Publication:
Using model trees for classification

dc.contributor.authorFrank, Eibe
dc.contributor.authorWang, Yong
dc.contributor.authorInglis, Stuart J.
dc.contributor.authorHolmes, Geoffrey
dc.contributor.authorWitten, Ian H.
dc.date.accessioned2025-01-28T03:49:22Z
dc.date.available2025-01-28T03:49:22Z
dc.date.issued1998
dc.descriptionWaiting for verification - 19 Jn 2024
dc.description.abstractModel trees, which are a type of decision tree with linear regression functions at the leaves, form the basis of a recent successful technique for predicting continuous numeric values. They can be applied to classification problems by employing a standard method of transforming a classification problem into a problem of function approximation. Surprisingly, using this simple transformation the model tree inducer M5′, based on Quinlan’s M5, generates more accurate classifiers than the state-of-the-art decision tree learner C5.0, particularly when most of the attributes are numeric.
dc.identifier.citationFrank, E., Wang, Y., Inglis, S., Holmes, G., & Witten, I. H. (1998). Using model trees for classification. Machine Learning, 32(1), 63-76.
dc.identifier.doi10.1023/A:1007421302149
dc.identifier.issn0885-6125
dc.identifier.urihttps://hdl.handle.net/10289/17137
dc.language.isoEnglish
dc.publisherKluwer Academic Publishers
dc.relation.isPartOfMachine Learning
dc.rightsThis is an author’s accepted version of an article published in Machine Learning. © 1998. Kluwer Academic Publishers.
dc.subjectScience & Technology
dc.subjectTechnology
dc.subjectComputer Science, Artificial Intelligence
dc.subjectComputer Science
dc.subjectmodel trees
dc.subjectclassification algorithms
dc.subjectM5
dc.subjectC5.0
dc.subjectdecision trees
dc.subject.anzsrc20204611 Machine learning
dc.titleUsing model trees for classification
dc.typeJournal Article
dspace.entity.typePublication
pubs.begin-page63
pubs.end-page76
pubs.issue1
pubs.publication-statusPublished
pubs.volume32

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
m5class.pdf
Size:
191.14 KB
Format:
Adobe Portable Document Format
Description:
Accepted version

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.7 KB
Format:
Item-specific license agreed upon to submission
Description: