939 ktCO2-e, amounting to 

74.1 % of the total emissions from this sector and 35.4 % of New Zealand’s gross 

emissions (MfE, 2020). Since 1990, an increase of 5.2 % (1,390 ktCO2-e) has 

occurred for CH4 emissions from enteric fermentation alone (MfE, 2020). This 
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increase has been attributed to the 89.6 % increase in the size of the national dairy 

herd from 1990 to 2017 (MfE, 2019).  

 

Increases in human population growth, economic growth, demand for livestock 

products and raised living standards have resulted in the rapid expansion of 

livestock production over recent decades (Nelson, 2009). The global pressure from 

these drivers is expected to continue to grow and will lead to further increases in 

enteric fermentation CH4 emissions. For example, the global demand for beef 

meat and livestock products such as milk and cheese is projected to double by 

2050, particularly in developing countries (Garnett, 2009). Meeting this growing 

demand while limiting CH4 emissions from enteric fermentation poses a serious 

challenge for the livestock sector and for climate change mitigation.  
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1.3 Methane mitigation strategies  

Numerous strategies targeting CH4 mitigation from livestock production have 

been investigated, including legislation, selective breeding, antibiotics, nutritional 

strategies, feed additives, and vaccines. Each of these strategies and common 

barriers to their implementation are discussed in more detail bellow. Specific focus 

is then put on seaweed secondary metabolites as feed additives.  

 

Figure 1.3. Simplified schematic diagram representing some key processes involved in enteric 
fermentation. Dotted arrows indicate by-products. 

Enteric fermentation is an oxidative process in which reduced cofactors (NADH, NADPH, FADH) are re-
oxidised (NAD+, NADP+, FAD+) through dehydrogenation reactions releasing hydrogen in the rumen. The 
process begins with microbial enzymatic activity converting dietary carbohydrates (e.g. cellulose, starch) 
from ingested plant feed into hydrolysable or simple sugars. These sugars are then degraded through multi-
step pathways into CO2, H2, and volatile fatty acids (VFAs), primarily acetate, propionate and butyrate, under 
anaerobic conditions. VFAs act as the main direct source of energy to the ruminant. Acetate and butyrate 
formation results in a net release of hydrogen, promoting CH4 production, while propionate formation 
consumes hydrogen and is considered a competitive pathway for the use of H2 in the rumen. Under normal 
fermentation conditions, the ratio of acetate to propionate is high and both CO2 and H2 are in abundance. 
CH4 is produced by methanogenic archaea primarily through the reduction of CO2 following the equation: 
4H2 + CO2 à CH4 + 2H2O. This pathway of methanogenesis is favored by the ruminal methanogenic archaea 
to avoid H2 accumulation, as it can inhibit dehydrogenase activity involved in the oxidation of reduced 
cofactors, ultimately reducing enteric fermentation. 98 % of enteric CH4 released from eructation and 2 % is 
released as flatulence. Sources: Johnson et al. (1993), Moss et al. (2000), Martin et al. (2010), Mirzaei-
Aghsaghali and Maheri-Sis (2011), and Janssen (2010). 
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1.3.1 Legislation 

Mitigating CH4 emissions could potentially be achieved by introducing policies 

specifically formulated to reduce CH4 emissions. The Intergovernmental Panel on 

Climate Change (IPCC) advised that sectoral-based policy approaches may 

encourage developing countries to reduce their CH4 emissions and that this will be 

more cost-effective than targeting producer-level emissions (IPCC, 2006). One 

option is to set a cap on the amount of CH4 released into the atmosphere from 

each country by sector, and implement legislation based around how emissions 

may be used, sold, bought, or traded (emissions trading scheme) (Key & Tallard, 

2012). If participating governments were to effectively monitor sectoral emissions 

and provide direct incentives for sectors to lower their emissions, a sectoral 

carbon permit trading scheme has the potential to reduce CH4 emissions. The 

effectiveness of such a scheme would depend upon the capped CH4 values and the 

involvement of participating governments. Several regions have adapted emission 

trading schemes, such as the EU, Switzerland, New Zealand, the RGGI jurisdiction, 

and Korea (Narassimhan et al., 2018). Although the effectiveness of these schemes 

has been mostly reviewed for reducing CO2 emissions (Narassimhan et al., 2018), 

studies analysing how these policies have impacted CH4 emissions directly are 

currently lacking.  

 

Another option is to impose a tax on CH4 emissions directly, or alternatively, on 

livestock commodities, with the intention of encouraging countries to reduce their 

CH4 emissions (emission tax). The effectiveness of these would also depend upon 

several factors, a major one being the appointed CO2-e price. A global CH4 

reduction of approximately 4.6 % was estimated to occur based on the application 

of a carbon tax of USD 30/tCO2-e (Key & Tallard, 2012), however there appears to 

have been no follow-up analysis regarding whether or not this has happened. For 

any prospective policy, it must be considered that many developing countries rely 

on CH4-producing activities as a main source of food and income, particularly in 

the agricultural sector; therefore, in order for these strategies to be feasible, they 

must be affordable and allow for the compensation of those whose livelihood and 

income would be affected by the policy. 
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Implementing mitigation policies to minimize producer-level emissions, such as a 

carbon tax, is often not feasible, particularly in developing countries, due to the 

associated administrative and producer transaction costs (Key & Tallard, 2012) 

(Table 1.2). Moreover, monitoring taxes or caps on emissions in developing 

countries, for which CH4 emissions are increasing most rapidly , would be a 

significant challenge in itself, as the infrastructure for monitoring and reporting 

CH4 emissions is not often readily available (Ogle et al., 2013). The Clean 

Development Mechanism, an international carbon offset scheme set to reduce 

CH4 emissions from livestock in developing nations, has so far led only to minor 

decreases in CH4 emissions (Key & Tallard, 2012). This has been attributed to the 

high costs imposed on producers (Cacho et al., 2005), which could also potentially 

increase livestock product prices for consumers. 

 

1.3.2 Selective breeding 

Animal breeding and genetic selection to exploit traits that would enhance the 

energy efficiency of livestock has received considerable attention as a prospective 

mitigation strategy (Alford et al., 2006; Hegarty et al., 2007; Basarab et al., 2013; 

Flay et al., 2019; Kumari et al., 2020). Residual feed intake (RFI), a measure of feed 

conversion efficiency (difference between an animal’s actual dry matter intake 

(DMI) and expected feed intake required for its maintenance and production), is a 

commonly targeted, moderately heritable trait for indirectly reducing enteric CH4 

production (Hegarty et al., 2007; Jones et al., 2011; Flay et al., 2019; Kumari et al., 

2020). Under RFI genetic modification, ruminants would consume less dry matter, 

have improved feed conversion ratios, and as a result, produce lower levels of 

enteric CH4 (Basarab et al., 2013).  

 

Selection for lower RFI intake has been correlated with significantly lower CH4 

emissions from cattle, leading to a predicted daily reduction of 18 g CH4 /d-1 /kg of 

DMI-1 (Hegarty et al., 2007). Furthermore, this effect occurred without significantly 

impacting animal growth. Data from a single trait selection population at the 

Agricultural Research Centre, Trangie, Australia, shows that milk yield and meat 

quality also remain unaffected in low RFI cows, although low RFI  
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Table 1.2. Strategies for mitigating enteric CH4 emissions, their expected reduction: low (0 – 10 %), moderate (10 – 40 %), high (> 40 %) and approximate expected 
time to implementation: short-term (Current or within 1 – 5 yrs), mid-term (trials in place, within 5 – 10 yrs), long-term (research and development stage, > 10 yrs). 

Mitigation strategy Expected global CH4 reduction Expected time to implementation Source 

Legislation     

Emissions tax  Low Short-term 1, 2  

Selective breeding     

Low RFI Moderate Long-term 3, 4, 5, 6,  

Nutritional strategies     

Replacing fiber with lipids  Moderate Mid-term 7, 8,  

Improving forage quality  Moderate Mid-term 7, 9, 10  

Feed additives    

Fats/oils Moderate Mid-term 11, 12, 13  

Algal secondary metabolites High Mid-term 14, 15, 16  

Essential oils Low to high Mid to long-term 7, 14, 17, 18  

NOP-3 Moderate Short-term 19, 20 

Antibiotics and inhibitory compounds    

Monensin Low Considered unviable 21, 22, 23  

Vaccines    

Sheep immunization Low Long-term 6, 7, 23, 24 

1Key and Tallard (2012); 2Narassimhan et al. (2018); 3Alford et al. (2006); 4de Haas et al. (2011); 5Pickering et al. (2015); 6IPCC (2018); 7Knapp et al. (2014); 8Caro et 
al. (2016); 9Hammond et al. (2013); 10Hart et al. (2015); 11Bayat et al. (2018); 12Chijioke & Rudinow (2018); 13Rooke et al. (2016); 14Martin et al. (2010); 15Machado et 
al. (2016b); 16Mayberry et al. (2019); 17Durmic et al. (2014); 18Gerber et al. (2013); 19Melgar et al. (2020), 20Jayanegara et al. (2018); 21McGinn et al. (2004); 22Odongo 
et al. (2007); 23Clark et al. (2011); 24Wright et al. (2004). 
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cows were slightly leaner (Arthur & Herd, 2005). This strategy was estimated to 

result in a possible global CH4 reduction of 11 – 26 % over a 10-year period once 

implemented (de Haas et al., 2011) (Table 1.2). There are, however, 

inconsistencies among studies assessing the effect of lower-RFI on enteric CH4 

emissions. For instance, a simulation conducted over a 25-year period for a 

representative Southern Australian commercial herd containing 100 cattle (low 

RFI bulls were purchased in year 1) led to a 7.4 % cumulative decrease in enteric 

CH4 compared with an unmodified herd (Arthur et al., 2011). Moreover, the effect 

of low RFI on CH4 production may also be diet dependent. Experimentation in vivo 

showed that low RFI heifers have the potential to emit lower amounts of CH4 (0.12 

g CH4/d-1/kg of liveweight) compared to high RFI heifers, but only when provided 

with a high nutritional quality pasture source, and not when provided with a lower 

quality pasture source (Jones et al., 2011).  

 

While it may be that genetic breeding trials show significant promise for enteric 

CH4 emission reduction, this strategy is still well-within the research stage of its 

development (Table 1.2). Information regarding how low CH4 emitting cattle differ 

in their feed-intake, digestion, feed efficacy, and microbiome from high CH4 

emitting cattle is currently not extensive enough for RFI to be implemented as a 

CH4 mitigation strategy. Furthermore, a cost-effective, quick, and accurate tool for 

measuring CH4 emissions from cattle is currently lacking, which has also hindered 

implementation (Denninger et al., 2020). Research addressing these matters is 

currently ongoing (Kumari et al., 2020). However, it is also unlikely that developing 

countries will be able to significantly invest in the multiple technologies required 

for adapting genetic breeding in the short term (Waghorn & Hegarty, 2011). 

Selective breeding would therefore take substantial time to implement (> 10 

years), and even if implementation was consented, it would take several years to 

replace a single herd, let alone cattle herds on a global scale, given the gestation 

time of calves (9 – 10 months) and the lag (2 generations) associated with breeding 

cattle (Beef+LambNZ, 2017a). For instance, a single average sized New Zealand 

beef herd of approximately 500 cattle (1 bull:20 – 30 females) would only very 

rarely produce 500 new low RFI cattle the following year (especially when 

considering the moderate heritability of the low RFI trait), and not all of these 
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cattle would be suitable for further breeding (Beef+LambNZ, 2017a). This strategy 

is therefore regarded as a long-term strategy for mitigating CH4 emissions (Table 

1.2). Alternatively, research (e.g. consistency among results or identifying 

knowledge gaps) surrounding the use of several feed additives and modification 

of ruminant feed is at a more advanced stage than it is for genetic breeding trials 

(IPCC, 2018); thus, these strategies may be implementable on shorter time scales 

(within 5 – 10 years) (Table 1.2).   

 

1.3.3 Nutritional strategies 

Nutritional strategies involve the modification of ruminant feed substrate so that 

less CH4 is produced during enteric fermentation. For example, decreasing feed 

fiber concentrations and supplementing with higher lipid concentrations (by 

approximately 6 – 8 %) leads to lower CH4 production because, unlike fiber, lipids 

mostly escape the ruminal digestive process; therefore, a lower proportion of the 

ingested feed is digested and less CH4 is subsequently produced (Beauchemin et 

al., 2008; Zachut et al., 2010). On top of this, fats also cause biohydrogenation of 

unsaturated fatty acids, which diverts hydrogen from CH4 production (Rooke et 

al., 2016; Haque, 2018). Models project that this strategy has the potential to 

cause a global reduction of approximately 15 % for enteric CH4 emissions (Caro et 

al., 2016). Lipid supplementation may also lead to increases in milk production; 

Zachut et al. (2010) found that supplementing cattle diet with extruded flaxseed 

(7.9 % DM) increased milk production by 6.4 %, and reduced milk fat by just 0.4 % 

in vivo. Additionally, lipid supplementation could potentially lead to reduced CH4 

emissions from manure management; however, increases of up to 21 % in nitrous 

oxide (N2O) emissions from manure management have also been associated with 

this strategy (Caro et al., 2016). This increase is attributed to higher levels of 

nitrogen excretion, as feeds supplemented with high fat content ingredients often 

have a greater protein content compared to forage-based feeds (Caro et al., 2016). 

Increases in N2O emissions would counteract any positive impacts of CH4 

reduction caused by lipid supplementation due the negative impact N2O imposes 

on climate change with its high GWP (310) and residence time (121 years), as well 
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as the destructive effects of N2O emissions on stratospheric ozone (Houghton, 

1996). 

 

Nutritional strategies also include improving forage quality by simply altering the 

type or composition of the feed substrate to one that yields the lowest amount of 

CH4 (Haque, 2018). Forage consisting of a higher proportion of legumes yields 

lower amounts of CH4 due to the low fiber content, fast passage rate, and presence 

of condensed tannins in legumes (Beauchemin et al., 2008). Hammond et al. 

(2013) found that increasing intake of white clover, one of the most common 

legumes found in grazing systems, in sheep feed from 0.40 to 1.60 kg/d was 

related to a 21 % decline in CH4 yield, compared to that of perennial ryegrass. 

There are, however, uncertainties surrounding the efficacy of this diet alteration, 

as these results were inconsistent and no strong relationship between CH4 yield 

and forage chemical composition was identified. Replacing grass silage with maize 

silage has also been trialed as a potential strategy (Tamminga et al., 2007). Maize 

silage contains a higher amount of readily digestible carbohydrates (e.g. starch) 

compared to grass silage, which increases the DMI and performance of animals 

and is expected to result in a lower CH4 yield (Beauchemin et al., 2008). Hart et al. 

(2015) showed that when dairy cows were fed a high maize silage ration (70:30 of 

DM), milk energy output and milk yield were significantly lower than for the high 

grass silage ration, but CH4 was only lower when expressed as on a DM (dry 

matter) or energy intake basis, otherwise no significant difference in total CH4 

production was detected. In this study, feeding cows a higher maize-based diet 

also increased the proportion of total milk long-chain mono-unsaturated fatty 

acids, a property which has been linked to an improvement in the health 

properties of milk for humans (Givens, 2010).  

 

Increasing the use of different types of grain to enhance animal feed efficiencies 

is often associated with an increase in the use of fossil fuel producing machinery, 

as well as chemical nitrogen fertilizer, both of which would add to the global GHG 

budget (Boadi et al., 2004). Evaluating whether these associated GHG inputs cause 

a net reduction or increase in total GHG emissions would therefore be required 

for this strategy. Such evaluations have been carried out for the increased use of 
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maize silage as a potential mitigation strategy, with findings concluding that 

ploughing grassland to replace with maize cropping would lead to large increases 

in short-term GHG emissions, due to substantial soil organic carbon and nitrogen 

losses (Vellinga & Hoving, 2011). Additionally, some developing countries lack the 

facilities and technologies required to develop formulated feeds, ruling out the 

application of most nutritional strategies for these countries in the near future 

(Lukuyu et al., 2011). In terms of lipid supplementation, additions of > 60-70 g 

fat/kg DM for several fats (e.g. extracted plant oils, oilseeds and fats of animal 

origin) can have adverse effects on ruminal fermentation, such as reduced or 

abnormal digestion. Additions of > 70 g fat/kg DM can also lower animal 

production and are therefore considered outside the practical range of feeding 

(Grainger & Beauchemin, 2011). 

 

1.3.4 Feed additives 

The use of feed additives to reduce enteric CH4 production requires the addition 

of a bioactive on top of the feed substrate, as opposed to direct modification of 

the feed substrate itself. Potential additives which have been explored include 

essential oils, plant and algal natural products, unsaturated fats (e.g. rapeseed and 

linseed oil), and a range of different acids (e.g. lauric, fumaric and myristic acid) 

(Durmic et al., 2014; Machado et al., 2016a; Bayat et al., 2018; Chijioke & Rudinow, 

2018; Haque, 2018). Decreases in CH4 production via the addition of fats (notably 

medium chain C8-C14 fatty acids) has been attributed to their role as electron 

acceptors during rumen biohydrogenation, diverting hydrogen from CH4 

production (Hegarty, 1999; Rooke et al., 2016). Additions of rapeseed, safflower, 

and linseed oil at 5 % of diet DM reduced daily enteric CH4 production by 22.6 %, 

20.5 % and 21.2 % in vivo, respectively, although this response was believed to 

have been somewhat attributed to lower feed intakes, as opposed to lipid activity 

(Bayat et al., 2018). The major benefit of these additives is that they had no 

significant effect on OM digestibility, rumen fermentation, or milk production 

(Bayat et al., 2018). Whether these additives have any effect on meat quality, on 

the other hand, has not yet been addressed in the literature.  
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Essential oils can significantly inhibit CH4 production by interacting with rumen 

microbial cell walls and inhibiting the growth of certain bacteria (Calsamiglia et al., 

2007). A study assessing the anti-methanogenic effects of eight essential oils 

found that all eight oils significantly reduced CH4 production in vitro, the most 

effective being extracted from Melaleuca ericifolia and Melaleuca teretifolia (75 % 

reduction) (Durmic et al., 2014). This was, however, at the expense of other 

fermentation parameters, including total gas and VFA production (Figure 1.3). 

Conversely, a review conducted by the FAO for non-CO2 emission mitigation 

concluded that most essential oils do not reduce enteric CH4 production (Gerber 

et al., 2013). Regardless, the lack of in vivo follow-up experimentation and 

establishment of long-term effects for those extracts which do exhibit an effect on 

CH4 suggests that it is unlikely for essential oils to be commercially employed as a 

feed additive in the short-term (Table 1.2).   

 

The inhibitory compound 3-nitrooxypropanol (3-NOP) has also received attention 

regarding enteric CH4 mitigation. This compound prevents methanogenesis by 

blocking the activity of the nickel enzyme methyl coenzyme M reductase, which 

catalyzes the methane-forming reaction (Figure 1.5) (Duin et al., 2016). At the 

proposed commercial dosage of 60 mg/kg DM of total daily ration for dairy cattle, 

3-NOP has reduced enteric methane emissions by approximately 30 % (DSM, 

2019; Melgar et al., 2020). Decreases in CH4 production have been consistent 

among multiple ruminant trials (Romero-Perez et al., 2014; Haisan et al., 2017; 

Jayanegara et al., 2018), thus this compound shows promise as a potential feed 

additive. A recent meta-analysis also reported that it is clear 3-NOP does not 

induce a negative effect on ruminant feed intake, productive performance, or 

product quality (Jayanegara et al., 2018). An application for registration of 3-NOP 

has commenced in Europe; however, other markets are yet to follow. Registering 

3-NOP in New Zealand, for example, has proven particularly challenging as, under 

New Zealand law, the use of 3-NOP would be treated as a pharmaceutical and so 

its registration must be sought under the regulations for agricultural compound 

and veterinary medicines (Reisinger et al., 2018). This has led to delays in the 

registration of this compound for practical application (Reisinger et al., 2018), 

hence the need for ongoing investigation to develop alternative inhibitors that 
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ideally not only have higher efficacies at lower doses, but also are practicably 

implementable in New Zealand.    

 

The feed additives which appear to be most promising at this stage are algal 

secondary metabolites. The naturally occurring bioactive compounds produced by 

certain macroalgal species inhibit rumen methanogenesis, the most effective to 

date being Asparagopsis taxiformis, which almost completely inhibits CH4 

production (> 99 % reduction) at doses as low as 1 and 2 % OM (Machado et al., 

2016b; Roque et al., 2019a). Furthermore, unlike several other feed additives, 

such significant reductions in CH4 at these low doses do not compromise total gas 

or VFA production (Kinley et al., 2016; Machado et al., 2016a; Machado et al., 

2016b), setting this option apart from many other feed additives. Algal bioactive 

compounds are discussed separately in more detail in Section 1.4. 

 

As is the case for most nutritional strategies, there will be countries that lack the 

technologies required to implement the use of most feed additives. Applying 

certain substances (e.g. antibiotics or algal extracts) at specific doses to areas of 

pasture for herds that are not fed formulated feeds, for example, would require 

the development of novel and innovative technologies, making the application of 

this strategy unfeasible in such areas in the near future. 

 

1.3.5 Antibiotics 

Antibiotics have been used as livestock feed additives since the 1970s (Kobayashi, 

2010). Monensin, a carboxylic polyether ionophore (Figure 1.4) often used to 

enhance N utilization and energy efficiency in cattle is the most commonly tested 

antibiotic for reducing enteric CH4 emissions (Ruiz et al., 2001; Hristov et al., 2013). 

The anti-microbial action of monensin manipulates and inhibits the activity of 

select rumen microbes (gram-positive over gram-negative) associated with rumen 

fermentation, leading to CH4 reduction, propionate enhancement, and ammonia 

reduction (Russell & Strobel, 1989). The extent to which CH4 is reduced by 

monensin is inconsistent between trials. For example, long-term (six-month 

period) in vivo feeding trials with the addition of monensin (24 mg of Rumensin 



 

 17 

Premix/kg DM) demonstrated a total emission reduction of 7 % for dairy cattle 

(Odongo et al., 2007), whereas similar studies applying high doses of monensin 

(471 mg/d), as well as controlled-release capsules, found no such effect (Grainger 

et al., 2008; Grainger et al., 2010). In contrast, a meta-analysis comprising 22 

controlled studies that administered monensin (21 mg/kg/day DMI) to dairy cows 

revealed a 12 ± 6 (g/d) reduction in CH4 (Appuhamy et al., 2013). Ionophore 

antibiotics are an in-expensive means of reducing CH4, with relatively low 

efficacies reported. That being said, the use of alternative natural materials is 

attracting more interest, due to the health concerns associated with the long-term 

use of antibiotics (Kobayashi, 2010), as well as the potential risk of developing 

antibiotic resistance in human pathogens (Barton, 2000; Russell & Houlihan, 

2003).  

 

 
Although the use of ionophore antibiotics, mainly monensin, reap economic 

benefits in terms of enhancing feed efficiency and animal productivity (Boadi et 

al., 2004), their ability to reduce enteric CH4 is highly variable among trials (McGinn 

et al., 2004; Odongo et al., 2007; Grainger et al., 2008; Grainger et al., 2010; 

Appuhamy et al., 2013). Moreover, the decreases in CH4 attributed to antibiotics 

have only been minimal (Table 1.2). Lastly, the growing awareness and concern 

surrounding the use of antibiotic feed additives and the potential development of 

antibiotic resistance makes this option unlikely to be feasible as a mitigation 

strategy.  

 

Figure 1.4. Chemical structure of Monensin (C36H62O11), a polyether isolated from Streptomyces 
cinnamonensis that possesses antibiotic properties. Source: National Center for Biotechnology 
Information (2020).   
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1.3.6 Vaccines 

Vaccination is a way of manipulating bacteria and archaea present in the rumen 

of animals, either by decreasing their number or altering their activity so that less 

CH4 is produced during enteric fermentation. The intention is that immunization 

stimulates the ruminant’s immune system to induce an immune response causing 

a significant supply of salivary-produced methanogen-targeting antibodies that 

inhibit methanogenesis (Wright et al., 2004; Wedlock et al., 2010). Studies 

assessing the effect of vaccines on archaea have been successful for in vitro 

experiments using sheep when a vaccination approach based on cell fractions was 

employed (Wedlock et al., 2010), as opposed to the destruction of whole cells 

which had proven to be unsuccessful (Clark et al., 2005). Results for in vivo sheep 

trials on the other hand, have so far not been successful (Williams et al., 2009; 

Zhang et al., 2015). Even though the use of vaccines is attractive due to being cost-

effective and suitable for a wide range of farming systems (Clark, 2013), the failed 

results from in vivo sheep experimentation and absence of cattle-based trials 

indicates that substantial amounts of research remains to be done before this 

strategy reaches a stage of implementation. 

 

1.4 Algal bioactive compounds  

Different algal groups vary in their production of bioactive compounds and 

therefore in their potential to mitigate enteric CH4 emissions. In general, red 

(Rhodophyta) and brown (Ochrophyta) marine macroalgae (seaweed) are more 

effective at reducing CH4 production from enteric fermentation than green 

(Chlorophyta) seaweed and freshwater algae (Dubois et al., 2013; Machado et al., 

2014). Brown algal phlorotannins, a heterogenous group of polyphenolic 

compounds that exhibit an extensive range of biological activities, reduced CH4 

production during in vitro ruminal fermentation (8 % at a dose of 500 μg/mL) when 

mixed with 1 mg/mL of polyethylene glycol, possibly by protecting dietary protein 

from microbial degradation (Wang et al., 2008). A study assessing 15 species of 

tropical seaweed for anti-methanogenic potential demonstrated that 11 out of the 

15 species significantly reduced CH4 production at 20 % OM, the most effective 

being the brown alga Cystoseira trinodis, which reduced CH4 production by up to 
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80 % (Dubois et al., 2013). Furthermore, Machado et al. (2014) found that out of 

twenty species of tropical algae, the brown alga Dicotya bartayresii and red alga 

Asparagopsis taxiformis reduced CH4 production in vitro by 92 and 98.9 %, 

respectively, at a dose of 16.7 % OM. However, these reductions were also 

accompanied by strong decreases in total gas and VFA production. Red algae 

contain an extensive array of halogenated low molecular weight metabolites 

which exhibit highly effective anti-microbial and anti-cancer activities (Kladi et al. 

2004), some of which are likely candidates for the anti-methanogenic effect. 

 

Of particular interest is algal species from the genus Asparagopsis, which have 

exhibited potent anti-methanogenic properties (Machmüller et al., 2003; 

Machado et al., 2014; Kinley et al., 2016; Machado et al., 2016a; Machado et al., 

2016b; Li et al., 2018; Machado et al., 2018; Roque et al., 2019a; Roque et al., 

2019b; Kinley et al., 2020). These species and their effects on enteric CH4 

production are discussed in more detail in the following section.   

 

 

Figure 1.5. Simplified diagram of the final steps involved in methane formation. The red 
box indicates the point at which halogenated hydrocarbons interfere with 
methanogenesis. Processes after this point do not take place with the addition of 
halogenated hydrocarbons. 

B12-containing proteins are synthesized by methanogens (e.g. Methanosarcina barkeri) and are 
essential for the biological formation of methane. The B12 protein functions as a methyltransferase 
leading to methane biosynthesis. Under normal conditions, coenzyme M reacts with the B12 protein 
to produce methyl coenzyme M. The nickel enzyme methyl coenzyme M reductase then catalyses 
the reaction converting methyl coenzyme M to methane. The presence of multihalogenated 
hydrocarbons such as BCM lead to the reduction of the B12 protein and the inhibition of the 
methyltransferase step of the biosynthesis pathway of methyl coenzyme M, thereby preventing the 
formation of methane. Source: Wood et al. (1968). 
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1.5 The use of Asparagopsis spp. 

Asparagopsis is a genus of red marine algae that possesses a vast array of potent 

anti-microbial secondary metabolites and is distinguished by producing notably 

high concentrations of the anti-methanogenic compound bromoform, as high as 

4.3 % of the total biomass dry weight (Paul et al., 2006). Asparagopsis has 

demonstrated potent anti-methanogenic properties both in vitro and in vivo 

(Kinley et al., 2016; Machado et al., 2016b; Li et al., 2018; Kinley et al., 2020), and 

therefore offers a potential solution for the mitigation of enteric CH4 production. 

Synthetic halomethanes such as bromochloromethane (BCM) inhibit ruminal 

methanogenesis by reducing the B12 protein, which prevents the synthesis of the 

methyl-coenzyme M required for methanogenesis (Figure 1.5) (Wood et al., 1968). 

The mode of action expressed by synthetic anti-methanogens is likely to be similar 

for the natural products that exist in Asparagopsis. Machado et al. (2018) also 

found that the addition of bromoform was associated with a reduced abundance 

of ruminant methanogens.  

 

Asparagopsis taxiformis and Asparagopsis armata are the only species of seaweed 

which have demonstrated high efficacy at very low doses, with significant 

reductions occurring at doses as small as 0.1 and 0.2 % OM (Kinley et al., 2016; 

Machado et al., 2016a; Machado et al., 2016b; Kinley et al., 2020). Additionally, 

this effect is delivered without any adverse effects on other critical rumen 

fermentation parameters in vitro and in vivo, such as the production of VFAs or 

OM digestibility (Kinley et al., 2016; Machado et al., 2016a; Machado et al., 2016b; 

Kinley et al., 2020). A low inclusion level of 2 % has previously been recommended 

as optimal for Asparagopsis (Machado et al., 2016b); however, recent long term 

(90 days) in vivo experimentation resulted in the establishment of a lower, highly 

effective inclusion rate of 0.2 % OM for the addition of Asparagopsis in a high grain 

diet (Kinley et al., 2020). Inclusion of Asparagopsis at such low levels means that 

changes in bromoform concentration are not present in the milk produced by 

cows (Roque et al., 2019a) or in the meat, fat, organs or feces of steers (Kinley et 

al., 2020). 
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1.6 Other potential species of seaweed  

There is some concern in relation to the use of Asparagopsis as bromoform is 

classified as a potential carcinogen and contributes to ozone depletion (WMO, 

2011), so there is pressure to also investigate other species that may be suitable 

as alternative CH4 inhibitors. Species of red seaweed related to Asparagopsis may 

possess similar anti-methanogenic compounds and therefore provide similar 

benefits as Asparagopsis. Furthermore, New Zealand contains numerous native 

red seaweed species, many of which have not yet been investigated for their 

potential anti-methanogenic properties in vitro or in vivo. Moreover, it is also 

worth investigating whether identified aquaculture-target species possess anti-

methanogenic properties, as if these species did induce a positive effect on enteric 

CH4 reduction, multiple benefits could be harnessed from the already-established 

(or soon projected to be) large-scale production systems on shorter time scales 

compared to species without established production systems.    

 

1.7 Thesis aims 

The aim of this research is therefore to investigate the anti-methanogenic 

properties of selected New Zealand species of red seaweed, as well as species of 

interest to large-scale aquaculture. Chapter two involves quantifying the spatial 

variability in bromoform production of Asparagopsis, as well as investigating the 

biochemical profiles of selected species of seaweed in New Zealand. Chapter three 

includes carrying out in vitro fermentation assays to test the anti-methanogenic 

properties of these selected species, and benchmarking these against the industry 

standard, Asparagopsis. Chapter four consists of a general conclusion to tie the 

two data chapters together and identify critical knowledge gaps.  
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2 Chapter 2 – Species biochemistry 

Spatial differences in secondary metabolites of 

selected seaweed species in New Zealand 

 

2.1 Introduction 

Methane (CH4) makes up approximately 16 – 20 % of global greenhouse gas (GHG) 

emissions (IPCC, 2014) and has a global warming potential (GWP) 21 times greater 

than carbon dioxide (CO2) (IPCC, 2007), making CH4 a highly potent GHG 

contributing to climate change. Methane emissions from livestock production, 

89.5 % of which come from enteric fermentation in ruminants, are regarded as the 

largest source of GHG released from the livestock sector worldwide and constitute 

the greatest source of global anthropogenic CH4 emissions (USEPA, 2006; EPA, 

2014). Emissions from livestock production have risen by 12 % over the last 50 

years (Caro et al., 2014) and are projected to increase further due to the rapid 

expansion of livestock production that has resulted from human population 

growth and increased per capita consumption of livestock products (Garnett, 

2009; Nelson, 2009). This will lead to greater CH4 emissions from enteric 

fermentation, which presents an ongoing challenge for scientists to develop 

effective and viable strategies to mitigate enteric CH4 emissions. The addition of 

seaweed at low doses to ruminant feed is a prospective strategy that meets these 

requirements (see section 1.3). 

 

Seaweed secondary metabolites are naturally produced organic compounds that 

are thought to have primarily evolved in response to the multiple challenges 

associated with living in the marine environment (Amsler, 2008). These molecules 

are typically (highly) reactive and have demonstrated potent anti-fouling, anti-

bacterial, and grazing deterrent properties in the natural environment. Some 

examples include halogenated furanones produced by the red alga Delisea pulchra 

that deter the settlement and growth of ecologically relevant fouling organisms 
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(Dworjanyn et al., 2006), bromoform and dibromoacetic acid produced by the red 

alga Asparagopsis armata that reduce epiphytic bacterial densities (Paul et al., 

2006), and halimedatrial produced by the tropical green algae Halimeda spp. that 

acts as a chemical defense against herbivorous fishes (Paul & Van Alstyne, 1992). 

The high reactivity of seaweed secondary metabolites that infer their bioactivity 

as biological defense molecules, also means they have multiple beneficial 

properties for specific commercial applications, such as strong anti-viral, anti-

bacterial, antioxidant, anti-inflammatory, and nutritional properties (Patel & 

Goyal, 2011; Thomas & Kim, 2011; de Jesus Raposo et al., 2015; Zerrifi et al., 2018). 

It is therefore not surprising that these chemicals have become increasingly 

utilised for a wide range of biotechnical and biochemical applications, particularly 

in the pharmaceutical, agricultural and food industries (Thomas & Kim, 2011; de 

Jesus Raposo et al., 2015; Michalak & Chojnacka, 2015; Michalak et al., 2017). 

 

The use of seaweed secondary metabolites as potential feed additives to reduce 

enteric CH4 emissions has recently attracted a vast body of research, especially 

due to the growing preference for natural additives as opposed to antibiotics or 

chemical additives (Kobayashi, 2010; Clark et al., 2011). Studies investigating the 

anti-methanogenic properties of secondary metabolites, particularly from species 

of red algae, demonstrate that when supplemented into ruminant feed, these 

compounds offer a potential mitigation strategy for effectively reducing enteric 

CH4 emissions (Kinley et al., 2016; Machado et al., 2016a; Machado et al., 2016b; 

Machado et al., 2018). To date, the genus Asparagopsis is the most effective at 

reducing enteric CH4 emissions. This genus comprises three species, which all 

contain a diverse array of natural products, including 100 low molecular weight 

metabolites in the form of halomethanes, haloalkanes, haloacids and haloketones 

(McConnell & Fenical, 1977). Of these natural products, the brominated 

halomethane bromoform (CHBr3) is consistently the most abundant in 

Asparagopsis, with content ranging between 0.6 and 4.3 % of DM (dry matter) 

(Paul et al., 2006). Lower concentrations of dibromoacetic acid, 

dibromochloromethane and bromochloroacetic acid have also been reported 

(Paul et al., 2006). Two species, Asparagopsis taxiformis and Asparagopsis armata, 

have received the most attention due to their strong anti-methanogenic activity 
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displayed in in vitro ruminal fermentation assays (Kinley et al., 2016; Machado et 

al., 2016b; Roque et al., 2019a). When A. taxiformis is added and incubated at a 2 

% organic matter (OM) dose, the presence of bromoform in the biomass strongly 

inhibits the microbial production of CH4 (Machado et al., 2016b), without 

significantly impacting on other fermentation parameters, including production of 

volatile fatty acids (VFAs) and OM degradability (Kinley et al., 2016; Machado et 

al., 2016b). The use of Asparagopsis as a feed supplement therefore offers a 

promising solution for mitigating enteric CH4 emissions.   

 

Seaweed secondary metabolite production varies spatially due to the immense 

variation that occurs throughout seaweed habitats. This can arise from differences 

in temperature, salinity, sunlight, pH, nutrient supply, and various interactions 

with other species (Pereira et al., 2004; Paul et al., 2011; Harder et al., 2012). 

Environmental variation, together with phenotypic and genotypic plasticity in 

Asparagopsis (Monro & Poore, 2005), influences the concentration of natural 

products generated by individuals from different areas (Mata et al., 2017). One of 

the major requirements for the commercialisation of Asparagopsis to be used as 

a CH4 mitigation strategy is developing an overall understanding of the spatial 

variability in Asparagopsis secondary metabolite production. Understanding how 

production varies over different regions will enable the identification of isolates 

(strains) which contain the highest concentrations of the desired secondary 

metabolite(s). Such information is necessary to enable selection of isolates with 

the greatest commercial potential for domestication (Mata et al., 2017). 

Furthermore, variation in the concentration of secondary metabolites produced 

by Asparagopsis appears to be irrespective of growth rate (Mata et al., 2017); 

therefore, targeting isolates with the highest concentration of the desired 

secondary metabolites should be the main priority for the development of large-

scale Asparagopsis production to be used as a feed additive. Identifying which 

areas contain Asparagopsis with the highest concentration of bromoform will be 

the first step towards potential strain selection, and eventual selective breeding. 

There are, however, concerns surrounding the use of Asparagopsis, as the active 

ingredient bromoform is considered a potential carcinogenic and ozone depleter 
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(WMO, 2011); for this reason, there is also a drive to identify other species that 

may have anti-methanogenic potential.  

 

Progression towards the use of Asparagopsis as an anti-methanogenic feed 

additive is a priority, should it be determined safe and become allowable. Yet, it is 

also important to investigate alternatives that may be more suitable for 

production and application in New Zealand, such as species closely related to 

Asparagopsis, other red algal species with abundant halogenated metabolites, and 

other potential aquaculture target species. Other red seaweed species found in 

New Zealand, including Vidalia colensoi and Bonnemaisonia hamifera (Garbary et 

al., 2020), as well as species of the genera Plocamium and Delisea, are known to 

produce high concentrations of halogenated secondary metabolites (McConnell & 

Fenical, 1980; Dworjanyn et al., 1999; Popplewell & Northcote, 2009; Knott, 2015) 

that may have anti-methanogenic effects in rumen fermentation. Plocamium spp. 

contain over 101 identified halogenated monoterpenes, some of which exhibit 

anti-microbial activity (Knott, 2015), whereas Delisea spp. contain halogenated 

furanones that have displayed both anti-fouling and anti-bacterial abilities 

(Dworjanyn et al., 1999; Dworjanyn et al., 2006). Vidalia colensoi contains 

numerous bromophenols that have also demonstrated anti-bacterial effects 

(Popplewell & Northcote, 2009). Additionally, B. hamifera and D. compressa are 

both closely related to Asparagopsis, being part of the same family, 

Bonnemaisoniaceae (Guiry, 2010). It is therefore possible these species possess 

secondary metabolites with similar anti-methanogenic properties to those 

demonstrated in Asparagopsis. The high quantities of halogenated secondary 

metabolites that occur in all of these species may have an effect in rumen 

fermentation, yet to date, no assessment of their effects on in vitro rumen 

fermentation have been carried out.   

 

The brown kelp Ecklonia radiata and the green seaweed Ulva spp. have been 

identified as targets for aquaculture in New Zealand and Australia (Cahill et al., 

2010; Smith et al., 2010; Bolton et al., 2016; Lorbeer et al., 2017; Charoensiddhi et 

al., 2018; Neveux et al., 2018) and would also be useful to test for anti-

methanogenic effects. If these species were to demonstrate anti-methanogenic 
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properties, the appropriate technologies and cultivation systems would already be 

(or are soon projected to be) in place for large-scale production of these seaweeds. 

This would be beneficial in terms of creating multi-beneficial seaweed aquaculture 

production, as well as for providing a fast-tracked solution to reducing enteric CH4 

emissions due to less time being required to establish the necessary cultivation 

systems. Additionally, E. radiata produces polyphenols and high concentrations of 

iodine, a natural anti-microbial product, and therefore may have anti-

methanogenic potential (Evans & Critchley, 2014; Xue et al., 2019).  

 

2.2 Aims and objectives  

The aim of this chapter is therefore to firstly assess the spatial variability in 

secondary metabolite production by Asparagopsis throughout the North Island, 

New Zealand, to determine which region contains Asparagopsis that produces the 

highest concentration of the active anti-methanogenic compound, bromoform. 

Furthermore, this chapter also aims to investigate biochemical profiles of species 

which could potentially be used as alternative anti-methanogenic feed additives. 

These results will be used as a baseline for interpreting any potential anti-

methanogenic effects observed during in vitro fermentation assays carried out in 

Chapter 3.    

 

2.3 Materials and methods  

2.3.1 Sample collection 

Samples of seven species of seaweeds were collected from six sites located in the 

North Island, New Zealand (Table 2.1). All samples were collected from intertidal 

rocky shore habitats by scuba diving or snorkeling during low tide (± 2 h) when 

seaweeds were more easily accessible.  

 

Cape Karikari is located within the far north of the Northland region of New 

Zealand. Samples from here were collected just off Parakerake Beach, a small 

sheltered beach located on the southern side of Cape Karikari. 
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Mathesons Bay is a small beach located within the Auckland region of New Zealand 

and is relatively sheltered by a natural rock wall and a small islet (Mathesons Bay 

Island). Samples from here were collected approximately 50 m from the shoreline 

within 10 m of where the islet was located. 

 

Astrolabe Reef, Tauranga Harbour, and Rabbit Island are all located within the Bay 

of Plenty coast of New Zealand. Astrolabe Reef is an open ocean site 

approximately 22 km from the entrance of Tauranga Harbour and its reef breaks 

the water’s surface at low tide. Tauranga Harbour is a natural tidal harbour 

comprising two flooded river systems and is partially sheltered by Matakana Island 

(a 20 km long and flat barrier island). Samples from here were collected from 

pylons and rocks just off the edge of the harbour wall. Rabbit Island is a small (3.1 

ha) island located due west of Mount Maunganui and is surrounded by rocky reef. 

Seaweeds from here were collected on an exposed site located on the west side 

of the reefs. 

 

Papatea Bay is one of many small bays located between East Cape and the eastern 

end of the Bay of Plenty. Seaweeds here were collected within 30 m of the 

shoreline and were found mainly on rocks, which was the dominating substrate. 

 

Makara Beach is an exposed, stony beach covered by continuous boulders and 

large pieces of driftwood. Seaweeds here were found approximately 70 m from 

shore on sandy substrates between large boulders. 

 

In addition to field collections, samples of Ulva sp. B (WELT A027378; sp. 1 sensu 

Heesch et al., 2009) (Nelson et al., 2019) were obtained from culture collections 

at the Coastal Marine Field Station (CMFS) at University of Waikato (UoW), where 

seaweeds are maintained in indoor tank-based recirculation systems. Mathesons 

Bay was sampled twice to collect sufficient biomass, while all other sites were only 

sampled once. 

 

I collected six individual whole plant samples per species to provide an accurate 

representation of the chemical makeup of each species at each site. Extra bulk 
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material (minimum of 500 g fresh weight) of each species was also collected for 

use in compositional analyses, and in vitro incubations in Chapter 3. An individual 

whole plant was characterised by a single holdfast and was not connected to 

another plant through rhizomes or other tissue. Samples for A. armata consisted 

of gametophytes (distinguished from tetrasporophytes by the presence of barbed 

branches). To ensure a representative chemical profile was obtained for each 

species at each site, all individual specimens were collected at least 2 m apart. 

Field-collected material was rinsed with seawater and placed in resealable 

polyethylene bags upon collection. Samples collected from Makara Beach were 

frozen (-20 °C) within 2 hours of collection, and then transported to the UoW CMFS 

laboratory on ice, while samples collected from the remaining sites were directly 

transported back to the UoW CMFS laboratory on ice. Upon returning to the 

laboratory, all collected material was immediately frozen, then later freeze-dried 

and ground into a fine powder using a NutriBullet and stored in resealable 

polyethylene bags with silica sachets at -80 °C. All samples were stored for a 

maximum of 60 days. 

 

Table 2.1. Collection sites of algal specimens collected for this study. All locations were 
within the North Island, New Zealand. Samples were collected at low tide 2 +/- h.  

Species Location (s) GPS 
co-ordinates 

Collection 
date 

Depth 
(m) 

Asparagopsis armata  Cape Karikari 34.87°S, 173.39°E Nov 2019 3-5 

 Mathesons Bay 36.31°S, 174.80°E Oct 2019 2-3 

 Astrolabe 37.56°S, 176.40°E Nov 2019 5-10 

Bonnemaisonia 

hamifera 
Mathesons Bay 36.31°S, 174.80°E Oct 2019 2-3 

Delisea compressa  Makara Beach 41.22°S, 174.71°E Jan 2020 6-7 

Plocamium sp.1 Tauranga Harbour 37.60°S, 176.05°E Dec 2019 4-7 

Vidalia colensoi  Papatea Bay 37.64°S, 177.84°E Nov 2019 1-2 

Ecklonia radiata  Rabbit Island 41.27°S, 173.14°E Dec 2019 3-5 

Ulva species B (WELT 
A027378; sp. 1 sensu 
Heesch et al., 2009)  

Cultivated biomass 37.60°S, 176.05°E Dec 2019 N/A 

 

 

1Plocamium sp. is awaiting genetic barcoding at NIWA. Once sent back, these results will be included in a future 
publication where the material presented in this thesis will be combined in one manuscript. 
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2.3.2 Quantification of bromoform 

For each individual A. armata gametophyte sample (n = 6 per location, 18 samples 

total), 100 mg (± 0.001 mg) of freeze-dried ground algae was weighed out into a 

15 mL polypropylene conical centrifuge tube. 10 mL of 4 HPLC gradient grade 

methanol (MeOH) (Merck, NZ) was added to each sample followed by vortexing 

10 seconds each. The mixture was sonicated for 30 minutes in an ice water bath 

(< 10 °C) and then centrifuged at 3200 g at 4 °C for 10 minutes. The MeOH was 

removed from the sample and transferred into a clean 50 mL polypropylene 

conical centrifuge tube. The extraction process was repeated using another 10 mL 

aliquot of MeOH, and the two MeOH extracts were then combined (20 mL). In a 

15 mL polypropylene conical centrifuge tube, 100 µL of the combined solution was 

diluted in 10 mL of MeOH. A 1 mL aliquot of the diluted MeOH extract was 

transferred into a 2 mL amber glass vial for gas-chromatography-mass 

spectrometry (GC-MS) analysis. Technical (within individual plant) replicates (n = 

3) were included where biomass was sufficient. Samples were analysed in scan 

mode by GC-MS (Shimadzu GC-MS-2030 equipped with a SH-Stabilwax column, 30 

m, 0.25 mm i.d. 0.25 µM, connected to MS unit GCMS-QP 2020 NX) using 1 µL 

injections, pulsed (9.8 psi) split less mode, with temperatures of the injection port 

(180 °C), transfer line (280 °C), and oven (held at 40 °C for one min, ramped up at 

16 °C per min to 250 °C, then held for two mins at 250 °C, total run time of 16 mins) 

with He as the carrier gas at a purge flow of 4 mL/min. Bromoform was identified 

by its characteristic ion fragments (170.8, 174.8, 251.8, 253.8) and quantified by 

comparison with an external standard curve of pure bromoform (certified 

reference material, 5000 µg/mL in methanol, Merck, NZ). 

 

2.3.3 Compositional analysis 

The elemental content (wt %) of carbon (C), hydrogen (H), nitrogen (N), chlorine 

(Cl), bromine (Br) and iodine (I) for seaweed (a homogenate of material from bulk 

collections) was determined through percentage elemental analyses performed 

by OEA labs (www.oealabs.com, UK). Bulk material from Mathesons Bay was 

analysed for A. armata. The content of C, H and N was determined using gas 

chromatography coupled to a thermal conductivity detector (GC-TCD), while the 
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content of halogens Cl, Br and I was determined using ion chromatography (IC). 

Sulfur (S) content for Ulva sp. B was determined through a separate analysis 

performed by OEA labs.  

 

Dry matter (DM) content was determined by drying approximately 1 g (± 0.015 g) 

of biomass (from bulk collections) (105 °C, 24-h) and subtracting the weight of the 

residual biomass. Quantification of organic matter (OM) was determined by 

combusting the DM sample in air (460 °C, 48-h) and subtracting the weight of the 

residual ash.  

 

Crude protein (CP) content was estimated using total N content (wt %) of the 

biomass with N-protein conversion factors of 6.25 for perennial ryegrass (RG299, 

basal feed substrate used for in vitro incubations in Chapter 3), 5.63 for 

Asparagopsis, 5.10 for remaining red seaweed species, 4.49 for E. radiata, and 

5.14 for Ulva sp. B (Angell et al., 2016). Analyses of crude fat (CF), acid detergent 

fibre (ADF), neutral detergent fibre (NDF), soluble sugars and starch content for 

seaweed (from bulk collections) and RG299 were performed by R J Hills 

Laboratories Limited (www.hills-laboratories.com, NZ). Substrate and seaweed 

material was oven dried at 62 °C for a minimum of three hours. CF content was 

determined by petroleum spirit extraction by Ankom auto analyser, AOCS Official 

Procedure AM-5-04. ADF content was determined through acid detergent 

extraction (sequential) by AFIA Method 1.9A(a) for Ankom autoanalyser, while 

NDF content was determined through NDF extraction by NFTA method adapted 

for Ankom autoanalyser. Soluble sugar content was analysed by 80:20 

Ethanol:Water extraction and colorimetric determination. Starch content was 

analysed through removal of free sugars, enzymatic hydrolysis of starch and 

colorimetric determination of glucose. The starch analysis is not precise at low 

levels (0 – 10 %), therefore low levels must be interpreted with caution.  Results 

are reported ‘as received’, i.e. were not corrected for residual moisture (typically 

5 %), except for the CP content of RG299.  
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2.3.4 Quantification of polyphenols 

Polyphenol content was determined by following the method described by Zhang 

et al. (2006), scaled up for cuvettes instead of microplates, and using Gallic Acid 

Monohydrate (98 %, Thermo Fisher Scientific) (conc range 0 – 100 mg/mL) as a 

standard. 500 ± 50 mg of algae (freeze-dried and ground using a NutriBullet) from 

each individual sample of each species (n = 6) was weighed into a 50 mL 

polypropylene conical centrifuge tube. Individual samples from Astrolabe were 

analysed for A. armata.  In cases where the total biomass of an individual specimen 

did not amount to 500 mg, a quarter of this weight (125 ± 10 mg) was used instead 

and the subsequent additions of extractants were adjusted accordingly. 20 mL of 

HPLC grade MeoH/H2O (v/v 1:1) was added to the biomass, which was then 

acidified to pH 2 by adding 0.6 mL of HCl 10 % (v/v 1:9). Samples were placed onto 

a shaking table (100 rpm, 20 °C) for one hour, followed by centrifugation at 3000 

g for 15 minutes at room temperature. The supernatant was separated from the 

pellet into another 50 mL polypropylene conical centrifuge tube. 20 mL of 

Acetone/H2O (v/v 7:3) (Merck, NZ, Optima grade) was added to the pellet, which 

was then acidified to pH 2 by adding 0.2 mL of HCl 10 % (v/v 1:9). The shaking table 

and centrifuging processes were then repeated as described above. The two 

supernatants were combined and filtered through a 0.2 µm syringe filter attached 

to a 5 mL syringe. 4 mL of the filtered supernatant was placed into an 8 mL glass 

vial and diluted with DI water by 50 %. For samples of E. radiata, the dilution factor 

was increased from 2 to 10 so that the measured absorbances were within the 

range of the same standard curve as for the other species. 

 

To undertake absorbance measurements, samples were loaded into 1.5 mL 

cuvettes. Triplicates were prepared for each individual sample, along with a 

sample control. Each replicate contained 0.1 mL of the diluted sample mixture, 0.5 

mL of Folin-Ciocalteu’s reagent (diluted 1:9 using DI water) and 0.4 mL of sodium 

carbonate (Na2CO3 7.5 %) (added 5 minutes after combing sample mixture and 

reagent), while sample controls contained 0.9 mL of DI water along with 0.1 mL of 

the diluted sample mixture. After adding the sodium carbonate, samples were 

thoroughly mixed and immediately placed on the shaking table for 30 minutes (25 
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rpm, 40 °C). Samples were removed and their absorbance was read at 750 nm 

using a spectrophotometer. 

 

2.3.5 Statistical analysis 

The effect of location on A. armata bromoform concentration and the effect of 

species on polyphenol content were analysed using permutational analyses of 

variance (PERMANOVA) conducted in Primer v7 (Primer-E Ltd., UK) using 

Euclidean distances resemblance matrices, 9,999 unrestricted permutations of 

raw data and Type III sum of squares (Anderson et al., 2008). PERMDISP tests were 

carried out to test for the assumption of homogeneity of multivariate dispersions. 

The majority of these tests were significant; however, a non-significant result is 

not strictly considered necessary to obtain prior to using PERMANOVA, as it is 

likely that PERMDISP will detect differences in dispersion that are often not 

substantial enough to “de-rail” (i.e. inflate the error rates of) the PERMANOVA 

(Anderson et al., 2008). Post-hoc PERMANOVA tests were carried out for all 

analyses which were significant according to the PERMANOVA test. Raw, 

unadjusted p values are reported for all analyses, and no corrections for multiple 

comparisons were made to any of the tests (Anderson et al., 2008). Adjustments 

for multiple comparisons were unnecessary in the present study as the hypothesis 

of the study was clearly defined and the results were transparent and 

unambiguous (Rothman, 1990). 

 

2.4 Results  

2.4.1 Bromoform quantification 

Bromoform concentration in A. armata varied across locations (Table 2.2) by an 

order of magnitude, ranging from 1.0 mg/g in samples from Cape Karikari up to 

10.4 mg/g in samples from Mathesons Bay (Figure 2.1), with significant differences 

detected between samples from all locations (Table 2.2). The proportion of 

bromoform was highest for samples from Mathesons Bay, amounting to 1 % of the 

total plant biomass (DM), followed by Astrolabe at 0.3 %, and Cape Karikari at 0.1 

% (Figure 2.1). 
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Table 2.2. Results of permutational analysis of variance (PERMANOVA) and post hoc tests 
for bromoform concentration (mg/g) of A. armata (n = 6) among locations Astrolabe (A), 
Leigh (B), and Cape Karikari (C). The Pseudo F (F) and P value is presented for the overall 
PERMANOVA (df = 2) and t and P values are presented for post hoc tests. Bold values 
indicate a significant difference (α = 0.05). 

 

 

 

 

 

 

 
 

2.4.2 Compositional analysis  

The content of the elements carbon (C), hydrogen (H), nitrogen (N), bromine (Br), 

chlorine (Cl), and iodine (I) varied between species (Table 2.3). The weights of 

different elements were given as percentage (%) values. Asparagopsis armata had 

the highest amount of Br and I out of all seven species at 7.1 and 1.0 %, 

respectively, as well as comparatively high amounts of Cl (14.8 %). Elements for B. 

hamifera, D. compressa, Plocamium sp., and Ulva sp. B were detected in the order 

C > Cl > H > N > Br > I. Bonnemaisonia hamifera had the highest amount of Cl (17.0 

%), while the I content was 0.2 % less than A. armata, but two-fold greater than E. 

radiata, which was the only other species with an I content greater than 0.1 %. 

Site comparison F/t P 
Overall  8.07 0.003 
A-B 2.43 0.019 
A-C 4.74 0.002 
B-C 3.13 0.008 

Figure 2.1. Mean bromoform (BF) concentration (mg/g DM, ± SE) of total A. armata 
biomass (n = 6) from three different locations within the North Island, New Zealand. Values 
that do not share the same letter are significantly different according to PERMANOVA 
(Table 2.2). 
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Plocamium sp. was the only remaining species with a Cl proportion above 10 %, 

with an amount of 13.3 % being detected. The order of elements for V. colensoi 

and E. radiata were C > Cl > H > Br > N > I and C > Cl > H > N > I > Br, respectively. 

Ecklonia radiata and Ulva sp. B had the lowest amount of Br (0.1 %), however E. 

radiata also had the highest amount of H (5 %) and Ulva sp. B had the highest 

amount of N (3.7 %). The sulfur (S) content of Ulva sp. B was 5.5 %. 

 

Table 2.3. Elemental composition (wt %) of carbon (C), hydrogen (H), nitrogen (N), 
bromine (Br), chlorine (Cl), and iodine (I) for seaweed species A. armata (ASP), B. hamifera 
(BNM), D. compressa (DSA), Plocamium sp. (PLA), V. colensoi (VDA), E. radiata (ECK), and 
Ulva sp. B (ULVA).   

Species C H N Br Cl I 
ASP 19.5  3.0 2.7  7.1  14.8  1.0  
BNM 20.8  3.5  2.3 1.6  17.0  0.8  
DSA 25.1  4.0  3.5  1.3  9.5  0.1  
PLA 17.0  3.0  2.6  0.7  13.3  0.0  
VDA 32.6  4.7  2.7  3.9  5.9  0.0  
ECK 32.3  5.0  1.6  0.1 8.0  0.4  
ULVA 33.8  4.0  3.7   0.1 4.4  0.0  

 

Table 2.4. Composition (% DM) of organic matter (OM), ash, crude protein (CP), crude fat 
(CF), acid detergent fibre (ADF), neutral detergent fibre (NDF), soluble sugars, and starch 
for perennial ryegrass (RG299) and seaweed species A. armata (ASP), B. hamifera (BNM), 
D. compressa (DSA), Plocamium sp. (PLA), V. colensoi (VDA), E. radiata (ECK), and Ulva sp. 
B (ULVA). 

Substrate OM ASH CP CF ADF NDF Soluble 
sugars 

Starch 
RG299 90 10 16.8 2.0 22.4 44.4 9.1 1.2 
ASP 44 56 15.2 < 0.5 9.7 24.8 1.5 < 0.5 
BNM 49 51 11.7 < 0.5 5.2 30.0 3.2 2.1 
DSA 60 40 17.9 < 0.5 8.5 38.2 2.0 1.5 
PLA 49 51 13.3 < 0.5 19.9 40.4 1.3 1.8 
VDA 72 28 13.8 < 0.5 12.7 41.5 2.3 5.7 
ECK 75 25 7.2 < 0.5 7.2 26.9 2.0 < 0.5 
ULVA 80 20 19.0 < 0.5 12.6 30.2 1.6 7.7 

 

Organic matter content varied between substrates (Table 2.4). Vidalia colensoi, E. 

radiata and Ulva sp. B had the highest organic matter content at 72 %, 75 %, and 

80 % DW, respectively. A. armata had the lowest organic matter content at 44 % 

DW, followed by B. hamifera and Plocamium sp. at 49 %, and then D. compressa 

at 60 %. The majority of RG (299) was made up of organic matter (90 %). 
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CP content varied between substrates and was highest for Ulva sp. B (26.4 %), 

followed by D. compressa (25.9 %) and was lowest for E. radiata (11.1 %, Table 

2.4). The content of protein in the remaining species ranged between 14 – 19 % 

and were similar to that of RG299 (16.8 %). CF content was < 0.5 for all substrates 

except RG299 (2 %). ADF content was highest for RG299 (22.4 %), followed by 

Plocamium sp. (19.9 %) and lowest for B. hamifera (5.2 %). All remaining species 

had an ADF content at least 50 % lower than RG299. NDF content was highest for 

RG299 (44.4 %) and lowest for A. armata (24.8 %). Delisea compressa, Plocamium 

sp., and V. colensoi all had a similar NDF content to RG299.  Soluble sugar content 

was highest for RG299 (9.1 %), while the remaining species ranged between 1.3 – 

3.2 % in the order of B. hamifera > V. colensoi > D. compressa > E. radiata > Ulva 

sp. B > A. armata > Plocamium sp. Starch content was highest for Ulva sp. B (7.7 

%), followed by V. colensoi (5.7 %), which were 6.4 and 4.7 times greater than 

RG299, respectively. Ecklonia radiata and A. armata had the lowest starch content 

(< 0.5 %).  

 

2.4.3 Polyphenol quantification 

Polyphenol content varied between species (Table 2.5) and was highest for E. 

radiata at 55.3 mg/g DM, followed by V. colensoi at 10.6 mg/g DM, and then A. 

armata at 3.4 mg/g DM (Table 2.6). Bonnemaisonia hamifera, D. compressa, and 

Plocamium sp. had similar polyphenol contents of 2.5, 2.6, and 3.1 mg/g DM, 

respectively. Ulva sp. B had the lowest polyphenol content at 2.1 mg/g DM. 
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Table 2.5. Results of permutational analysis of variance (PERMANOVA) and post hoc tests 
for polyphenol content (mg/g DM) among species A. armata (ASP), B. hamifera (BNM), D. 
compressa (DSA), Plocamium sp. (PLA), V. colensoi (VDA), E. radiata (ECK), and Ulva sp. B 
(ULVA) (n = 6).  The Pseudo F (F) and P value is presented for the overall PERMANOVA (df 
= 6) and t and P values are presented for post hoc tests. Bold values indicate a significant 
difference (α = 0.05). 

Species comparison F/t P 
Overall  128.10 < 0.001 
ASP – BNM 3.15 0.017 
ASP – DSA  3.53 0.005 
ASP - PLA 2.70 0.037 
ASP – VDA 19.92 0.003 
ASP – ECK 9.00 0.002 
ASP – ULVA  5.22 0.002 
BNM- DSA  0.13 0.959 
BNM – PLA 1.04 0.334 
BNM – VDA 27.36 0.002 
BNM – ECK 10.16 0.005 
BNM – ULVA  3.55 0.003 
DSA – PLA 1.78 0.105 
DSA – VDA  29.57 0.003 
DSA – ECK 10.26 0.002 
DSA – ULVA 7.00 0.002 
PLA – VDA 27.70 0.001 
PLA – ECK  10.03 0.002 
PLA – ULVA 5.76 0.003 
VDA – ECK  1.17 0.281 
VDA – ULVA 30.70 0.003 
ECK – ULVA  10.73 0.002 

 

Table 2.6. Polyphenol content (n = 6, ± SE) (mg/g DM) for total seaweed and pure OM-
based seaweed (i.e. without ash) for seaweed species A. armata (ASP), B. hamifera (BNM), 
D. compressa (DSA), Plocamium sp. (PLA), V. colensoi (VDA), E. radiata (ECK), and Ulva sp. 
B (ULVA). Absorbances were read at 750 nm.  

Species Total seaweed  OM-based 
ASP 3.4 ± 0.2 7.7 ± 0.5 
BNM 2.5 ± 0.1 5.2 ± 0.2 
DSA 2.6 ± 0.0 4.2. ± 0.0 
PLA 3.0 ± 0.0 5.5 ± 0.2 
VDA 10.6 ± 0.3 14.7 ± 0.4 
ECK 55.3 ± 3.8 73.8 ± 5.1 
ULVA 2.1 ± 0.1 2.6 ± 0.1 
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2.5 Discussion 

2.5.1 Bromoform quantification 

There were significant, 10-fold differences in bromoform concentration between 

samples of A. armata collected from different geographical locations, 

demonstrating the potential for strain selection targeting high bromoform 

concentration. The highest bromoform concentration reported here (1 % DM) was 

69 % of the largest reported average for Asparagopsis in previous studies (1.45 % 

DM) (Paul et al., 2006), but 6-fold greater than of another similar study (0.17 % 

DM) (Machado et al., 2016a). These differences are likely due to a combination of 

different processing or storage times and natural drivers. Variation in the natural 

products of Asparagopsis is primarily due to genetic components (Mata et al., 

2017), although temperature and nutrient availability can also be important 

drivers, with higher temperatures and lower growth medium C:N ratios leading to 

lower concentrations of natural products (Mata et al., 2012; Mata et al., 2017). 

Natural product variation can also be a result of other environmental factors (Paul 

et al., 2011), as exemplified by variation in halogenated furanone production with 

season in the related red algal species Delisea pulchra (Wright et al., 2000), or 

differences in life history stage, as demonstrated for Asparagopsis (Vergés et al., 

2008). All of the sites sampled in the present study were characterised as 

temperate oceanic climate regions with average annual temperatures ranging 

between 14.4 °C and 16 °C and samples represented the same life stage 

(gametophyte) and were collected within the same season, less than two months 

apart. Thus, it is not likely that these factors were important drivers of the 

variation in natural products assessed for A. armata in this study. Assessing 

specific environmental or genetic factors that determine the production of 

Asparagopsis natural products was outside the scope of this study but is of clear 

interest for future work relating to aquaculture of this species in New Zealand. 

 

The geographical range covered here was limited, due the absence of A. armata 

during sample collections at three of the six sites. Asparagopsis has a wide 

geographic range in New Zealand (Nelson et al., 2015), and future studies should 

assess spatial variation of bromoform concentration at a greater spatial 
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resolution, with sampling conducted during the same season. Nevertheless, based 

on these results, A. armata from Mathesons Bay has the greatest commercial 

potential for domestication, as selecting strains with the highest bromoform 

concentration is of high priority for the development of large-scale Asparagopsis 

production for enteric CH4 reduction (Mata et al., 2017).  

 

2.5.2 Compositional analysis 

Asparagopsis contains a plethora of halogenated natural products (Table 2.7), as 

confirmed by the high abundance of halogens Br, Cl and I identified in A. armata 

in this study. The most abundant of these products in Asparagopsis spp. is 

bromoform, which has been identified at high concentrations (> 1 % dry weight of 

algae) (Paul et al., 2006) and exerts a potent anti-methanogenic effect on enteric 

CH4 production in ruminants (Machado et al., 2016a). Interestingly, although B. 

hamifera contained the highest amount of Cl out of the measured halogens, there 

is no reference of this species possessing abundant Cl-containing compounds in 

the literature. One potential explanation is the high ash content (51 %) results 

from the collected biomass retaining a large amount of seawater that was 

subsequently freeze-dried with the biomass, leaving a relatively high amount of 

NaCl with the biomass, however, the fresh weight to dry weight ratio was not 

quantified to confirm this. Halogenated ketones containing primarily Br, and to a 

lesser extent, I, are the most dominant group of secondary metabolites identified 

in B. hamifera (Table 2.7). The most abundant of these compounds is the poly-

brominated 2-heptanone: 1,1,3,3-tetrabromo-2-heptanone, present at 

concentrations of 0.01 %  (wet weight of algae) (McConnell & Fenical, 1980). The 

high halogen content of B. hamifera supports the possibility that this species will 

reduce enteric CH4 production in vitro. 

 

The elements Cl and Br are present in a range of halogenated furanones in Delisea 

spp., numerous halogenated monoterpenes in Plocamium spp., and multiple 

bromophenols in Vidalia spp. (Table 2.7). As for B. hamifera, the presence of these 

halogenated compounds suggests that these species may also induce an anti-

methanogenic effect in vitro. Ecklonia radiata and Ulva sp. B did not contain Br, 
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although a significant Cl content was detected. E. radiata is known for containing 

a notably high I content, however, the I content for E. radiata in this study (400 

mg I /kg) was relatively low compared to another study describing the composition 

of E. radiata in New Zealand (3990 mg I/kg) (Smith et al., 2010). This could be due 

to several factors, such as seasonality, algal growth phase, or other site-specific 

factors, as previously demonstrated by the high seasonal and spatial variation in I 

content for brown alga Macrocystits pyrifera (Rodriguez & Hernandez-Carmona, 

1991), as well as the spatial variation in bromoform concentration for A. armata 

in this study. Samples of E. radiata in this study were only obtained from one 

location during one sampling occasion, making it challenging to further elaborate 

on this matter.  

 

If B. hamifera or E. radiata were to exhibit anti-methanogenic properties, there 

may be limitations surrounding the applied doses of these species due to their 

high I content. Such limitations would also apply for the use of A. armata which 

has already been established as a prospective CH4 inhibiting feed additive (Roque 

et al., 2019b; Kinley et al., 2020). Iodine is an essential element critical for animal 

function, and it is recognised that New Zealand cattle populations are commonly 

deficient in I (Anderson, 2007). The upper tolerable limit (TUL) of dietary I for cattle 

is approximately 50 mg I/kg of DM/day, while excessive doses can result in 

negative effects on animal health and production (Paulíková et al., 2002; NRC, 

2005). Therefore, maximum doses of 0.5, 0.6 and 1.2 % of whole seaweed would 

be considered safe for inclusions of unprocessed A. armata, B. hamifera and E. 

radiata, respectively.  

 

2.5.3 Polyphenol quantification 

Two species, E. radiata and V. colensoi contained notably high polyphenol 

contents at 55.3 and 10.6 mg/g DM, respectively, compared with all other species 

which had polyphenol contents below 3.5 mg/g DM. Species of brown algae are 

distinguished from other algal species by their production of phlorotannins, a 

group of bioactive, polyphenolic secondary metabolites made up of complex 

polymers of phloroglucinol (1,3,5-trihydroxybenzene) that have both structural 
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and secondary roles in brown algae  (Heo et al., 2005; Li et al., 2011; Eom et al., 

2012); therefore, it was expected that E. radiata would yield a high polyphenol 

content. On the other hand, polyphenol contents of Vidalia spp. have been 

considerably less addressed, and the majority of research carried out has been 

directed towards the identification and structural elucidation of several 

bromophenols (Table 2.7). 

 

Feed additives containing high levels of polyphenols have the potential to reduce 

enteric CH4 emissions from ruminants. Inclusions of purified tannins from 

chestnuts and sumac at 1 mg/mL to the in vitro rumen fermentation system 

decreased enteric CH4 production by 6 – 7 % (Jayanegara et al., 2011), while the 

addition of flavonoids such as myricetin and kaempferol at a dose of 4.5 % OM 

decreased enteric CH4 production by 43 and 38 %, respectively (Oskoueian et al., 

2013). It is therefore possible that the polyphenols present in E. radiata and V. 

colensoi will decrease enteric CH4 production. Inclusions of Ascophyllum nodosum 

purified phlorotannins at 500 µg/mL of incubation medium decreased enteric CH4 

production of beef steers in vitro by approximately 8 % (Wang et al., 2008). 

However, this was an indirect effect due to A. nodosum decreasing NDF and starch 

digestion in forage and grain diets, respectively, which led to an overall decline in 

total gas production (approximately 14 %) with A. nodosum compared with the 

control, and consequently, less CH4 production (Wang et al., 2008). Thus, this 

effect was not an indication of anti-methanogenic effects of phlorotannins. No 

similar studies have been carried out for E. radiata or V. colensoi to date. 

 

There are multiple benefits associated with the addition of polyphenols in 

ruminants aside from their possible effects on CH4 reduction, such as the inhibition 

of the growth of E. coli (Wang et al., 2009), or the enhancement of dairy cow 

nutrition through improved energy utilisation and the prevention of liver damage 

(Karatzia et al., 2012). Therefore, aside from potential CH4 reduction, the use of 

any one of these species of seaweed (E. radiata and V. colensoi) could still be 

beneficial as a ruminant feed additive; however, more research would be required 

to understand the effects of the assessed species specifically on other aspects of 

fermentation, animal health, and feed digestibility. 
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One of the main focal points of this study was to identify possible anti-

methanogenic components in seaweed species that could be used as alternative 

anti-methanogenic feed additives. However, these selected species could also 

prove useful as feed components for other purposes, namely by contributing to 

the protein and energy requirements of livestock. Seaweed commonly contains 

high quality protein and is therefore often considered as a novel source of protein, 

even though its content is relatively low in comparison with other established 

sources of protein, such as soybean meal (45 – 49 %) (Boland et al., 2013). Ulva sp. 

B biomass contained 19 % crude protein which, through biorefinery enrichment 

processes that involve concentrating protein through the extraction of salt and the 

water-soluble polysaccharide ulvan, could be increased by approximately 50 %, 

bringing this much closer to that of most traditional protein sources (Magnusson 

et al., 2019). Conversely, Ulva sp. B also had a high S content (5.5 % of DM), which 

at high intakes above 3.5 g S/kg of DM/day, could compromise animal health as a 

result of toxic hydrogen sulfide gas being produced during ruminal fermentation 

(Kandylis, 1984; NRC, 2005; Drewnoski et al., 2014). Inclusion of unprocessed Ulva 

sp. B. biomass should therefore be limited to < 6.5 % for cattle, while biomass that 

has undergone biorefinery processing to remove non-protein components can be 

applied at higher doses (Magnusson et al., 2019). This must also be considered if 

Ulva sp. B was a candidate for reducing enteric CH4 emissions. Delisea compressa 

also had a relatively high crude protein content (17.9 %), however aquaculture 

facilities for large-scale commercial cultivation of seaweed have already been 

established for Ulva sp. B (Mata et al., 2016), but not for D. compressa. Therefore, 

in terms of using seaweed solely to enhance feed protein content, Ulva sp. B is a 

more practicable candidate.     
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Table 2.7. Summary of abundant secondary metabolites isolated from species from the 
genera Asparagopsis (ASP), Bonnemaisonia (BNM), Delisea (DSA), Plocamium (PLA), 
Vidalia (VDA), Ecklonia (ECK), and Ulva (ULVA), based on the current available literature. 
Note, this is only a very brief, small selection of identified metabolites from the selected 
seaweed species (e.g. see Kladi et al. (2004)).  

 

 

Species Product Chemical formula Source 

ASP bromoform CHBr3 1 
 dibromochloromethane CH2BrCl 1 
 bromochloroacetic acid C2H2BrClO2 1 
 dibromoacetic acid C2H2Br2O2 1 
BNM 1,1,3,3-tetrabromo-2-

heptanone 
C7H10Br4O 2 

 1-Iodo-3,3-dibromo-2-
heptanone 

C7H11Br2IO 2 

DSA 4-bromo-5-(bromo-methylene)-
3-(1-hydroxobutyl)-2(5H)-
furanone 

C9H10Br2O3 3, 4 

 3-(1’-acetoxybutyl)-4-bromo-5-
iodomethyl-5-methoxyl-2(5H)-
furanone 

C12H17BrIO5 4 

 3-(1’-hydroxybutyl)-4-bromo-5-
iodomethyl-5-methoxyl-2(5H)-
furanone 

C10H14BrIO4 4 

 2,4,6-tribrchlorophenol C6H2Cl3OH 5 
 2,4-dibromophenol C6H4Br2O 5 
PLA costatone A, B, C C10H12Br2Cl2O2 6 
 (1E,5Z)-1,6-dichloro-2-

methylhepta-1,5-dien-3-ol C8H12Cl2O 6 

 2-bromo-1-bromomethyl-1,4-
dichloro-5-(2’-chloroethy-(E)-
enyl)-5-methylcyclohexane 

C10H13Br2Cl3 7 

VDA colensolide A C13H15Br2N3O4 8 
 lanosol C7H2Br2O3 8 
 lanosol methyl ether  C8H8Br3 O3 8 
 rhodomelol C13H12Br2O8 9 
ECK dimethyloxarsylethanol C4H9AsO3 10 
 dioxinodehydroeckol C18H10O9 11 
 phlorofucofuroeckol A C30H18O14 12 
 6,6’-biekol/dieckol C36H22O18 11, 12 
 phloroglucinol C6H6O3 13 
ULVA gallic acid C7H6O5 14 
 2,4,6-tribromophenol C6H3Br3O 15 
 α-linolenic acid C18H30O2 16 
 ulvan (sulfated polysaccharide) - 17 

1Machado et al. (2016a);  2Siuda et al. (1975); 3Manefield et al. (2001); 4de Nys et al. (1993); 5Kladi et 
al. (2004); 6Bracegirdle et al. (2019);  7Motti et al. (2014); 8Osako and Teixeira (2013);  9Popplewell and 
Northcote (2009); 10Edmonds et al. (1982); 11Wijesekara et al. (2010); 12Li et al. (2009); 13Henry et al. 
(2017); 14Silva et al. (2013), 15Flodin and Whitfield (1999), 16Alamsjah et al. (2005), 17Kidgell et al. (2019).  



 

 43 

2.5.4 Conclusions 

In conclusion, each of the assessed species contained elements which could be 

beneficial in terms of reducing enteric CH4 production and/or enhancing the 

nutritional value of ruminant feed, without significantly reducing organic matter 

degradation. All species of red algae were abundant in halogens Br and Cl, which 

was in accordance with the diverse array of halogenated compounds reported in 

the literature for these species. Ecklonia radiata and Ulva sp. B contained high 

contents of I and crude protein, respectively, and therefore have the potential to 

enhance the mineral and protein content of animal feed. The following in vitro 

analyses (Chapter 3) will determine whether the inclusion of these species reduces 

enteric CH4 production.  
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3 Chapter 3 – In vitro fermentation assay 

Quantification of anti-methanogenic properties of 

selected species using in vitro fermentation assays 

 

3.1 Introduction 

Global methane (CH4) emissions account for 16 – 20 % of global GHG emissions 

(IPCC, 2014), with 41 % of anthropogenic CH4 emissions emitted from the 

agricultural sector (CAIT, 2016). The top CH4 emitting countries by quantity include 

China, India and Brazil; however, New Zealand has the largest CH4 emissions per 

capita, amounting to 7 tCO2-e per capita, which are mainly due to agricultural 

emissions (CAIT, 2016). Livestock production systems are the greatest source of 

agricultural CH4 emissions, responsible for 18 % of total global GHG emissions 

(Herrero & Thornton, 2013) and are primarily due to enteric fermentation (USEPA, 

2006).  

 

Enteric fermentation is a multi-step digestive process (Figure 1.3) where 

carbohydrates (e.g. cellulose, starch) from ingested plant feed are degraded by 

microbial enzymatic activity into volatile fatty acids (VFAs), mainly acetate, 

propionate, and butyrate (Kumari et al., 2020). These act as the main source of 

energy to the ruminant (Broucek, 2014). During this process, CO2 and H2 are 

produced as by-products, which are then used by methanogenic archaea to 

produce enteric CH4 (Bhatta & Enishi, 2007; Buddle et al., 2011). This pathway of 

methanogenesis is favored in the rumen to avoid hydrogen accumulation, as free 

hydrogen inhibits dehydrogenases, affecting the process of fermentation. In the 

rumen the production of CH4 through the utilisation of hydrogen and CO2 is 

specific to methanogenic archaea (Mirzaei-Aghsaghali & Maheri-Sis, 2011). This 

process results in significant energy loss to the ruminant, approximately 8 % of its 

gross energy intake at a maintenance level of feed intake (Bhatta & Enishi, 2007; 

Hristov et al., 2013). Developing strategies to reduce enteric CH4 emissions from 
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ruminants will therefore not only benefit the environment in terms of combating 

the issue of climate change, but it will also reduce the energy loss from ruminant 

digestion, making for more efficient and economically beneficial animal 

production.  

 

Currently, the use of feed additives and selective breeding strategies have 

received much attention as options for mitigating enteric CH4 emissions (Basarab 

et al., 2013; Durmic et al., 2014; Bayat et al., 2018; Flay et al., 2019). Selectively 

breeding livestock that produce lower enteric CH4 is estimated to lead to emission 

reductions of approximately 15 – 25 % (Alford et al., 2006; de Haas et al., 2011), 

and in the long-term, this strategy could become a viable solution for mitigating 

CH4 emissions (Table 1.2) (Pickering et al., 2015). However, there is still much 

progress to be made regarding the biological variation (e.g. differences in rumen 

microbiome and digestion) that exists between low and high CH4 emitting cattle 

(Hristov et al., 2013; Knapp et al., 2014; Denninger et al., 2020), as well as the 

development of accurate, cost effective technologies (Denninger et al., 2020), 

before this strategy becomes viable to implement (Smith et al., 2014). It is 

therefore not likely that selective cattle breeding will bring about the shorter-time 

scale emission reductions that have been made a target for CH4 emissions (IPCC, 

2014).  

 

On the other hand, feed additives reduce enteric CH4 emissions within shorter 

time scales (Table 1.2) (Mayberry et al., 2019), with significant differences in 

efficacy. For example, oils (e.g. rapeseed and linseed) can reduce daily CH4 

emissions from enteric fermentation by approximately 22 % when included at 5 % 

organic matter (OM) dose; however, this was attributed more to the indirect effect 

of reduced feed intake as a result of the oils, as opposed to the direct effect of oil 

addition (Bayat et al., 2018). Alternatively, certain essential oils (e.g. Melaleuca 

ericifolia and Melaleuca teretifolia) reduce enteric CH4 production by up to 75 % 

(Durmic et al., 2014). The downside of several of these additives, however, is that 

their addition can also negatively impact microbial gas and volatile fatty acid (VFA) 

production, an undesirable side effect, as this would decrease the overall energy 

and nutrient availability to the animal (Durmic et al., 2014; Machado et al., 2016a; 



 

 46 

Bayat et al., 2018). Thus, the implementation of additives with such side effects is 

unlikely to occur in the near future. 

 

Secondary metabolites from seaweed from the genus Asparagopsis, are highly 

effective at reducing enteric CH4 emissions without compromising other aspects 

of fermentation (e.g. total VFA production and OM degradability) (Kinley et al., 

2016; Machado et al., 2016a; Machado et al., 2016b) or changing meat eating 

quality (Kinley et al., 2020). Seaweed secondary metabolites are also especially 

attractive as a mitigation option due to being an alternative to the use of 

antibiotics or synthetically produced CH4 inhibitors, which encompass a range of 

human health and environmental risks that have, thus far, prevented their 

implementation (Kobayashi, 2010; Gerber et al., 2013; Hristov et al., 2013).   

 

The use of Asparagopsis as a feed additive offers a promising solution for 

mitigating enteric CH4 emissions (Machado et al., 2014; Kinley et al., 2016; 

Machado et al., 2016a; Kinley et al., 2020). Studies have shown that species of 

Asparagopsis exert a strong anti-methanogenic effect resulting in the near 

elimination of CH4 production at doses of just 1 and 2 % OM (84 and > 99 % 

reductions, respectively) in vitro (Machado et al., 2016b), and 0.2 % OM (98 % 

reduction) in vivo (Kinley et al., 2020). Differences in the efficacy of Asparagopsis 

are dependent on the concentration of the active anti-methanogenic compound, 

bromoform (CHBr3). The activity of bromoform in Asparagopsis reduces the 

abundance of methanogens in the rumen, resulting in a shift in the bacterial 

community structure (Machado et al., 2018; Roque et al., 2019b). OM 

degradability is not significantly affected by inclusion of Asparagopsis at such low 

doses in vitro (Machado et al., 2016b) or in vivo (Kinley et al., 2020). Additionally, 

although total VFA production (the main source of energy for ruminants (Russell 

et al., 1992) declined by 12 to 25 % for a dose of 2 % OM in vitro (due to a lower 

proportion of acetate produced), the proportion of propionate, butyrate, valerate 

and isovalerate all significantly increased (Machado et al., 2016b). A shift away 

from acetate towards propionate and butyrate is expected as both pathways lead 

to less hydrogen production (Janssen, 2010), therefore alleviating some of the 
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stresses induced by inhibiting methane production as the principle means of 

hydrogen disposal.  

 

 It is therefore likely that alternative fermentation processes still take place when 

methanogenesis is inhibited; thus, the process of fermentation remains efficient. 

On the other hand, in vivo studies showed that lower doses (i.e. 0.2 % OM) than 

applied in vitro have no effect on total VFA production (Kinley et al., 2020), 

highlighting the importance of Asparagopsis bromoform concentration in 

determining the strength of effects on ruminal fermentation.  

 

Although Asparagopsis is the most effective species for inhibition of 

methanogenesis to date, there are some concerns associated with the presence 

of bromoform in Asparagopsis, as it is a potential carcinogen and ozone depleter 

(WMO, 2011). This has motivated the pursuit of identifying alternative species of 

seaweed that reduce CH4 emissions without these associated health or 

environmental concerns. Species related to Asparagopsis, such as Delisea 

compressa and Bonnemaisonia hamifera, may possess similar anti-methanogenic 

properties to Asparagopsis. These species belong to the same family 

(Bonnemaisoniaceae) as Asparagopsis (Bonin & Hawkes, 1988; Guiry, 2010), and 

contain chemical similarities in their secondary metabolites. For example, 

although B. hamifera does not contain halomethanes as Asparagopsis does, it has 

been found to contain high concentrations of several halogen-containing ketones, 

alcohols and carboxylic acids (McConnell & Fenical, 1980; Kladi et al., 2004). 

 

Other red seaweeds found in New Zealand, including Plocamium spp. and Vidalia 

colensoi also contain an array of halogenated secondary metabolites (Popplewell 

& Northcote, 2009; Knott, 2015) that may have an anti-methanogenic effect in 

rumen fermentation. Ecklonia radiata (brown seaweed; common kelp) and Ulva 

spp. (green seaweed, sea lettuce) are both species targeted for large-scale 

commercial production (Cahill et al., 2010; Smith et al., 2010; Bolton et al., 2016; 

Lorbeer et al., 2017; Charoensiddhi et al., 2018; Neveux et al., 2018). Ulva spp. 

have shown to reduce enteric CH4 production in vitro by 50 % at a 16.7 % OM dose 

(Machado et al., 2014), whereas the effect of E. radiata on enteric CH4 has not yet 
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been assessed. Assessing the effect of these species on rumen fermentation would 

be informative, due to the possibility of providing a potential fast-tracked solution 

to reducing enteric CH4 production, as well as multi-beneficial seaweed 

aquaculture production if these species prove to be effective.   

 

3.2 Aims and objectives  

The aim of this chapter is therefore to assess the anti-methanogenic properties of 

select species of red seaweeds present in New Zealand, as well as the aquaculture 

target species Ecklonia radiata and Ulva sp. B. I will carry out fermentation assays 

to quantify their efficacy in reducing enteric CH4 production in vitro. The efficacy 

of each species will be benchmarked against the anti-methanogenic activity of the 

industry standard, Asparagopsis (armata). Each species will be tested at an 

inclusion rate of 2 %, 6 %, and 10 % of OM. Doses above 10 % require amounts of 

seaweed that become impractical and prohibitive to implement for large cattle 

herds.  

 

Hypotheses:  

1) Methane inhibition will be positively correlated with seaweed dose.  

2) Methane inhibition will be positively correlated to chemical similarity 

and/or relatedness to Asparagopsis.  

 

3.3 Materials and methods  

3.3.1 Sample collection  

Samples of seven species of seaweed, Asparagopsis armata, Bonnemaisonia 

hamifera, Delisea compressa, Plocamium sp., Vidalia colensoi, Ecklonia radiata, 

and Ulva sp. B, were collected from six locations in the North Island, New Zealand 

(Table 2.1). All samples were collected as described in Chapter 2 (section 2.3.1). 

 

Bulk material (minimum of 500 g FW) of each species was collected from different 

sites. In vitro incubations using A. armata (gametophytes) were carried out using 

only bulk material collected from Mathesons Bay. The amount of each species 
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collected depended on the availability at the site. To ensure bulk material was 

representative for each species collected for each site, all individual specimens 

that made up the bulk material were collected at least 2 m apart. Field-collected 

material was rinsed with seawater and placed in resealable polyethylene bags 

upon collection. Samples collected from Makara Beach were frozen (-20 °C) within 

2 hours of collection, and then transported to the University of Waikato Coastal 

Marine Field Station (UoW CMFS) laboratory on ice, while samples collected from 

the remaining sites were directly transported back to the UoW CMFS laboratory 

on ice. Upon return to the laboratory, all collected material was immediately 

frozen, then later freeze-dried and ground into a fine powder using a NutriBullet 

and stored at -80 °C in resealable polyethylene bags with silica sachets. All samples 

were stored for a maximum of 60 days.  

 

3.3.2 In-vitro incubation 

The system used to carry out the in-vitro fermentation assays was a completely 

automated 72 bottle unit designed to measure total gas production (TGP), 

methane and hydrogen formation in near real time (Muetzel et al., 2014). The 

method followed Muetzel et al. (2014). Briefly, the day before each incubation run 

was started, 500 ± 15 mg of air-dried feed substrate ryegrass (RG 299, basal 

substrate) was weighed into each serum bottle. Each species of freeze-dried and 

ground seaweed was added at doses of 2 %, 6 % and 10 % OM of the basal 

substrate, on top of the basal substrate. Asparagopsis armata was included at the 

same doses as a positive control, yielding a total of 18 treatments for each species. 

Also included in each run was a negative control using the basal substrate (RG 

299), as well as a run control (RC, to test for incubation variability) (Durmic et al., 

2014; Muetzel et al., 2014). Two bottles were used per treatment in each 

incubation as technical replicates, and treatments were incubated in three 

separate incubations (runs) as statistical replicates. After weighing the substrates 

in the bottles were covered with Parafilm and stored at -20 °C overnight. 

 

The following morning, the prepared incubation bottles were removed from the 

freezer, randomised and placed into a pre-warmed incubator set at 39 °C. While 
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these came to temperature, 3.2 L of the two-component buffer solution was 

prepared (Mould et al., 2005) as follows. Buffer 1 contained 6.0 mM Na2HPO4, 9.6 

mM KH2PO4 and 0.5 mM MgCl2, while buffer 2 contained 64.5 mM NaHCO3 and 

17.8 mM NH4HCO3. The buffer solution was placed in a 39 °C water bath and 

gassed with CO2 for at least 30 minutes before a reducing solution (0.8 mL NaOH 

10 M and 1.25 g Cysteine-HCl 2.5 mM) was added to lower the redox potential and 

remove any remaining oxygen from the buffer just before the rumen fluid was 

added. Prior to rumen fluid collection, four standards containing different 

concentrations of methane and hydrogen (Muetzel et al., 2014) were injected into 

the GC. Rumen fluid from two fistulated Friesian x Jersey non-lactating cows (two 

different cows per incubation, i.e. a total of six cows were used for three 

incubation runs) was collected and combined into a pre-warmed thermos flask 

and filtered through one layer of cheese cloth. A total of 800 mL of filtered rumen 

fluid (400 mL from each cow) was immediately transferred into the in vitro buffer, 

producing a medium with a 4:1 ratio of buffer to filtered rumen fluid. The medium 

was dispensed in 50 mL aliquots into the prepared incubation bottles, which were 

then capped with a butyl rubber stopper, placed into the incubator, and connected 

to the gas system by stabbing the attached 23 g needle through the butyl rubber 

stopper. During the incubation, the bottles were shaken at 120 rpm using a 

reciprocal shaker located inside the incubator. The fermentation gases 

accumulated within each bottle during the incubation and when ~8 mL (120 mbar) 

of gas had accumulated, the gases were released into an in-line gas 

chromatograph (GC-2010, Shimadzu, Kyoto, Japan) fitted with a HP-MolseivePlot 

column (30 m length x 0.53 mm ID), a thermal conductivity detector and flame 

ionisation detector (maintained at 105 °C and 250 °C, respectively) in series to 

simultaneously quantify CH4 and H2 for each individual bottle. The column was 

maintained isothermally at 85 °C using N2 as a carrier with a flow rate of 13 

mL/min. Gas standard samples used for quality control during analyses were as 

described by Muetzel et al., (2014). For each incubation, a single gas 

chromatograph run was carried out with a maximum frequency of one sample per 

minute spaced at one-minute intervals. From each bottle approximately 20 gas 

samples were measured over the course of a 48-h incubation.  
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For each incubation, the 24-h gas and CH4 production from a standard ryegrass 

(RG) was calculated using the logistic model  

 

y = a(1 – exp -bt)/(1 + c exp-bt) 

 

where y is the volume of gas produced at time t, a is the potential gas production 

of the system, b is a constant most sensitive to changes in the rate of fermentation, 

and c describes a constant most sensitive to changes in the lag phase (France et 

al., 2000). From the resulting data, the potential gas production and CH4 

production is calculated along with a rate indicator t ½ (time when half of the 

potential gas production is reached) and the rate of gas production at t ½. 

Together, these data allow for a good description of the effects of the treatment 

compared to a control. At the end of fermentation, samples for volatile fatty acid 

(VFA) and ammonia (NH3) analysis (1.8 mL/bottle) were collected using a wide 

bored tip.  

 

3.3.3 Volatile fatty acid and NH3 production 

After the collection, the VFA and NH3 samples were centrifuged (21,000 x g, 10 

min, 4 °C) and 900 µL was combined with 100 µL of internal standard solution (19 

mM ethylbutyrate in 20 % v/v phosphoric acid). The samples were stored at -20 °C 

for at least 16-h, thawed and centrifuged again as described above. An 800 µL 

aliquot of the combined supernatant and internal standard solution was 

transferred into a 2 mL crimp gas chromatography vial and crimped immediately. 

The remaining supernatant was collected into a 96-well plate for NH3 analysis. 

VFAs were analysed by gas chromatography as described by Attwood et al. (1998) 

and NH3 was analysed using a scale down version of the phenol hypochlorite 

method described by Weatherburn (1967). 

 

3.3.4 Organic matter degradation 

The degradability of organic matter (OMdeg, % degraded) was calculated using 

the equation 
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OMdeg = 14.88 + 0.889 GP + 0.045 CP + 0.065 ASH  

 

where GP is the volume of gas (mL/200 mg) produced at 24-h, and CP and ASH are 

the total crude protein and ash content (g/g DM), respectively, of substrate(s) 

used for in vitro incubations (Menke & Close, 1986). GP data was obtained from in 

vitro incubations and CP and ASH were quantified in Chapter 2 (described in 

sections 2.3.4 and 2.3.5, respectively). This formula provides an estimated value 

of OMdeg, as opposed to one which has been measured directly. Therefore, the 

reported OMdeg data is not entirely accurate and should be interpreted with 

caution as a different in vitro system was used to determine total gas production, 

which is the main parameter in the equation.  

 

3.3.5 Statistical analysis  

Prior to analyses, gas production data was checked for errors (i.e. system 

calibration errors, gas leaks, or unknown errors) during the in vitro incubations. 

This was done by visually assessing the data for each treatment; a bottle was 

determined as an error if the value for TGP stood out as a clear outlier among the 

rest of the data. Individual samples (i.e. a single bottle) identified with errors 

included D. compressa 2 % (Run 1 – R1), Ulva sp. B  6 % (R2), B. hamifera 6 % (R2), 

Plocamium sp. 10 % (R2), A. armata 2 % (R3), A. armata 6 % (R3), Ulva sp. B 2 % 

(R3) and D. compressa 10 % (R3) and were subsequently excluded from the 

following analyses. The effects of dose (including the control) on total gas, CH4, H2, 

total VFA, individual VFA, and NH3 production and OMdeg within each individual 

substrate were analysed using permutational analyses of variance (PERMANOVA) 

conducted in Primer v7 (Primer-E Ltd., UK) using Euclidean distances resemblance 

matrices, 9,999 unrestricted permutations of raw data and Type III sum of squares 

(Anderson et al., 2008). PERMDISP tests were carried out to test for the 

assumption of homogeneity of multivariate dispersions. The majority of these 

tests were significant; however, a non-significant result is not strictly considered 

necessary to obtain prior to using PERMANOVA, as it is likely that PERMDISP will 

detect differences in dispersion that are often not substantial enough to “de-rail” 

(i.e. inflate the error rates of) the PERMANOVA (Anderson et al., 2008). Post-hoc 
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PERMANOVA tests were carried out for all analyses which were significant 

according to the PERMANOVA test. Raw, unadjusted p values are reported for all 

analyses, and no corrections for multiple comparisons were made to any of the 

tests (Anderson et al., 2008). Adjustments for multiple comparisons were 

unnecessary in the present study, as the hypothesis of the study was clearly 

defined and the results were transparent and unambiguous (Rothman, 1990). 

 

3.4 Results  

3.4.1 In-vitro incubation 

Total gas production:  

Total gas production varied significantly between doses within each individual 

species of seaweed (Figure 3.1A; Table 3.1) and increased over the 24-h incubation 

period for all treatments including the control (Figure 3.2) and varied significantly 

between doses within each individual species of seaweed. Asparagopsis armata 

caused the highest reduction in TGP, significantly reducing TGP at all three doses 

compared with the control (Table 3.2). Reductions were 16.5 %, 36.5 %, and 46 % 

for A. armata doses 2 %, 6 % and 10 % OM, respectively. Unlike A. armata, TGP for 

B. hamifera was similar to that of the control at a dose of 2 % OM, while doses of 

6 and 10 % OM both significantly reduced TGP by 14 and 17 %, respectively (Figure 

3.1A; Table 3.2). Asparagopsis armata was the only species to significantly reduce 

TGP at a 2 % OM dose relative to the control, while the remaining species E. 

radiata, D. compressa, Plocamium sp., Ulva sp. B and V. colensoi had no effect at 

a dose of 2 %, but did cause a significant decrease in TGP of approximately 15 % 

at doses of 6 and 10 % OM.  
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Figure 3.1. Mean (± SE, n = 3) total gas (mL/g) (A), CH4 (mL/g) (B), and H2 production (mL/g) 
(C), for substrates RG (299) freeze-dried perennial ryegrass (control), and seaweed species 
A. armata (ASP), B. hamifera (BNM), D. compressa (DSA), Plocamium sp. (PLA), V. colensoi 
(VDA), E. radiata (ECK), and Ulva sp. B (ULVA at doses 2 %, 6 %, and 10 % (OM-based) over 
a 24-h in vitro incubation period. 

 

CH4 production: 

Methane production decreased over the 24-h incubation period for the majority 

of the species at each dose (Figure 3.3), and there was significant variation in CH4 

production between doses within each individual species (Figure 3.1B; Table 3.1). 

All species except for Ulva sp. B significantly decreased CH4 production relative to 

the control at either one or two doses, and A. armata was the only species to 

reduce CH4 at all three doses (Figure 3.1B, Table 3.2). Asparagopsis armata and B. 

hamifera were the most effective species, completely eliminating CH4 production 

at doses of 2 and 10 % OM for A. armata and 10 % OM for B. hamifera, while 

reductions of > 95 % were observed at a dose of 6 % OM for both A. armata and 

B. hamifera, compared with the control (Figure 3.1B). Bonnemaisonia hamifera 

caused a 22.4 % decrease in CH4 at a 2 % OM dose, while D. compressa and 

Plocamium sp. significantly reduced CH4 production by 40 and 50 %, respectively, 

at a 10 % OM dose (Figure 3.1B, Table 3.2). Ulva sp. B, V. colensoi, and E. radiata 

increased CH4 production by 7 – 10 % at a dose of 2 % OM; however, doses 6 and 
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10 % OM of V. colensoi and E. radiata caused decreases in CH4 of approximately 

10 – 20 % (Figure 3.1B, Table 3.2). 

 

Table 3.1. Results of PERMANOVA for total gas, CH4, H2 (mL/g), total volatile fatty acid 
(VFA), individual VFA (% total), and ammonia (NH3) (mmol/g) production among doses 0 
(control), 2 %, 6 %, and 10 % OM within each individual seaweed species A. armata (ASP), 
B. hamifera (BNM), D. compressa (DSA), Plocamium sp. (PLA), V. colensoi (VDA), E. radiata 
(ECK), and Ulva sp. B (ULVA) (n = 3) (df = 3). Pseudo F (F) and P values are presented. Bold 
values indicate a significant difference (α = 0.05). 

Variable Species  F P 
TGP ASP 128.28 < 0.001 
 BNM 13.87 < 0.001 
 DSA 11.87 < 0.001 
 PLA 18.03 < 0.001 
 VDA 13.21 0.003 
 ECK 9.56 < 0.001 
 ULVA 4.89 0.013 
CH4 ASP 237.86 < 0.001 
 BNM 112.74 < 0.001 
 DSA 16.23 < 0.001 
 PLA 16.86 < 0.001 
 VDA 5.32 0.008 
 ECK 5.15 0.005 
 ULVA 1.88 0.167 
H2 ASP 108.67 < 0.001 
 BNM 50.40 < 0.001 
 DSA 4.28 0.019 
 PLA 1.22 0.323 
 VDA 2.09 0.131 
 ECK 0.50 0.761 
 ULVA 1.41 0.251 
Total VFA ASP 258.49 < 0.001 
 BNM 79.76 < 0.001 
 DSA 10.09 < 0.001 
 PLA 16.96 < 0.001 
 VDA 10.13 < 0.001 
 ECK 6.38 0.004 
 ULVA 6.40 0.003 
Acetate ASP 76.10 < 0.001 
 BNM 228.21 < 0.001 
 DSA 31.97 < 0.001 
 PLA 63.32 < 0.001 
 VDA 0.80 0.518 
 ECK 1.87 0.054 
 ULVA 0.26 0.852 
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Butyrate ASP 24.95 < 0.001 
 BNM 113.86 < 0.001 
 DSA 38.03 < 0.001 
 PLA 21.09 < 0.001 
 VDA 0.53 0.528 
 ECK 2.96 0.058 
 ULVA 0.78 0.524 
Propionate ASP 6.43 0.004 
 BNM 97.63 < 0.001 
 DSA 14.29 < 0.001 
 PLA 29.14 < 0.001 
 VDA 0.12 0.945 
 ECK 10.10 < 0.001 
 ULVA 0.02 0.995 
Isobutyrate ASP 69.11 < 0.001 
 BNM 13.36 < 0.001 
 DSA 5.81 0.004 
 PLA 8.34 0.001 
 VDA 1.60 0.223 
 ECK 8.17 < 0.001 
 ULVA 2.06 0.140 
Isovalerate ASP 65.71 < 0.001 
 BNM 11.61 < 0.001 
 DSA 4.09 0.019 
 PLA 3.87 0.028 
 VDA 0.92 0.447 
 ECK 5.13 0.004 
 ULVA 1.28 0.302 
Valerate ASP 19.40 < 0.001 
 BNM 14.46 < 0.001 
 DSA 3.16 0.049 
 PLA 3.29 0.040 
 VDA 10.33 < 0.001 
 ECK 1.52 0.218 
 ULVA 0.75 0.547 
NH3 ASP 13.52 < 0.001 
 BNM 6.52 0.004 
 DSA 0.53 0.664 
 PLA 1.07 0.379 
 VDA 0.78 0.519 
 ECK 1.31 0.301 
 ULVA 0.48 0.697 
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Table 3.2. PERMANOVA post-hoc tests for total gas, CH4, and H2 production among doses 
0 (control, C), 2 %, 6 %, and 10 % OM within each individual seaweed species A. armata 
(ASP), B. hamifera (BNM), D. compressa (DSA), Plocamium sp. (PLA), V. colensoi (VDA), E. 
radiata (ECK), and Ulva sp. B (ULVA) (n = 3). (–) indicates a non-significant result from 
overall PERMANOVA test (Table 3.1). Bold values indicate a significant difference (α = 
0.05). 

Species  Dose 
comparison 

TGP CH4 H2 
t P t P t P 

ASP C – 2 7.29 0.002 17.61 0.002 23.16 0.003 
 C – 6  10.43 0.002 24.81 0.003 9.24 0.003 
 C – 10  29.36 0.003 21.61 0.001 6.96 0.002 
 2 – 6   6.61 0.002 1.51 0.273 5.15 0.002 
 2 – 10  21.59 0.002 0.22 0.765 15.02 0.002 
 6 – 10  3.46 0.004 1.96 0.070 4.87 0.003 
BNM C – 2 1.33 0.212 2.13 0.056 2.70 0.004 
 C – 6  5.55 0.002 17.17 0.003 14.93 0.002 
 C – 10  6.65 0.003 19.04 0.002 6.77 0.002 
 2 – 6   2.63 0.031 9.18 0.002 14.93 0.002 
 2 – 10  3.69 0.009 10.48 0.003 6.32 0.002 
 6 – 10  1.21 0.243 0.73 0.520 0.94 0.408 
DSA C – 2 0.96 0.354 0.32 0.755 0.89 0.245 
 C – 6  3.51 0.007 3.08 0.017 0.41 0.570 
 C – 10  6.96 0.003 5.57 0.002 3.35 0.002 
 2 – 6   1.95 0.078 2.59 0.032 0.56 0.642 
 2 – 10  4.20 0.002 5.15 0.002 2.58 0.0133 
 6 – 10  2.23 0.064 3.27 0.002 3.42 0.003 
PLA C – 2 1.39 0.198 1.41 0.195 - - 
 C – 6  5.25 0.003 3.92 0.003 - - 
 C – 10  5.63 0.002 7.14 0.003 - - 
 2 – 6   4.24 0.002 3.17 0.007 - - 
 2 – 10  4.81 0.006 6.24 0.002 - - 
 6 – 10  1.53 0.158 1.32 0.209 - - 
VDA C – 2 0.30 0.756 0.55 0.565 - - 
 C – 6  5.06 0.002 2.90 0.023 - - 
 C – 10  4.91 0.003 2.61 0.033 - - 
 2 – 6   4.03 0.008 2.95 0.021 - - 
 2 – 10  4.00 0.003 2.76 0.027 - - 
 6 – 10  0.18 0.858 0.09 0.926 - - 
 ECK C – 2 0.41 0.683 0.82 0.429 - - 
 C – 6  3.05 0.020 1.61 0.146 - - 
 C – 10  3.87 0.004 2.50 0.018 - - 
 2 – 6   3.52 0.008 2.59 0.035 - - 
 2 – 10  4.32 0.004 3.11 0.004 - - 
 6 – 10  0.95 0.369 1.42 0.180 - - 
ULVA C – 2 0.92 0.389 - - - - 
 C – 6  1.10 0.292 - - - - 
 C – 10  4.74 0.004 - - - - 
 2 – 6   1.64 0.134 - - - - 
 2 – 10  4.49 0.004 - - - - 
 6 – 10  1.35 0.217 - - - - 
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H2 production:  

Neither species, nor dose resulted in a consistent trend in H2 production over the 

24-h incubation period (Figure 3.4, Table 3.1). Both A. armata and B. hamifera 

significantly increased H2 production relative to the control, for which no H2 was 

produced (Figure 3.1C, Table 3.2). For A. armata, H2 production decreased with 

dose, reaching 24.1 mL/g at a dose of 2 % OM and dropping to 6.1 mL/g at a dose 

of 10 % OM. Conversely, H2 production increased from a dose of 2 to 6 % OM for 

B. hamifera, rising from 0.9 mL/g to 24.8 mL/g, and declining by 6.7 mL/g at a dose 

of 10 % OM (Figure 3.1C, Table 3.2). Delisea compressa at a 10 % OM dose caused 

a small, yet significant, 1.4 mL/g increase in H2 production, while none of the 

remaining species significantly affected H2 production at any of the three doses.  

 

3.4.2 Volatile fatty acid and NH3 production 

Total VFA production varied between doses for each individual species (Figure 3.5; 

Table 3.1). At all doses of A. armata, total VFA production was significantly lower 

compared with the control by 22.4 %, 37.4 %, and 54.0 % at doses of 2 %, 6 %, and 

10 % OM, respectively (Figure 3.5; Table 3.3). Bonnemaisonia hamifera had no 

effect on total VFA production at a 2 % OM dose, while doses 6 and 10 % OM 

resulted in decreases of 20.9 and 25.4 %, respectively. Delisea compressa, 

Plocamium sp. and V. colensoi significantly decreased total VFA production by 6 – 

14 % at doses of 6 and 10 % OM, whereas E. radiata and Ulva sp. B decreased total 

VFA production by 6 – 8 % at a dose of 10 % OM. The molar proportions of 

butyrate, propionate and valerate increased at all doses for A. armata and B. 

hamifera, and at doses of 6 and 10 % OM for Plocamium sp., while the proportions 

of acetate, isobutyrate and isovalerate decreased. Delisea compressa and E. 

radiata induced these same changes at 6 and 10 % OM doses, however the effects 

were less pronounced. Conversely, Ulva sp. B and V. colensoi exhibited no effect 

on individual VFA production. Asparagopsis armata and B. hamifera were the only 

species to significantly decrease NH3 production, an effect which increased with 

dose (Table 3.1, Table 3.3).  NH3 production was reduced by 50 % at a dose of 2 % 

OM for A. armata and was eliminated when the dose was increased to 10 % OM, 

whereas B. hamifera reduced NH3 by 25 – 50 %.
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Table 3.3. PERMANOVA post-hoc tests for total volatile fatty acid (VFA) (mmol/g), individual VFA (% total), and ammonia (NH3) production among doses 0 (control, 
C), 2 %, 6 %, and 10 % OM within each individual seaweed species A. armata (ASP), B. hamifera (BNM), D. compressa (DSA), Plocamium sp. (PLA), V. colensoi (VDA), 
E. radiata (ECK), and Ulva sp. B (ULVA) (n = 3). (–) indicates a non-significant result from overall PERMANOVA test (Table 3.1). Bold values indicate a significant 
difference (α = 0.05). 

Species Dose 
comparison 

Total VFA Acetate Butyrate Propionate Valerate Isobutyrate Isovalerate NH3 
t P t P t P t P t P t P t P t P 

ASP C – 2 11.33 0.002 47.97 0.002 25.00 0.002 17.66 0.003 4.24 0.002 3.08 0.014 5.89 0.002 3.31 0.013 
 C – 6 14.91 0.002 13.32 0.002 21.31 0.002 4.62 0.005 1.26 0.240 12.89 0.003 7.78 0.002 4.19 0.007 
 C – 10 34.88 0.002 8.30 0.002 4.26 0.001 1.75 0.085 11.71 0.001 23.35 0.002 15.59 0.002 5.80 0.003 
 2 – 6 6.33 0.002 1.78 0.115 11.13 0.002 1.79 0.100 3.47 0.017 4.03 0.002 2.92 0.017 1.61 0.125 
 2 – 10 23.31 0.002 4.22 0.010 1.44 0.218 1.66 0.160 9.06 0.002 7.77 0.002 9.92 0.002 3.34 0.012 
 6 – 10 7.99 0.002 4.22 0.008 1.86 0.091 0.62 0.562 2.31 0.017 6.87 0.003 4.46 0.004 1.21 0.261 
BNM C – 2 0.65 0.530 5.55 0.002 7.11 0.003 3.21 0.006 4.06 0.006 1.18 0.260 1.06 0.293 1.02 0.308 
 C – 6 12.61 0.002 35.79 0.002 15.89 0.002 25.69 0.002 5.19 0.003 5.64 0.003 6.04 0.002 4.10 0.006 
 C – 10 13.56 0.002 33.59 0.003 17.79 0.003 20.96 0.003 5.11 0.002 5.33 0.002 6.51 0.002 3.44 0.009 
 2 – 6 8.70 0.003 11.12 0.002 8.63 0.002 7.45 0.002 3.99 0.002 3.48 0.007 2.56 0.004 2.54 0.034 
 2 – 10 9.86 0.003 11.44 0.002 9.18 0.002 7.78 0.002 3.87 0.002 3.55 0.005 2.98 0.003 2.01 0.081 
 6 – 10 2.78 0.029 1.11 0.300 0.27 0.853 1.50 0.177 0.21 0.824 0.48 0.614 1.30 0.220 0.64 0.543 
DSA C – 2 1.10 0.295 0.81 0.441 0.68 0.501 0.59 0.536 0.98 0.350 0.15 0.873 0.21 0.821 - - 
 C – 6 2.53 0.038 4.46 0.005 3.03 0.015 3.10 0.024 0.05 0.964 0.02 0.960 0.67 0.450 - - 
 C – 10 4.66 0.002 7.18 0.002 8.04 0.002 4.81 0.002 1.78 0.125 2.89 0.016 2.23 0.055 - - 
 2 – 6 2.03 0.088 4.04 0.006 2.33 0.045 2.70 0.024 1.13 0.210 0.23 0.866 0.46 0.635 - - 
 2 – 10 4.43 0.002 6.92 0.002 7.57 0.002 4.56 0.002 3.52 0.010 2.92 0.017 2.44 0.040 - - 
 6 – 10 1.99 0.070 4.06 < 0.001 6.00 0.002 2.69 0.173 2.70 0.023 3.63 0.008 2.91 0.022 - - 
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PLA C – 2 1.63 0.134 5.06 0.004 3.26 0.014 3.30 0.016 0.57 0.576 0.32 0.749 0.47 0.644 - - 
 C – 6 5.82 0.002 9.70 0.003 6.18 0.002 6.08 0.002 2.51 0.035 2.06 0.068 1.20 0.258 - - 
 C – 10 4.90 0.004 13.71 0.002 6.76 0.003 9.40 0.002 1.28 0.244 4.52 0.002 2.80 0.018 - - 
 2 – 6 5.49 0.002 5.70 0.002 4.29 0.002 3.49 0.009 2.36 0.041 2.18 0.058 1.68 0.127 - - 
 2 – 10 4.27 0.010 8.74 0.002 4.69 0.004 6.25 0.003 0.86 0.390 5.80 0.002 3.36 0.003 - - 
 6 – 10 0.87 0.422 1.72 0.117 0.02 0.984 1.96 0.081 1.79 0.106 1.56 0.156 1.15 0.279 - - 
VDA C – 2 1.21 0.256 -  - - - - - 0.15 0.866 - - - - - - 
 C – 6 3.93 0.008 - - - - - - 0.98 0.333 - - - - - - 
 C – 10 3.75 0.008 - - - - - - 5.05 0.004 - - - - - - 
 2 – 6 3.80 0.009 - - - - - - 096 0.334 - - - - - - 
 2 – 10 3.78 0.014 - - - - - - 5.96 0.002 - - - - - - 
 6 – 10 0.85 0.422 - - - - - - 3.64 0.006 - - - - - - 
 ECK C – 2 0.04 0.970 - - - - 0.85 0.411 - - 0.27 0.796 0.48 0.623 - - 
 C – 6 1.61 0.140 - - - - 4.70 0.001 - - 3.11 0.013 1.97 0.086 - - 
 C – 10 4.32 0.004 - - - - 4.07 0.003 - - 3.29 0.004 2.49 0.023 - - 
 2 – 6 1.76 0.105 - - - - 3.21 0.019 - - 3.87 0.006 3.07 0.014 - - 
 2 – 10 5.59 0.003 - - - - 3.38 0.003 - - 3.40 0.003 3.00 0.005 - - 
 6 – 10 1.46 0.169 - - - - 1.50 0.140 - - 1.66 0.069 1.24 0.261 - - 
ULVA C – 2 1.01 0.335 - - - - - - - - - - - - - - 
 C – 6 1.32 0.208 - - - - - - - - - - - - - - 
 C – 10 2.92 0.019 - - - - - - - - - - - - - - 
 2 – 6 2.62 0.033 - - - - - - - - - - - - - - 
 2 – 10 4.44 0.006 - - - - - - - - - - - - - - 
 6 – 10 1.83 0.102 - - - - - - - - - - - - - - 
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Figure 3.2. Mean (± SE, n = 3) cumulative total gas production (TGP) (mL/g) over a 24-h in vitro 
incubation period. Graphs demonstrate the accumulation of total gas during enteric fermentation. RG 
(299) freeze-dried perennial ryegrass (control), A. armata (ASP), B. hamifera (BNM), D. compressa 
(DSA), Plocamium sp. (PLA), V. colensoi (VDA), E. radiata (ECK), and Ulva sp. B (ULVA). 
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Figure 3.3. Mean (± SE, n = 3) cumulative methane production (CH4) (mL/g) over a 24-h in vitro 
incubation period. Graphs demonstrate the accumulation of CH4 during enteric fermentation. 
RG (299) freeze-dried perennial ryegrass (control), A. armata (ASP), B. hamifera (BNM), D. 
compressa (DSA), Plocamium sp. (PLA), V. colensoi (VDA), E. radiata (ECK), and Ulva sp. B 
(ULVA). 
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Figure 3.4. Mean (± SE, n = 3) cumulative hydrogen production (H2) (mL/g) over a 24-h in vitro 
incubation period. Graphs demonstrate the accumulation of H2 during enteric fermentation. RG 
(299) freeze-dried perennial ryegrass (control), A. armata (ASP), B. hamifera (BNM), D. compressa 
(DSA), Plocamium sp. (PLA), V. colensoi (VDA), E. radiata (ECK), and Ulva sp. B (ULVA). 
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Table 3.4. Effect of substrate (mean ± SE, n = 3) RG (299) freeze-dried perennial ryegrass (control) and seaweed species A. armata (ASP), B. hamifera (BNM), D. 
compressa (DSA), Plocamium sp. (PLA), V. colensoi (VDA), E. radiata (ECK), and Ulva sp. B (ULVA) at doses 2 %, 6 %, and 10 % (OM-based) on post-fermentation 
parameters: total gas (TGP), CH4, H2, total volatile fatty acid (VFA), individual VFA, and ammonia (NH3) production at the end of 24 and 48-h in vitro incubation 
periods for gas and VFA/NH3 production, respectively. 

Treatment Gas production (mL/g) VFA production (molar proportion, %)  

Substrate Dose  
(% OM) 

TGP CH4 H2 Total VFA 
(mmol/g) 

AC BU PR VA ISB ISV NH3  
(mmol/g) 

RG (299)  N/A 234.0 ± 

3.8 

28.1 ± 1.1 - 6.7 ± 0.1 66.6 ± 0.3 10.3 ± 0.1 19.1 ± 0.3 1.2 ± 0.0 1.0 ± 0.0 1.7 ± 0.1 0.4 ± 0.0 
ASP 2  195.9 ± 

3.6 

- 24.1 ± 2.2 5.2 ± 0.1 51.4 ± 0.2 16.3 ± 0.2 28.1 ± 0.4 2.0 ± 0.2 0.7 ± 0.1 1.0 ± 0.1 0.2 ± 0.2 
 6  130.8 ± 

9.2 

0.7 ± 0.2 14.7 ± 1.6 4.2 ± 0.1 49.1 ± 1.3 23.5 ± 0.6 25.5 ± 1.4 0.9 ± 0.3 0.3 ± 0.0 0.7 ± 0.1 0.1 ± 0.3 
 10  97.8 ± 2.7 - 6.1 ± 0.8 3.1 ± 0.0 56.5 ± 1.2 19.4 ± 2.1 23.7 ± 2.6 0.2 ± 0.1 0.0 ± 0.0 0.2 ± 0.0 0.0 ± 0.1 
BNM 2  223.8 ± 

6.7 

23.3 ± 2.0 0.9 ± 0.2 6.6 ± 0.1 62.1 ± 0.8 11.9 ± 0.2 21.9 ± 0.8 1.4 ± 0.0 0.9 ± 0.0 1.5 ± 0.1 0.3 ± 0.0 
 6 201.5 ± 

4.2 

1.3 ± 1.0 24.8 ± 1.6 5.3 ± 0.1 53.1 ± 0.3 14.5 ± 0.2 28.5 ± 0.3 1.9 ± 0.1 0.7 ± 0.0 1.1 ± 0.0 0.2 ± 0.1 
 10 193.3 ± 

4.8 

0.3 ± 1.0 21.1 ± 3.2 5.0 ± 0.1 52.6 ± 0.3 14.4 ± 0.2 29.2 ± 0.4 1.9 ± 0.1 0.7 ± 0.0 1.0 ± 0.0 0.2 ± 0.1 
DSA 2 226.9 ± 

6.4 

27.6 ± 1.2 - 6.6 ± 0.1 66.3 ± 0.2 10.4 ± 0.1 19.3 ± 0.3 1.2 ± 0.0 1.0 ± 0.0 1.7 ± 0.1 0.4 ± 0.0 
 6 210.5 ± 

5.6 

23.5 ± 1.1 - 6.3 ± 0.1 64.5 ± 0.4 10.8 ± 0.1 20.7 ± 0.4 1.2 ± 0.0 1.0 ± 0.0 1.7 ± 0.1 0.3 ± 0.0 
 10 193.3 ± 

4.2 

17.0 ± 1.7 1.4 ± 0.3 5.9 ± 0.1 61.2 ± 0.7 12.1 ± 0.2 23.1 ± 0.8 1.3 ± 0.0 0.8 ± 0.0 1.3 ± 0.1 0.4 ± 0.0 
PLA 2 227.1 ± 

3.2 

26.0 ± 1.0 - 6.5 ± 0.1 64.5 ± 0.3 10.8 ± 0.1 20.6 ± 0.4 1.3 ± 0.0 1.0 ± 0.0 1.7 ± 0.1 0.4 ± 0.0 
 6 206.0 ± 

3.8 

17.8 ± 2.4 2.0 ± 1.9 5.9 ± 0.1 61.2 ± 0.5 12.0 ± 0.2 22.9 ± 0.6 1.4 ± 0.0 0.9 ± 0.0 1.5 ± 0.1 0.4 ± 0.0 
 10 195.5 ± 

5.7 

13.9 ± 1.7 1.1 ± 1.1 5.8 ± 0.1 60.2 ± 0.4 12.0 ± 0.2 24.3 ± 0.5 1.3 ± 0.0 0.8 ± 0.0 1.3 ± 0.1 0.3 ± 0.0 
VDA 2 232.1 ± 

5.3 

29.1 ± 1.4 0.8 ± 0.2 6.6 ± 0.0 66.7 ± 0.3 10.5 ± 0.2 18.8 ± 0.4 1.2 ± 0.0 1.0 ± 0.0 1.7 ± 0.1 0.5 ± 0.0 
 6 203.9 ± 

4.6 

24.5 ± 0.6 0.5 ± 0.7 6.2 ± 0.1 66.6 ± 0.3 10.4 ± 0.4 19.0 ± 0.4 1.3 ± 0.0 1.0 ± 0.0 1.6 ± 0.1 0.5 ± 0.0 
 10 202.6 ± 

5.2 

24.4 ± 0.9 0.3 ± 0.3 6.1 ± 0.1 66.0 ± 0.5 10.8 ± 0.4 19.1 ± 0.5 1.5 ± 0.0 0.9 ± 0.0 1.5 ± 0.1 0.4 ± 0.0 
ECK 2 236.1 ± 

3.4 

29.3 ± 0.9 0.4 ± 0.7 6.7 ± 0.1 66.8 ± 0.1 9.9 ± 0.2 19.5 ± 0.4 1.1 ± 0.0 1.0 ± 0.0 1.7 ± 0.0 0.4 ± 0.0 
 6 215.5 ± 

4.7 

25.6 ± 1.1 0.1 ± 0.6 6.4 ± 0.2 66.2 ± 0.2 9.5 ± 0.2 21.0 ± 0.3 1.0 ± 0.0 0.9 ± 0.0 1.4 ± 0.1 0.3 ± 0.0 
 10 208.7 ± 

5.3 

22.2 ± 2.1 0.6 ± 1.7 6.2 ± 0.1 65.0 ± 1.1 9.5 ± 0.3 22.1 ± 0.7 1.1 ± 0.1 0.8 ± 0.1 1.2 ± 0.2 0.3 ± 0.1 
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ULVA 2 240.1 ± 

5.5 

30.2 ± 1.3 - 6.8 ± 0.0 66.9 ± 0.2 10.1 ± 0.1 19.1 ± 0.4 1.2 ± 0.0 1.0 ± 0.0 1.7 ± 0.1 0.5 ± 0.0 
 6 224.6 ± 

7.7 

28.2 ± 1.2 - 6.5 ± 0.1 66.6 ± 0.2 10.2 ± 0.2 19.0 ± 0.5 1.2 ± 0.0 1.1 ± 0.0 1.8 ± 0.1 0.5 ± 0.0 
 10 213.9 ± 

2.0 

26.5 ± 0.8 0.5 ± 0.2 6.3 ± 0.1 66.7 ± 0.3 10.0 ± 0.2 19.0 ± 0.5 1.2 ± 0.0 1.1 ± 0.0 1.9 ± 0.1 0.5 ± 0.0 

 

 

 

AC acetate, BU butyrate, PR propionate, VA valerate, ISB isobutyrate, ISV isovalerate. 
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Figure 3.5. Mean (± SE, n =  3) total volatile fatty acid (VFA, mmol/g) production for 
substrates RG (299) freeze-dried perennial ryegrass (control), and seaweed species A. 
armata (ASP), B. hamifera (BNM), D. compressa (DSA), Plocamium sp. (PLA), V. colensoi 
(VDA), E. radiata (ECK), and Ulva sp. B (ULVA) at doses 2 %, 6 %, and 10 % (OM-based) 
over a 48-h in vitro incubation period. 

 

3.4.3 Organic matter degradation 

OMdeg varied between doses within each species (Table 3.5). OMdeg significantly 

decreased as the dose of A. armata increased, with a 5.8 and 24.3 % decrease in 

OMdeg at doses of 2 and 10 % OM, respectively, compared to the control (Table 

3.6, Figure 3.6). OMdeg remained unaffected at doses of 2 % OM for B. hamifera, 

D. compressa, Plocamium sp., V. colensoi, and E. radiata, and decreased by 3.3 – 

8.2 % at higher doses. Ulva sp. B increased OMdeg by 1.9 % at a dose of 2 % OM, 

while causing a 3.5 % reduction at a dose of 10 % OM (Table 3.6, Figure 3.6).   

 

Table 3.5. Results of PERMANOVA for degradability of organic matter (% degraded). 
among doses 0 (control), 2 %, 6 %, and 10 % OM within each individual species A. armata 
(ASP), B. hamifera (BNM), D. compressa (DSA), Plocamium sp. (PLA), V. colensoi (VDA), E. 
radiata (ECK), and Ulva sp. B (ULVA) (n = 3) (df = 3). Pseudo F (F) and P values are 
presented. Bold values indicate a significant difference (α = 0.05). 

Species  F P 
ASP 145.61 < 0.001 
BNM 13.05 < 0.001 
DSA 7.69 0.003 
PLA 25.79 < 0.001 
VDA 11.22 < 0.001 
ECK 8.62 < 0.001 
ULVA 5.47 0.010 
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Table 3.6. Results of PERMANOVA post hoc tests for degradability of organic matter (% 
degraded) among doses 0 (control), 2 %, 6 %, and 10 % OM within each individual 
seaweed species A. armata (ASP), B. hamifera (BNM), D. compressa (DSA), Plocamium sp. 
(PLA), V. colensoi (VDA), E. radiata (ECK), and Ulva sp. B (ULVA) (n = 3) (df = 3). Pseudo F 
(F) and P values are presented. Bold values indicate a significant difference (α = 0.05). 

Species  Dose comparison t P 
ASP C – 2 5.97 0.005 
 C – 6  8.97 0.005 
 C – 10 28.46 0.003 
 2 – 6  5.49 0.028 
 2 – 10  

 

29.86 0.004 
 6 – 10  4.26 0.004 
BNM C – 2 0.83 0.425 
 C – 6  5.89 0.005 
 C – 10 6.02 0.002 
 2 – 6  2.94 0.021 
 2 – 10  

 

3.69 0.009 
 6 – 10  0.67 0.510 
DSA C – 2 1.68 0.119 
 C – 6  2.51 0.036 
 C – 10 5.75 0.005 
 2 – 6  1.16 0.287 
 2 – 10  

 

6.45 0.027 
 6 – 10  1.61 0.160 
PLA C – 2 0.42 0.704 
 C – 6  4.35 0.004 
 C – 10 7.82 0.007 
 2 – 6  4.24 0.002 
 2 – 10  

 

8.32 0.004 
 6 – 10  3..39 0.015 
VDA C – 2 0.44 0.650 
 C – 6  4.25 0.005 
 C – 10 4.17 0.002 
 2 – 6  4.03 0.007 
 2 – 10  

 

4.00 0.002 
 6 – 10  0.19 0.864 
ECK C – 2 0.98 0.341 
 C – 6  2.57 0.032 
 C – 10 3.43 0.007 
 2 – 6  3.52 0.010 
 2 – 10  

 

4.12 0.004 
 6 – 10  0.95 0.358 
ULVA C – 2 3.12 0.028 
 C – 6  0.62 0.565 
 C – 10 3.15 0.012 
 2 – 6  1.95 0.117 
 2 – 10  

 

7.85 0.005 
 6 – 10  0.74 0.589 
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The RG used in this experiment served as an internal run control over three 

incubations which were each carried out using rumen fluid combined from two 

different donor cows to test for an effect of donor animal or incubation variability. 

Total gas production (TGP, mL/g) was similar across all three incubations (Figure 

3.7), thus there was no effect of incubation variability or donor animal across the 

different incubations.  

 

 

 

Figure 3.6. Degradability of organic matter (n = 3, ± SE) (% degraded) for perennial 
ryegrass (RG299, control), and seaweed species A. armata (ASP), B. hamifera (BNM), D. 
compressa (DSA), Plocamium sp. (PLA), V. colensoi (VDA), E. radiata (ECK), and Ulva sp. B 
(ULVA) (n = 6). * indicates treatment is significantly different (α = 0.05) from control 
according to PERMANOVA. 
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3.5 Discussion 

3.5.1 In-vitro incubation 

This is the first time B. hamifera, D. compressa, E. radiata, V. colensoi, Plocamium 

sp. and Ulva sp. B have been assessed for their effect on ruminant enteric CH4 

production in vitro. Importantly, B. hamifera was identified as a novel seaweed 

species that nearly eliminates enteric CH4 production at a dose of 6 % OM, and 

contains anti-methanogenic compounds that, a higher dose (6 % OM), have a 

similar effect on CH4 reduction to those present in Asparagopsis, which is 

considered the benchmark algal genus for enteric CH4 inhibition.  

 

Total gas production: 

In this study, Asparagopsis armata was the only species to notably decrease total 

gas production (16.3 %) at a dose of 2 % OM, while doses of 6 and 10 % OM were 

required for the remaining species to cause similar decreases in total gas 

production. The reduction in total gas production caused by A. armata (2 % OM) 

was 9 and 20 % less than reported in Machado et al. (2016a) and Machado et al. 

(2016b), respectively, but similar to Kinley et al. (2016). Such variation may be due 

to differences in the bromoform concentration of different Asparagopsis samples 

Figure 3.7. Total gas production (TGP, mL/g) for substrate ryegrass (RG, internal control) 
incubated over the three separate incubations (I1, I2, I3) with combined rumen fluid of 
two different donor cows per incubation.  
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used over these studies (1 % DM in this study), which is affected by the storage 

and processing of the biomass, seasonality (environmental conditions), and 

genetic differences between strains. Samples with a higher bromoform 

concentration should have a greater effect on fermentation parameters compared 

to samples with a lower bromoform concentration; however, the bromoform 

concentration reported for A. armata in this study was nearly 6-fold greater than 

reported for A. taxiformis in Machado et al. (2016a) (1.7 mg/g DM), yet, a larger 

reduction in total gas production was reported for A. taxiformis at 2 % OM. This 

suggests that the negative effect on total gas production is not caused by 

bromoform. The remaining studies did not report bromoform concentration 

(Kinley et al., 2016; Machado et al., 2016b), thus, comparisons cannot be made. 

 

The composition of basal feed (i.e. quality of grass/hay), and the type of basal feed 

also influences gas production. Several studies have reported differences in the 

anti-methanogenic effects of various substrates based on basal feed type. Maia et 

al. (2016) found that the use of meadow hay as basal feed resulted in greater CH4 

reduction compared to corn silage, while Machmüller et al. (2003) showed that 

CH4 reduction with myristic acid was two-fold greater when sheep were fed a 

concentrate diet, as opposed to a forage based diet. Higher quality feeds that 

contain a greater protein content can result in lower total gas and CH4 production 

compared with lower quality, fibrous feeds, for example (Johnson & Johnson, 

1995; Cone & van Gelder, 1999). Conversely, the extent of CH4 reduction with 

increasing concentrations of fatty acids (e.g. oleic, linoleic and linolenic acid) was 

more pronounced when added to grass silage and barley grain (116 g CP/kg DM) 

compared to perennial ryegrass (161 g CP/kg DM) (O’Brien et al., 2014). The crude 

protein content of the ryegrass assessed in the current study was 168 g/kg DM, 

which was higher than that of the Rhodes grass hay used by Machado et al. 

(2016b) (66.9 g/kg DM), but similar to that of the Rhodes grass used by Kinley et 

al. (2016) (167 g/kg DM). This may explain the greater reduction in total gas 

production observed in our study based on feeds containing higher protein 

content, resulting in lower reductions in total gas production. Ryegrass pastures 

make up the greatest proportion of feed for cattle in New Zealand (Beef+LambNZ, 

2017b), although testing feed additives with various ruminant feed substrates is 
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useful for assessing the application of feed additives across different grazing 

systems. 

 

CH4 production: 

The use of any substance that reduces enteric CH4 production will ultimately cause 

some reduction in total gas production, since the propionate pathway is not 

associated with any fermentative CO2 production. (Janssen, 2010; Morgavi et al., 

2010). On the other hand, a large reduction in total gas production can indicate 

the possible eradication of methanogens, resulting in compromised fermentation 

efficiency. Ideally, inhibition of CH4 production would be achieved by reducing the 

population of methanogens, as opposed to complete eradication, so that 

fermentation remains effective for the animal. Methanogen abundance was not 

assessed in this study, however, previous work demonstrated that decreases in 

CH4 production with the inclusion of Asparagopsis at 2 % OM resulted in a shift in 

ruminal microbial community composition and decrease (but not the complete 

eradication) in the relative abundance of methanogens (Machado et al., 2018). 

This supports the premise that the fermentation efficiency is not compromised by 

the low inclusion of Asparagopsis.  

 

I hypothesized that CH4 inhibition would be positively correlated with seaweed 

dose and chemical similarity and/or relatedness to Asparagopsis. Asparagopsis 

armata was the only species to significantly reduce CH4 at a 2 % OM dose, 

effectively eliminating CH4 production throughout the whole 24-h incubation 

period, which was consistent with the findings of in vitro previous studies (Kinley 

et al., 2016; Machado et al., 2016b). For all other species, CH4 production was only 

affected at higher doses. Bonnemaisonia hamifera was the most effective of the 

other species, reducing CH4 production by 95 and 99 % at doses of 6 and 10 % OM, 

respectively. Furthermore, for the same 100 % decrease in CH4 production, there 

was a lower impact on total gas production with the inclusion of B. hamifera at 6 

and 10 % OM doses. Although B. hamifera and A. armata are closely related 

species, they differ in their production of chemical compounds (Kladi et al., 2004). 

Importantly, B. hamifera does not contain bromoform, the halogenated 

compound identified as the active main compound in A. armata responsible for 
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CH4 inhibition (Machado et al., 2016a). The active compound driving CH4 inhibition 

in B. hamifera is therefore different to that of A. armata, however, whether the 

mechanism causing inhibition is also different is not yet clear.    

 

Bonnemaisonia hamifera has a high total halogen content, comprised of several 

halogenated ketones, alcohols and carboxylic acids (McConnell & Fenical, 1979; 

McConnell & Fenical, 1980). The brominated aliphatic ketone 1,1,3,3-tetrabromo-

2-heptanone is the most abundant halogenated compound produced by B. 

hamifera (0.01 % wet weight yield, i.e. approximately 0.1 % of dry weight, 

assuming a wet: dry ratio of 10:1), and has anti-microbial and anti-fungal 

properties (Siuda et al., 1975; Nylund et al., 2008). Therefore, this compound is a 

likely candidate as the active compound reducing CH4 production in B. hamifera. 

Related derivatives of this compound have also been isolated from B. hamifera 

(Siuda et al., 1975) (e.g. 1-iodo-3-3-dibromo-2-heptanone), however, these 

compounds were identified at significantly lower concentrations (< 0.001 % wet 

weight yield). Assay guided fractionation is recommended to progress 

identification of the active component(s) in B. hamifera (Nylund et al., 2008), as 

was performed to identify the main active metabolite in Asparagopsis (Machado 

et al., 2016a). 

 

Although the remaining species were not as effective as A. armata and B. 

hamifera, D. compressa, Plocamium sp., V. colensoi and E. radiata all caused 

marked decreases in CH4 production that ranged between 15 and 50 % at doses of 

6 and 10 % OM. Of these species, D. compressa and Plocamium sp. were 

particularly effective, reducing CH4 by 40 and 50 %, respectively, when included at 

a 10 % OM dose. However, the effects on total gas production of D. compressa  

and Plocamium sp. at this dose (16 – 17 % reduction in total gas production) was 

practically the same as for lower doses of 2 and 6 % OM for A. armata and B. 

hamifera (14 – 16 % reduction in total gas production), respectively; thus, the two 

latter species are better candidates to be used as CH4 mitigating feed additives. 

Nonetheless, when compared with many other potential CH4 mitigating strategies, 

for which reduction estimates range between 10 - 40 % (Table 1.2), a 40 – 50 % 

reduction in CH4 emissions is still highly effective. Ulva sp. B was the only species 
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which did not significantly affect CH4 production at any of the doses applied in the 

present study, however, the doses applied in the present study were the lowest 

doses to have ever been tested for this genus. Previous work found that species 

of Ulva such as Ulva ohnoi or Ulva tepida reduced CH4 production by up to 50 % 

at a dose of 16.7 % OM (Machado et al., 2014), while Ulva lactuca reduced CH4 by 

55 % at a dose of 25 % OM.  

 

H2 production: 

Under normal conditions during enteric fermentation, H2 does not accumulate in 

the rumen, as it is primarily consumed by methanogens to produce CH4 and any 

remaining H2 is immediately used by other bacteria (Moss et al., 2000). Any H2 

accumulation is therefore, generally, confirmation that either the abundance of 

CH4 producing methanogens has been reduced, or that the fermentation pathway 

has been interfered with (Janssen, 2010). Decreases in CH4 production caused by 

D. compressa, Plocamium sp., E. radiata, and V. colensoi were not associated with 

notable increases in H2 accumulation. Presumably, some of the hydrogen spared 

from reduced CH4 production was directed towards propionate production 

(Ungerfeld, 2015), as propionate production competes with CH4 production for 

hydrogen use (Moss et al., 2000; Janssen, 2010; Martin et al., 2010; Mitsumori et 

al., 2012), and decreases in CH4 were accompanied by increases in propionate for 

all four species. However, it is also possible that some hydrogen was redirected to 

other alternative hydrogen sinks, such as formate or ethanol production 

(Ungerfeld et al., 2003), or components of the algae that may act as hydrogen 

sinks (Martinez-Fernandez et al., 2017), although addressing these matters was 

outside the scope of the present study. 

 

The inhibition of CH4 production induced by A. armata (2 % OM) and B. hamifera 

(6 % OM) was accompanied by a significant increase in H2 accumulation, which is 

consistent with the results of previous in vitro and in vivo studies using 

Asparagopsis (Machado et al., 2016a; Machado et al., 2018; Roque et al., 2019a; 

Kinley et al., 2020). Increases in the concentration of H2 results in the shift away 

from H2 forming processes (Figure 1.3), causing a reduction in the amount of H2 

and CH4 formed per unit of feed (Janssen, 2010); thus, if alternative H2 utilising 
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pathways (e.g. NH3-N formation)) or alternatives to H2 formation (e.g. propionate 

production) are not available, reduced H2 formation and consequently the 

suppression of CH4 production can cause increases in the partial pressure of 

dissolved H2 in the rumen (Janssen, 2010; Morgavi et al., 2010). Increases in the 

partial pressure of H2 are undesirable, as they lead to inhibition of dehydrogenase 

activity involved in the oxidation of reduced cofactors (NAD+, NADP+, FAD+), 

which would hinder OM substrate degradation and VFA production, thereby 

reducing enteric fermentation (Martin et al., 2010). Nonetheless, the microbes 

involved in enteric fermentation are able to tolerate and maintain fermentation 

over a wide range of H2 pressures (usually between 0.1 – 50 µmol) (Ungerfeld & 

Kohn, 2006; Janssen, 2010). Significant reductions in OM degradation, total VFA 

production (discussed below) or animal productivity would be suggestive that the 

partial pressure of H2 has reached its upper limit. For example, inclusion of 

Asparagopsis (1 % OM) in vivo that led to decreased CH4 production (by 62.7 %) 

and increased H2 production (by 78.9 %) also caused a 12 and 38 % reduction in 

milk production and feed intake, respectively, for dairy cattle (Roque et al., 

2019a). 

 

It is more practical to accept a lower effect on CH4 reduction, so as to maintain a 

healthy H2 balance and allow enteric fermentation to proceed. This also means 

that a defined amount of biomass can treat a greater proportion of cattle herds. 

Conversely, higher doses of A. armata (6 and 10 % OM) led to decreases in H2 

accumulation, an effect also accompanied by larger decreases in total VFA 

production (37 and 54 %, respectively). This was a direct function of the reduced 

fermentation as indicated by total gas production.  

 

3.5.2 Volatile fatty acid and NH3 production 

Ingested OM is degraded during ruminal fermentation by an assortment of rumen 

microbes which generates VFA, the primary source of energy assimilated in the 

rumen contributing to the animals nutrition (Russell et al., 1992). Thus, both OM 

degradation and VFA production are indicators of fermentative activity and 

negative effects on either of these aspects are undesirable for a prospective CH4 
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mitigating feed additive. Total VFA production decreased with dose for both A. 

armata and B. hamifera. Asparagopsis armata significantly reduced total VFA 

production by 22.4 % at a 2 % OM dose, a result that aligned with the findings of 

Machado et al. (2016b), but differed to those of Kinley et al. (2016), who 

concluded that total VFA production was not significantly affected at a 2 % OM 

dose of Asparagopsis. Furthermore, the inclusion of Asparagopsis at 0.2 % OM for 

beef cattle fed a high grain diet in vivo resulted in the virtual elimination of CH4 

production (98 % reduction) with no effect on daily feed intake, feed conversion 

efficiency, or rumen function (Kinley et al., 2020). As was discussed for total gas 

production, differences in basal feed composition (quality of feed, i.e. protein 

content and digestibility) or variation in bromoform concentration of 

Asparagopsis samples may explain the differences in effects on total VFA 

production identified across studies. Consistent with all other fermentation 

parameters, total VFA production remained unaffected with the addition of B. 

hamifera at a dose of 2 % OM, but reductions of 21 and 25 % were evident when 

doses were increased to 6 and 10 % OM, respectively. Furthermore, the moderate 

anti-methanogenic effects of D. compressa, Plocamium sp., V. colensoi and E. 

radiata were not associated with adverse effects on total VFA production (6 – 14 

% reduction) at any of the applied doses, suggesting that these species can be 

suitable as ruminant feed additives for other purposes, along with the added 

benefit of reduced CH4 production.  

 

In terms of individual VFAs, the inclusions of A. armata and B. hamifera increased 

the production of propionate, while decreasing the production of acetate. Delisea 

compressa and Plocamium sp. also followed this pattern, but the changes were 

less pronounced. The shift from a high acetate:propionate ratio to one which 

favours the production of propionate is frequently observed with the addition of 

anti-methanogenic additives, which is thought to be due to competition for 

hydrogen between methanogenesis and propionate production (Janssen, 2010; 

Mitsumori et al., 2012), i.e., both of these processes require hydrogen, and, with 

the addition of CH4 inhibitors, reduction processes involving propionate 

production become more available in the rumen (Hungate, 1967; Moss et al., 

2000; Mitsumori et al., 2012). Alongside propionate, the proportions of butyrate 
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and valerate increased, whereas the proportions of isobutyrate, isovalerate and 

NH3 decreased for A. armata and B. hamifera. The availability of NH3 is an 

important determinant of microbial protein degradation, since NH3 is the primary 

source of N used by rumen microbes (Nolan & Leng, 1972; Satter & Slyter, 1974); 

thus, there may have been a negative effect on microbial growth or degradation 

of plant based protein associated with the application of A. armata and B. 

hamifera in this study. However, ingested protein that bypasses microbial 

degradation during fermentation is later absorbed by the animal directly in the 

small intestine (Tamminga, 1979). This can result in more efficient protein 

utilisation, an added benefit alongside reduced methanogenesis. Further 

investigation surrounding the use of seaweeds as anti-methanogenic feed 

additives and their associated effects on N utilisation would be required to confirm 

this, whilst the effects on rumen microbes should also be considered. 

 

The concentration of dissolved H2 in the rumen has a strong effect on the pathway 

of fermentation; at high H2 concentrations, the pathway involving acetate, 

butyrate and H2 production that would occur under normal conditions where the 

H2 concentration is kept low becomes thermodynamically unfavourable, while 

fermentation through propionate production becomes favourable (Janssen, 

2010). Therefore, it appears likely that the effective seaweed treatments resulted 

in fermentation proceeding through alternative fermentative processes, ones 

which favoured the production of propionate. 

 

3.5.3 Organic matter degradation 

A minimal reduction in OM degradation (approximately 6 %) was detected for 

both A. armata and B. hamifera at doses of 2 and 6 % OM, respectively. OM 

degradation data in this study consisted of estimates, as opposed to direct 

measurements, and were calculated using total gas production, crude protein, and 

ash content data, all of which were associated with some form of error (Menke & 

Close, 1986). Thus, the values obtained here for OM degradation contain a degree 

of uncertainty and should be interpreted as a best estimate. Furthermore, similar 

in vitro studies using rumen from beef steers that reported direct measurements 
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of OM degradation concluded no effect on OM degradation with the addition of 

Asparagopsis at 2 % OM (Machado et al., 2016a; Machado et al., 2016b). 

Therefore, it is likely that the 6 % reduction in OMdeg reported here was a slight 

overestimate. Nevertheless, OM degradation with the addition of A. armata at a 

2 % OM dose was still similar to the control. The same applied for B. hamifera, D. 

compressa, Plocamium sp., V. colensoi, and E. radiata, as OM degradation was 

decreased by no more than 6.4 % at a 6 % OM dose, an effect which marginally 

increased (by 1.8 %) at a 10 % OM dose. No similar studies have been carried out 

for these species as there have been for A. armata, making it difficult to compare 

their effects. OM degradation was reduced by greater amounts (16.5 – 24.3 %) at 

higher doses of A. armata; thus, it is likely that these treatments would have an 

adverse effect on enteric fermentation. Ulva sp. B slightly increased OM 

degradation by nearly 2 %, resulting in a small positive effect on feed degradability 

alongside its application for protein/mineral enhancement (Rey-Crespo et al., 

2014). These results support the use of these species as anti-methanogenic feed 

additives while maintaining adequate organic matter degradability. 

 

Despite the small reduction in total VFAs, the lack of adverse effects on OM 

degradation, alongside the observed shifts in individual VFA production infers that 

enteric CH4 production can be effectively inhibited with the addition of the 

selected species of seaweed, without significantly compromising enteric 

fermentation, even with the accumulation of H2 in the rumen.  

 

3.5.4 Conclusions 

In conclusion, A. armata and B. hamifera demonstrated near elimination of enteric 

CH4 production in vitro at a dose of 2 % OM for A. armata, and at doses of 6 and 

10 % OM for B. hamifera. Based on these results, a dose of 6 % OM was identified 

as optimal of the doses tested for B. hamifera as an anti-methanogen, although 

doses ranging between 2 and 6 % should also be further investigated to identify 

the minimum effective dose. In comparison to these two species, D. compressa, 

Plocamium sp., V. colensoi and E. radiata moderately reduced CH4 at one or more 

of the applied doses. Asparagopsis armata and B. hamifera resulted in similar 
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effects on all post-fermentation parameters at their optimal doses, so the main 

differences between these two species are the active component driving CH4 

inhibition, and the amount of biomass required to effectively reduce CH4 

production. The observed anti-methanogenic effects were induced with little or 

no effect on post-fermentation parameters, which validates the potential for 

seaweeds to be applied as ruminant feed additives at low doses for reducing 

enteric CH4 emissions.  
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4 Chapter 4 - General discussion 

4.1.1 Key findings 

The overarching aim of this thesis was to evaluate selected New Zealand species 

of red seaweed, as well as species of interest to large-scale aquaculture, for their 

ruminant anti-methanogenic potential. This was achieved by determining the 

biochemical profile of each species and by carrying out rumen in vitro 

fermentation assays. Six out of the seven tested species (A. armata, B. hamifera, 

D. compressa, Plocamium sp., V. colensoi, and E. radiata) reduced enteric CH4 

emissions at one or more of the applied doses (2 %, 6 % and 10 % OM), yet A. 

armata and B. hamifera stood out as the most effective CH4 inhibitors, almost 

eliminating enteric CH4 production. In general, species which had the greatest 

effect on CH4 production (A. armata, B. hamifera, D. compressa, Plocamium sp.) 

contained higher proportions of the halogens chlorine, bromine and iodine, all of 

which are natural anti-microbial elements (Kim et al., 2008; Bouthenet et al., 2011; 

Evans & Critchley, 2014) that likely contributed to the anti-methanogenic effect of 

these species. Ecklonia radiata and V. colensoi also contained high proportions of 

at least one of these halogens, notably iodine for E. radiata and bromine for V. 

colensoi, yet their effect on CH4 production was comparably less than other 

species. Increasing the organic matter (OM) dose (e.g. to 15 – 20 % OM) may have 

resulted in a greater anti-methanogenic effect due to increasing the concentration 

of bioactive compounds; however, higher doses of seaweed are more impractical 

in terms of the total amount of biomass required to treat large cattle herds, and 

depending on the cumulative effect of bioactive compounds, more likely to also 

induce undesirable effects on enteric fermentation. Furthermore, seaweed 

typically contains high amounts of minerals, and increasing the seaweed dose 

increases the risk that the concentration of certain minerals will exceed the 

recommended tolerable upper limit (TUL) for ruminant daily intake, which could 

have negative effects on the animals’ health.  

 

Although E. radiata and Ulva sp. B, did not exhibit a strong effect on CH4 

production at any of the applied doses, these species had no negative effect on 

fermentation efficiency and therefore could still be applied as safe feed additives 
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targeting alternative outcomes. Species of Ulva have demonstrated health 

benefits by means of providing a valuable source of protein and minerals for 

animal feeds, particularly sulfur, (Rey-Crespo et al., 2014; Bikker et al., 2016; 

Øverland et al., 2019), while species of Ecklonia contain high quantities of iodine 

(Smith et al., 2010) and are rich in phlorotannins that exert strong anti-microbial 

effects (Li et al., 2011; Eom et al., 2012). 

 

4.1.2 Iodine content 

Iodine is an essential element required for healthy animal function, largely 

because of its vital role in the formation of several thyroid hormones (Beighle, 

2000). Supplementation at adequate doses through the addition of seaweed 

would therefore be beneficial to the ruminants, especially in New Zealand where 

cattle are commonly deficient in iodine (Anderson, 2007). However, if cattle 

consumed A. armata or E. radiata (whole seaweed, i.e. including ash) at the doses 

applied in this study, 2 %, 6 %, or 10 % OM, the consumption of iodine would be 

200, 600, and 1,000 mg I/kg of DM/day (A. armata), and 80, 240, and 400 mg I/kg 

of DM/day (E. radiata), respectively. These values are considerably higher than the 

recommended tolerable upper limit (TUL) for cattle, which is accepted as 50 mg 

I/kg of DM/day (NRC, 2005). An excess in iodine has the potential to cause adverse 

effects on animal production (e.g. decreased milk yield, loss in body weight), 

reproduction (e.g. increased reproductive disorders), and thyroid function (e.g. 

thyrotoxicosis, thyroid hypertrophy, hypothyroidism) (Paulíková et al., 2002). 

However, iodine has been consumed at concentrations exceeding the 

recommended TUL without inducing adverse effects in calves, dairy cows and 

lactating beef cows (NRC, 2005, 2016). Excess intake of iodine from alga 

supplementation can also result in high milk iodine levels (NRC, 2005; Castro et al., 

2011; Rey-Crespo et al., 2014). However, the tolerance of cattle to excess iodine 

levels is highly variable, and in general, it appears that cattle have a wide safety 

margin for iodine intake (Paulíková et al., 2002; NRC, 2005). Conversely, humans 

are more vulnerable to the effects of excess iodine and are at a greater risk of 

developing iodine thyrotoxicity (O'Dell & Sunde, 1997; Roti & Uberti, 2001). The 

development of biorefinery processes to reduce the amount of iodine in seaweed 
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may therefore be required for the use of A. armata or E. radiata as a CH4-reducing 

feed additive and/or nutritional supplement. Furthermore, in vivo studies have 

shown that Asparagopsis is effective at much lower doses (Roque et al., 2019a; 

Kinley et al., 2020). For example, Asparagopsis with a bromoform concentration 

of 0.665 % DM at a lower inclusion level of 0.2 % OM reduced ruminant CH4 

production by 98 % (Kinley et al., 2020). The bromoform concentration of A. 

armata in the present study was 1.5 fold greater than for the previous study; thus, 

A. armata could be included at even lower effective doses than 0.2 % OM, which 

would then be within the TUL for iodine.   

 

4.1.3 Sulfur content  

Ulva sp. B contained a high content of crude protein, which could be further 

enhanced through biorefinery enrichment processes (Magnusson et al., 2019), 

resulting in valuable protein supplement for animal feed (Drewnoski et al., 2014; 

Rey-Crespo et al., 2014; Bikker et al., 2016; Øverland et al., 2019). This seaweed 

also slightly increased OM degradation at a 2 % OM dose, therefore its inclusion 

in animal feed would also have a positive effect on organic matter degradability. 

Sulfur is an abundant element in Ulva sp. B (5.5 % OM in this study), essential for 

the formation of several amino acids and B vitamins. However, excessive sulfur 

intake can induce toxic effects on ruminants through the accumulation and 

absorption of hydrogen sulfide gas, which can lead to decreased feed intake, 

reduced animal production, and compromised animal health through the 

development of cerebrocortical necrosis (Kandylis, 1984; NRC, 2005; Drewnoski et 

al., 2014). Feeding of unprocessed Ulva. sp. B (whole seaweed, i.e. including ash) 

at the applied doses of 2 and 6 % OM in this study would lead to intakes of 1.1 and 

3.3 g S/kg of DM/day, respectively, none of which exceed the recommended TUL 

for cattle (3.5 g S/kg of DM/day) (NRC, 2005) and are therefore safe to apply. 

Conversely, a 10 % OM dose would result in an intake of 5.5 g S/kg of DM/day, 

exceeding the recommended TUL, thereby posing the risk of impairing animal 

health and/or performance. The protein content of Ulva sp. B can be enriched 

while reducing the concentration of undesirable minerals, resulting in increased 

doses of Ulva sp. B that are still within safe mineral inclusion levels (Magnusson et 
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al., 2019). On the other hand, inclusions of unprocessed Ulva sp. B required to 

potentially reduce CH4 production (> 10 %, based on literature values) would 

exceed the TUL of dietary sulfur. Biorefinery processes targeting sulfur reduction, 

while also maintaining or enhancing CH4 inhibition, could be a viable option for 

enabling the use of Ulva sp. B as a safe anti-methanogenic feed additive in 

ruminants. 

 

4.1.4 Barriers to implementation  

Asparagopsis armata and B. hamifera are the most promising candidate seaweed 

species for application as anti-methanogenic feed additives. Yet, for each species, 

there are also barriers to overcome before the prospect of large-scale production 

and application of either of them as a ruminant feed additive becomes feasible. 

Large scale cultivation for industrial application previously existed for species of 

Asparagopsis, for example a 2 ha farm in France (producing 8 tonnes FW per 

annum) (Werner, 2004) and a 1 ha farm in Ireland (harvested biomass not stated) 

(Kraan & Barrington, 2005), but these farms no longer operate. Furthermore, no 

large scale cultivation exists for B. hamifera (Nash et al., 2005) despite the 

taxonomic similarity of these two species (Grainger & Beauchemin, 2011) and the 

abundance of halogenated compounds present in B. hamifera (Siuda et al., 1975; 

McConnell & Fenical, 1979; McConnell & Fenical, 1980). Bonnemaisonia hamifera 

is an introduced species in New Zealand (Garbary et al., 2020), native to Japan, so 

there may be bio-security barriers associated with carrying out active cultivation, 

although land based production may be a viable option. The public health 

concerns associated with the content of bromoform in A. armata also challenges 

the prospect of this species becoming an accepted ruminant feed additive (ATSDR, 

2005). In vivo studies demonstrated that milk produced by cows treated with 0.5 

and 1 % OM doses of Asparagopsis contained bromoform concentrations (0.11 

and 0.15 µg/L, respectively) (Roque et al., 2019a) that were significantly lower 

than the maximum allowable concentration according to the EPA standard for 

drinking water (700 µg/L) (ATSDR, 2005), and that bromoform is not detected in 

the meat, fat, organs, or faeces of steers exposed to the long term inclusion (90 

days) of Asparagopsis (Kinley et al., 2020). The minimal dose of A. armata required 
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to effectively reduce enteric CH4 production significantly lowers the risk of any 

harmful effects on human and animal health.  

 

Table 4.1. Estimated quantities of A. armata (0.2 and 2 % organic matter (OM) doses) and 
B. hamifera (6 % OM dose) (whole seaweed, i.e. including ash) required to treat 50 % of 
the New Zealand (NZ) cattle herd and the associated effects on NZ enteric CH4 emissions. 

Cattle type 
Seaweed 
treatment 
(% OM) 

Quantity of seaweed (DM) required/day1 Combined 
estimated GHG 

reduction2,3  
Per year/head Per year/50 % of herd 

Dairy ASP – 0.2 2.7 kg  8,677 tonnes 
Enteric CH4 

emission 
reduction: 

13,969 ktCO2-e 

 ASP – 2 26.8 kg 86,811 tonnes 

 BNM – 6 73.0 kg 233,859 tonnes 

Beef ASP – 0.2 1.6 kg 2,895 tonnes 
Reduction in 

total CH4 
emissions: 

18 % 

 ASP – 2 16.1 kg 28,965 tonnes 

 BNM – 6 43.3 kg 78,035 tonnes 

 

 

 

 

 

4.1.5 Biomass requirements  

The cost associated with large-scale seaweed cultivation must also be considered. 

To treat 50 % of the New Zealand cattle (beef and dairy) herd, 115,776 

tonnes/year of A. armata and 311,894 tonnes/year of B. hamifera and would be 

required if added at doses of 2 and 6 % OM, respectively (Table 4.1). Cultivating 

and processing such high quantities of seaweed would undoubtedly be 

challenging. However, this has the potential to reduce New Zealand’s total GHG 

emissions by approximately 17 %. Furthermore, recent work showed that a lower 

dose of 0.2 % OM of Asparagopsis can still nearly eliminate ruminant CH4 

production when added to a high grain diet in vivo (Kinley et al., 2020); thus, the 

same reduction can be achieved with lower quantities of seaweed than 

1calculation based on feed intakes of 9.7 and 16.1 total kg DM eaten per day (kg DM/day/head) and herds of 
6.5 and 3.6 million cattle for dairy and beef herds, respectively (stats.govt.nz, (2017 data); dairynz.co.nz; 
Beef+LambNZ (2017a)).  
2estimated GHG reductions are based on NZ emission data from MfE (2020). 
3reductions are based on complete elimination of enteric CH4 for both beef and dairy cattle for all seaweed 
treatments.  
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demonstrated in this study (Table 4.1). Moreover, the 1.5-fold higher bromoform 

concentration of A. armata used in this study compared to the in vivo study 

indicates that a dose even lower than 0.2 % OM could effectively eliminate 

ruminant CH4 production, resulting in even lower quantities of seaweed required 

to treat New Zealand cattle herds.   

 

4.1.6 Future research 

The implication of this thesis is that A. armata and B. hamifera both present as 

promising, prospective feed additives for reducing enteric CH4 production. Key 

areas of future research highlighted by this thesis include the fulfilment of larger 

scale sampling of A. armata throughout New Zealand. Successful strain selection 

of Asparagopsis is dependent on adequate knowledge of the spatial variation in 

Asparagopsis bromoform concentration and determining the relative importance 

of genetic versus environmental drivers for these differences. Other critical points 

that remain include closing the life cycle for mass seeding on lines on demand for 

outplanting, the development of nursery, hatchery, and cultivation infrastructure, 

and population genetics (especially in New Zealand) for ensuring biosecurity risks 

are minimised (i.e. for moving potentially distinct genetic material between 

regions). Furthermore, the establishment of B. hamifera as a novel and potent 

anti-methanogenic species calls for the identification of its active component(s). 

This can be done through assay guided fractionation, followed by in vitro screening 

of candidate compounds for anti-methanogenic activity. Moreover, method 

development for optimal cultivation and processing of A. armata and B. hamifera 

could result in lower effective doses of these species, and should therefore be 

investigated. Lastly,  innovative ways of delivering accurate seaweed doses 

tailored to different livestock management systems (e.g. grazing dairy cows as 

opposed to beef steers in feed lots) should be developed for application across 

multiple livestock systems throughout New Zealand. 
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